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Abstract  Laskin introduced the fractional quantum mechanics and several common problems were solved in a piecewise 
fashion. However, Jeng et al pointed out that it was meaningless to solve a nonlocal equation in a piecewise fashion and that 
all the solutions in publication were wrong except the solution for the delta function potential, which was obtained in the 
momentum space. Jeng’s critique results in a crisis of fractional quantum mechanics, that is, in mathematics it is quite 
difficult to find solutions to the fractional Schrödinger equation and in physics there is no realization for the fractional 
quantum mechanics. In order to eliminate this crisis, this paper reports some analytic solutions to the fractional Schrödinger 
equation without using piecewise method, and introduces the relativistic Schrödinger equation as a realization of the 
fractional quantum mechanics. These two sister equations should be studied at the same time.   
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1. Introduction 
In 2000, Laskin introduced the fractional quantum 

mechanics [1-3]. As the first example he solved the infinite 
square well problem in a piecewise fashion [3]. Since then, 
the piecewise method has been widely used in this field. In 
2010, however, Jeng, et al [4] criticized that it was 
meaningless to solve a nonlocal equation in a piecewise 
fashion and they demonstrated thatit was impossible for the 
ground state function to satisfy the fractional Schrödinger 
equation near the boundary inside the well. In a series of 
papers [5-8], Bayin insisted that he explicitly completed the 
calculation in Jeng’s paper and the wave functions did satisfy 
the fractional Schrödinger equation inside the well. Hawkins 
and Schwarz [9] claimed that Bayin’s calculation contained 
serious mistakes. Luchko [10] provided some evidence that 
the solution did not satisfy the equation outside the well. On 
the other hand, Dong [11] re-obtained the Laskin’s solution 
by solving the fractional Schrödinger equation with the path 
integral method. It is not easyfor readers to judge their 
mathematical argument [12, 13], but weagree with Jeng that 
the piecewise method to solve the equation is wrong, since 
recently we explicitly and inarguably showed that the 
Laskin’s functions did not satisfy the fractional Schrödinger 
equation with 1α =  anywhere on the x-axis [14].  

According to Jeng, et al [4], only the solution for the delta 
function potential [15-17] was acceptable and they  
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themselves provided a solution for the one dimensional 
harmonic oscillator potential for the case 1α =  [4]. 
Readers have been looking forward to some other solutions 
to the fractional Schrödinger equation since the simple 
solutions for the infinite square well potential were 
disproved. Jeng et al [4] also showed their concern that there 
was no realization of the fractional quantum mechanics.  

Jeng’s critique resulted in a crisis within fractional 
quantum mechanics. In mathematics it is not easy to find a 
solution to the fractional Schrödinger equation, and in 
physics it is not easy to find realizations for the fractional 
quantum mechanics. In order to eliminate this crisis, this 
paper reports some solutions to the fractional Schrödinger 
equation without using the piecewise method, and introduces 
the relativistic Schrödinger equation [18-21], as a realization 
of the fractional quantum mechanics. Several solutions for 
the relativistic quantum mechanics are also presented.    

2. The Relativistic Schrödinger 
Equation: A Realization of the 
Fractional Schrödinger Equation 

In this section we will list the standard, fractional, and 
relativistic Schrödinger equations in one- and 
three-dimensional spaces, and explain why we claim the 
relativistic Schrödinger equation is an approximate 
realization for the fractional Schrödinger equation.  

2.1. The Schrödinger Equation  

In the standard quantum mechanics [22, 23], the 
time-independent Schrödinger equation is  
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( ) ( )H Eψ ψ=r r ,                                      (1) 

where ( )ψ r  is a wave function defined in the 3 dimensional Euclideanspace R3, E is an energy, and r is a vector in the 3 
dimensional space.   

The Hamiltonian operator 

( )H T V= + r                                       (2) 

is the summation of the kinetic energy operator and the potential energy operator.      
The standard kinetic energy operator is  

 
2 2

2
2 2

T
m m

= = − ∇
p 

,                                     (3) 

where i= − ∇p   is the momentum operator. As usual, m is the mass of a particle and ℏ is the reduced Plank constant. 
The one dimensional time-independent Schrödinger equation is  

( ) ( ) ( )
2 2

2 ( )
2

d x V x x E x
m dx

ψ ψ ψ− + =


,                            (4) 

where the wave function ( )xψ  and the potential ( )V x  are defined on the x-axis. 

2.2. The Fractional Schrödinger Equation and Its Scaling Property 

In 2000 [1-3], Laskin generalized the classical kinetic energy and momentum relation (3) to    

( ) /22 2 2| || |T D mc D
mcα

α αα
α α αχ  = = = − ∇ 

 
pp 

,                         (5) 

where α  is the fractional parameter, the coefficient 2 / ( )D mc mc
α

α
α χ≡ , 

α
χ  is a positive number dependent on 

α , and c is the speed of the light. Originally Laskin [1-3] ever required the fractional parameter 1 2α< ≤ , but in this paper 
we allow 0 α< < ∞ , as in [4, 9], with an emphasis on the simplest nonlocal case 1α = .   

 
In the case 2α = , taking 

2
1/ 2χ = , the fractional kinetic energy is the same as the classical kinetic energy 

2 2
2 2

2 2
1 | || |
2 2

T D mc T
mc m

 = = = = 
 

p pp .                              (6) 

In the case 1α = , taking 
1

1χ = , the fractional kinetic energy is the approximate kinetic energy in the extremely 

relativistic case, 

2
1 1

| || | | |T D mc c
mc

= = =
pp p .                                 (7) 

The definition of the fractional kinetic energy operator is  

3
3

3

1( ) ( ) | | exp( )
(2 ) R

T D i dα
α αψ ϕ

π
= ⋅∫

pr p p r p




,                      (8) 

where 

3
3

3

1( ) ( ) exp( )
(2 ) R

i dϕ ψ
π

= − ⋅∫
pp r r r




                         (9) 

is called the wavefunction in the momentum space [22, 23].  
The fractional Schrödinger equation is  
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( ) ( )H Eαψ ψ=r r                                      (10) 

( )H T Vα α= + r .                                      (11) 

When 2α = , the fractional Schrödinger equation recovers the standard Schrödinger equation; when 1α = , the 
fractional Schrödinger equation is   

( ) ( )1H Eψ ψ=r r .                                    (12) 

For 1α = , the following scaling property is straightforward.  
 
Scaling property. If a wave function ( )ψ r  and an energy E is a solution of the fractional Schrödinger equation for the 

potential ( )V r  

1 (| | ( ) ) ) (  ( )D EVψ ψ ψ+ =p r r r r ,                           (13) 

then ( )ψ λr  and Eλ  is a solution of the fractional Schrödinger equation for the potential ( )Vλ λr , i.e. 

1 ( ) | | ( )  ( )   ( )VD Eψ λ ψλ λ λ ψ λλ+ =p r r r r .                      (14) 

In this paper λ  is an arbitrary positive number.  
 
The proof is trivial. From (13) we have    

1
1 | | ( ) ( )  ( ) ( )EVD λψ λ λ
λ

ψ ψ λ+ =p r r r r .                       (15) 

For a potential satisfying ( ) ( )V Vλ λ =r r , such as (1) the coulomb ( ) 2 /V Ze r= −r
 
with e the charge of an 

electron and Z the order number of an atom, or (2) the radial delta function potential ( ) 0 ( )V V rδ= −r  with the constant 

0 0V > , the scaling property can be described simply as follows. 
 
Scaling property. For a potential ( )V r  with a property ( ) ( )V V λλ=r r , if a wave function ( )ψ r  and an energy 

E is a solution of the fractional Schrödinger equation ( ) ( )1H Eψ ψ=r r , then the wave function ( )ψ λr  and the 

energy Eλ  is also a solution.  
 
The one dimensional fractional Schrödinger equation is  

 ( ) ( )H x E xαψ ψ=                                       (16) 

 ( )H T V xα α= + .                                        (17) 

When 1α = , we have   

( ) ( )1H x E xψ ψ=                                        (18) 

1 1 1 1( ) | | ( ) ( )dH T V x D p V x D V x
dx

= + = + = +H .                      (19) 

In this paper, the bold H denotes the Hilbert transform [24] while a normal H denotes the Hamiltonian operator.  
From the definition of the fractional kinetic energy operator, we have  
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π

∞

∞
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∫

 

 



   (20) 

where * denotes the convolution, and 1/ x  and 2(1/ ) ' 1/x x= −  are generalized functions [25].  We point out that 

the generalized function 2 21/ (2 )xπ−  is the well-known ideal ramp filter, which plays an important role in the theory 
and applications of Computed Tomography [26, 27]. We will discuss the relationship between fractional quantum mechanics 
and the computed tomography in another paper.  

The Dirac delta potential ( ) 0 ( )V Vx xδ= −  with 0 0V >  satisfies ( ) ( )V x xVλ λ= . Based on the scaling 

property, if a wave function ( )xψ  and an energy E is a solution of the fractional Schrödinger equation 1H Eψ ψ=  with 

a delta potential well, then the wave function ( )xψ λ  and the energy Eλ  is also a solution. See Problems 3, 7, & 9.  

2.3. The Relativistic Schrödinger Equation  

According to the special relativity, the revised kinetic energy is [18] 

2 2 2 4
rT c m c= +p ,                                     (21) 

where the subscript r means special relativity. 
For the case of low speed, the relativistic kinetic energy is approximately the summation of the rest energy and the classical 

kinetic energy ( 2α = ) 

2
2 2

22rT mc mc T
m

≈ + = +
p

,                                (22) 

and for the case of extremely high speed, where the rest energy can be neglected, the relativistic kinetic energy is the 
fractional kinetic energy with 1α =  

1| |rT c T≈ =p .                                      (23) 

Generally speaking, if the speed of a particle increases from low to high, the relativistic kinetic energy rT  will 

approximately correspond to a fractional kinetic energy Tα , whose parameter α changes from 2 to 1. Therefore the 
relativistic kinetic energy is an approximate realization of the fractional kinetic energy.  

The definition of the relativistic kinetic energy operator is   

3

2 2 2 2 4

2 2 2 4 3
3

( ) ( )
1 ( ) exp( )

(2 )

r

R

T c m c

c m c i d

ψ ψ

ϕ
π

= − ∇ +

= + ⋅∫

r r
pp p r p







                  ,(24) 
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where ( )ϕ p  is the wave function in the 3D momentum space.  
The relativistic Schrödinger equation is  

( ) ( )rH Eψ ψ=r r                                    (25) 

r rH T V= + .                                     (26) 

Accordingly, the 1D relativistic Schrödingere quationis  

( ) ( )rH Ex xψ ψ=                                   (27) 

2
2 2 2 4

2  + ( ) r r cH
x

V xmV cT ∂
− +

∂
= + = 

                  .(28) 

As two sisters, the relativistic and fractional Schrödinger equations should be studied at the same time.    

3. Solutions to the Fractional Schrödinger Equation 
We will study the one dimensional problems first and then the 3D problems.  

3.1. One Dimensional Problems  

Problem 1. (Thefree particle.) 
For ( ) 0V x = , the fractional Schrödinger equation H Eαψ ψ=  has the solutions 

( ) exp( )x ikxψ =                                    (29) 

( | |)E D k α
α=                                     (30) 

with k−∞ < < ∞ , or equivalently   

( ) sin( ),  or cos( )k xx x kψ =                              (31) 

( )E D k α
α=                                      (32) 

with 0k ≥ .  
 
Proof. According to the definition of the fractional kinetic energyoperator [1-3], we obviously have  

( ) ( )
( ) ( )

2 2 /2( ) exp( )

( | |)

H x D T x D ikx

D k x E x

α
α α α α

α
α

ψ ψ

ψ ψ

= = − ∇

              = =





,                    (33) 

with k−∞ < < ∞ . Further, for 0k >  we have   

( ) ( ) ( )( )

( ) ( )( )

( ) ( )

1sin exp exp
2

1( | |) exp exp
2

( | |) sin sin ,

H kx H ikx ikx
i

D k ikx ikx
i

D k kx E kx

α α

α
α

α
α

= − −

= − −

= =





,                  (34) 

and 

( ) ( )cos sin ,
1 0.

H kx E kx
H

α α

α

=

=
                             (35) 

Generally, if 0( )V x V=  with V0 a constant, the eigen-functions do not change but the new eigen-energies become 

0( | |)E D k Vα
α= + .                                  (36) 
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Problem 2. (A periodic potential.) 
For the potential  

( ) ( )0
0

,
cos( )

bV x D k
b k x

α
α=

+
                           (37) 

where 0 /k aπ= , a is a positive real number (as throughout this paper), b is a real number, and 0 α< < ∞ , the fractional 

Schrödinger equation H Eαψ ψ=  has a solution  

( ) 0cos( )x b k xψ = +                                  (38) 

0( )E D k α
α=  .                                    (39) 

Proof. 
Since 

0 0 0| | cos( )  ( ) cos( )

| | 1  0

p k x k k x

p

α α

α

=

=



                       (40) 

We have  

( )

( )

( ) ( )

0

0 0

0 0 0

0 0 0 0
0

| |

| | cos( )

0 ( ) cos( )

( ) cos( ) ( )

( ) cos( ) ( ) cos( )
cos( )

.

D p

D p b k x

D k k x

D k b k x D k b
bD k b k x D k b k x

b k x
E V

α
α

α
α

α
α

α α
α α

α α
α α

ψ

ψ ψ

= +

= +

= + −

= + − +
+

= −



 

 

        (41) 

This completes the proof.  
Further, we can calculate the average of the kinetic and potential energies of the particle.   
Since  

( ) ( ) ( )

( )

2*
0

2 2

cos( )

2 1/ 2 (2 1)

a a

a a
x x dx b k x dx

a b a b

ψ ψ
− −

= +

                             = + = +

∫ ∫
                    (42) 

the normalized function is  

( ) ( )02

1 cos( )
(2 1)

x b k x
a b

Ψ = +
+

.                         (43) 

The averages of the kinetic and the potential energy are 

*
0 2

1( ) | | ( ) ( )
2 1

a

a
T x D p x dx D k

b
α α

α α−
< >= Ψ Ψ =

+∫ 
,                 (44) 

2
*

0 2
2( ) ( ) ( )

2 1
a

a
bV x V x dx D k

b
α

α−
< >= Ψ Ψ =

+∫  .                   (45) 

The average of the total energy is  

0    ( )   H V T D k Eα
α α< > = < > + < > = = .                   (46) 

Problem 3. (The Delta potential well.) 
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For a Dirac delta function potential 0( ) ( )V x V xδ= −  with 0 0V > , the fractional Schrödinger equation 1H Eψ ψ=
has a solution  

( ) ( ) ,    E= -x xψ δ= ∞                                  (47) 

in the sense of a certain limit.  
 
Proof. 
The factional Schrödinger equation   

( ) ( ) ( )1 0| |  - (x)   D p x V x E xψ δ ψ ψ=                        (48) 

can be rewritten in the momentum space as [22] 

( ) ( ) ( )0
1 | |  - dp  

2
V pD Ep pp ϕ ϕ ϕ
π

∞

−∞
=∫



                    (49) 

( ) ( ) ( )0
1 | |  + | |   dp

2
p p pVD p Eϕ ϕ ϕ

π
∞

−∞
= ∫



,                 (50) 

where ( )pϕ  is the wavefunction in the momentum space. 

We first change the integral limit in the above equation to a finite positive number 0p , and then let 0p → ∞ . Thus we 
have  

( ) ( ) ( )0

0

0
1 | |  + | |   dp

2
p

p
p p VD p E pϕ ψ ϕ

π
+

−
= ∫



                 (51) 

( ) ( )0

0

0

1

1  dp
2 | | | |

p

p
p pV

D p E
ϕ ϕ

π
+

−
=

+ ∫


                     (52) 

Taking an integral of the two sides, we have   

( ) ( )0 0 0

0 0 0

0

1

1dp  dp
2 | | | |

p p p

p p p
V dp p

D p E
pϕ ϕ

π
+ + +

− − −
=

+∫ ∫ ∫


             (53) 

If  

( )0

0
dp 0

p

p
pϕ

+

−
≠∫                                  (54) 

we have  

0

0

0

1

11  
2 | | | |

p

p
V dp

D p Eπ
+

−
=

+∫


                            (55) 

( )0
0 1

1
1  ln 1 / | |V p D E

Dπ
= +



                            (56) 

1 0

1 0
E

exp( / ) 1
D p
D Vπ

= −
−

                              (57) 

( )
1 1

1 1  
| | | | | / | 1D p E D E

p
p

ϕ
+ +

  .                         (58) 

Here   means that the wave functions at both sides are equal except for a constant coefficient. Obviously, a constant 
coefficient is not important for an eigen-wavefunction.   

Therefore we have  
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0
lim E

p →∞
= −∞ ,                                    (59) 

( )
0
lim  =1

p
pϕ

→∞
.                                    (60) 

Accordingly, in real space we have    

( )
0
lim  ( )

p
xxψ δ

→∞
→ .                                (61) 

We can simply write the solution as  

( ) ( ) ,    E= -x xψ δ= ∞ ,                               (62) 

which completes the proof. 
Let us compare this solution with the solution in the standard quantum mechanics. This solution indicates that the particle 

falls inside the potential well completely, while the solution to the standard Schrödinger equation with a delta potential well 
indicates that the particle appears outside the well mainly. Therefore we see that Laskin’s particles are easier to be trapped 
than Schrödinger’s particles. The second difference is that the delta potential well problem has a unique bound state in the 
standard quantum mechanics but has more than one bound states in the fractional quantum mechanics ( 1α = ), as we will see 
soon. 

 
Problem 4. (The linear potential.) 
For a linear potential V Fx=  with 0F > , the solutions to the fractional Schrödinger equation 1H Eψ ψ=  are 

2

1

2
/ 2(x) = C( ) cos S( ) si/ 2 n

8 4 8 4
ξ ξξπξπψ

   
− + −      

   
               (63) 

where the functions C() and S() are Fresnel integrals,  and  

1

2 Ex
F

F
D

ξ
   
   

  
= −



                                  (64) 

with E R∈ . 
 
Proof. 
The fractional Hamilton is   

11 =D |H |p Fx+                                     (65) 

In the momentum representation [22] 

 11 =D | |H dp i F
dp

+ 
                                  

 (66) 

The Fractional Schrödinger equation is  

 1D | | ( ) ( ) ( )dp p i F p E p
dp

ϕ ϕ ϕ+ =

                        
(67) 

 1D1 ( ) | |
( )

d Ep i p i
p dp F F

ϕ
ϕ

= −
 

.                         (68) 

Its solution is  

 ( ) exp( | | )
2

D Ep A i p p i p
F F

ϕ = −
 

                           (69) 

with A an arbitrary real number. 
In the real space, the wavefunction is     
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c
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4
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4
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4

n sin
4
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8
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C
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ξ
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∞
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=

+ −
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∫
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∫ ∫
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) cos S( ) sin
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2 /
4

/ 2Cξ ξξ π ξ
   

+ −      
   

    (70) 

where the coefficient 

1
2 FC A

D π
= .                                       (71) 

This completes the proof.  
Furthermore, since  

C( ) S(+ )= / 8,   C( ) S(- )=- / 8π π+∞ = ∞ −∞ = ∞ ,               (72) 

the limit behavior of the wavefunction is    

2(x) 
sin(

4 4

0

) xC

x
ψ ππ ξ

→ +∞
= 

→ −∞+

                           (73) 

Problem 5. (A periodic potential.) 
The periodic function X(x) defined by   

( ) | | / 2    [ , ]X x x a x a a= − + ∈ −                          (74) 

( 2 ) ( )  ( , )X x a X x x+ = ∈ −∞ ∞                         (75) 

is called a triangular wave, where a>0 is a real number, whose properties have been studied carefully in electronics [28-30].   
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For the potential  

 ( ) 12 ln tg
( ) 2

D xV x
X x a

π
π

 =  
 



                            (76) 

the fractional Schrödinger equation 1H Eψ ψ=  has the solution  

 ( ) ( )x X xψ =                                    (77) 

 0E = .                                        (78) 
Proof. 
We have  

 

( )
1 1

1

1

1

( ) | | ( )

( )

2 ln tg
2

( ).

( sgn(sin ))

( ) ( )
( )

d
dx

x
a

V x X x
V x

H x D p X x

D X x

D

xD
a

x

ψ

π
π

π

ψ

=

=

=

 

−

= −

= −
= −

 
 

H

H







                             (79) 

Therefore we have  

 1 ( )( ) ( ) 0V xH x xψ ψ+ = ,                                (80) 

which completes the proof.  
In the above proof, we used a formula 

 
2(sgn(sin n tg)) l

2
x x

aa
π

π
π  

 


=


H                           (81) 

which can be seen in book [23] (Equation 6.14, page 292, vol. 1). 
Problem 5’. (The Dirac comb.) 
The Schrödinger equation H Eψ ψ= with the Dirac comb potential  

 ( )
22 ( )

n
V x x na

ma
δ

∞

=−∞
= − −∑

                            (82) 

has a solution 

 ( ) ( )x X xψ =                                    (83) 

 0E = .                                          (84) 
Proof. 
Since 

 ( )
2 2 2 2

2 sgn(sin ) ( 1) ( )
2 2

n

n

d dX x x x na
m m dx a mdx

π δ
∞

=−∞
− = = − −∑  

,            (85) 

and 
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( ) ( )

( )

2

2 2

2( ) ( )

2 ( ) ( 1) ( ),

n

n

n n

V x X x X x x na
ma

x na X x na
ma m

na

δ

δ δ

∞

=−∞
∞ ∞

=−∞ =−∞

= − −

= − − = − − −

∑

∑ ∑



 

          (86) 

we have   

 ( ) ( )
2 2

2 0
2

d X x VX x
m dx

− + =


,                             (87) 

which completes the proof.  
We include this well-known result in standard quantum mechanics here so that the reader can compare the standard and the 

fractional Schrödinger equations conveniently.   
Problem 6. For the potential  

 ( ) 1 2 2
2aV x D

x a
= −

+
 ,                                (88) 

with a>0, the fractional Schrödinger equation 1H Eψ ψ=  has two and only two bound states  

 ( )1 1 12 2 ,    /ax E D a
x a

ψ = = −
+

 ,                           (89) 

 ( )2 22 2 ,    0xx E
x a

ψ = =
+

.                              (90) 

Proof. 
We need a well-known Hilbert transform pair [24] 

 2 2 2 2
a x

x a x a
=

+ +
H                                   (91) 

 2 2 2 2
x a

x a x a
−

=
+ +

H .                                 (92) 

Taking the derivative of the above two equations, we have    

 

( )
2

2 2 2 2 22 2

1 2d a a
dx x a x a x a

= − +
+ + +

H                       (93) 

 2 2 2 2 2
2

( )
d x ax
dx x a x a

=
+ +

H                            (94) 

Multiplying by the constant 1D  , we have  

 1
1 12 2 2 2 2 2 2 2

2Dd a a a aD D
dx ax a x a x a x a

= − +
+ + + +

H 

                 (95) 

 1 12 2 2 2 2 2
2d x a xD D

dx x a x a x a
=

+ + +
H                            (96) 

Therefore we have  

 1 1 1 1 1| | ( ) ( ) ( )D p x E x V xψ ψ ψ= −                               (97) 

 1 2 2 2| | ( ) ( )D p x E V xψ ψ= −                                 (98) 
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where 

 1 1 2/ ,   0E D a E= − = .                                 (99) 

From the shapes of the wave functions [24], we know that ( )1 xψ  is the ground state, and ( )2 xψ  is the first excited 

state. Since the excited energy 2 0E = , we know that there are no more excited states. The particle has only two bound 
states, the ground state and the excited state. This completes the proof. 

Let us further calculate the averages of the kinetic and potential energies in this elegant problem. 
The normalized functions are   

 ( )1 2 2
2a ax

x aπ
Ψ =

+
                            (100) 

 ( )2 2 2
2a xx

x aπ
Ψ =

+
                            (101) 

Since the wavefunction 1Ψ  is even and 2Ψ  is odd, the two states obviously are orthogonal, i.e. 

 ( ) ( ) ( ) ( )* *
1 2 2 1 0x x dx x x dx

∞ ∞

−∞ −∞
Ψ Ψ = Ψ Ψ =∫ ∫ .                 (102) 

In the ground state, the averages of the kinetic and potential energies are   

 1 1
1

3 1,   < | |  >
2 2

D DV D p
a a

< >= − =
 

.                    (103) 

In the excited state, the averages of the kinetic and potential energies are   

 1 1
1

1 1,    | |    
2 2

D DV D p
a a

< >= − < > =
 

.                   (104) 

Problem 7. For the delta function potential  

 ( ) 12 ( )V x D xπδ= −                                   (105) 

the fractional Schrödinger equation 

 ( ) ( )1H x E xψ ψ=                                 (106) 

has two solutions  

 ( )1 1( ),   Ex xψ πδ= = −∞                               (107) 

 ( )2 2
1 ,       E 0x
x

ψ = =                                (108) 

Proof. In the above example, let 0a → , and notice that  

 
2 20

2 20

lim ( ),

1lim .

a

a

a x
x a

x
xx a

πδ
→

→

=
+

=
+

                                 (109) 

This completes the proof.  
The two solutions can also be written as  

 ( )1 1( ),   Ex xψ δ= = −∞                                  (110) 

 ( )2 2
1 ,       E 0x
x

ψ
π

= =                                  (111) 
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This result is consistent with the solution for Problem 3 and the scaling property discussed in Sec. II.   
 
Problem 8. For the potential  

 ( ) 1 2 2
4aV x D

x a
= −

+
                                  (112) 

with a>0, the fractional Schrödinger equation ( ) ( )1H x E xψ ψ=  has a bound state  

 ( )
2

1
2 2 2
2 ,    E

( )
Da xx
ax a

ψ = = −
+



                           (113) 

Proof. 
Taking the derivative of the two sides of Equation (95), we have   

 

( )
1

1 12 2 2 2 2 22 2

4Dd a a a aD D
dx ax a x a x ax a

′ ′ ′     = − +     + + +     +
H 

 

     

    (114) 

 1 2 2 2 2 2 2| |    - ( )a a aD p E V x
x a x a x a

′ ′ ′     =     + + +     
                 (115) 

This completes the proof.  
Notice that the potential in this problem is just 2 times the potential in Problem5, but their solutions are completely 

different.  
 
Problem 9. For the potential  

 ( ) 14 ( )V x D xπδ= −                                   (116) 

the fractional Schrödinger equation  

 ( ) ( )1H x E xψ ψ=                                 (117) 

has a bound state  

 ( ) '( ),    Ex xψ πδ= = −∞ .                              (118) 

Proof. By letting 0a →  in Problem8, this statement follows immediately.  

3.2. Three Dimensional Problems  

Problem 10. (The Free particle.) 
For ( ) 0V =r , the solutions for the fractional Schrödinger equation H Eα α αψ ψ=  

are 

 ( ) exp( )iαψ = ⋅kr r                                 (119) 

 ( )E D k α
α α=  .                                    (120) 

with k  any three dimensional vector. An alternative form of the eigen-functions is 

 ( ) ( ) ( , )m
l lj kr Yαψ θ ϕ=r                                 (121) 

where lj  is the spherical Bessel function of order l, ( , )m
lY θ ϕ  is the spherical harmonic function of degree l and order m 

[22], ( , , )r θ ϕ  is the spherical coordinate system, and | |k ≡ k  is the length of the vector k. 
 
Proof. For ( ) 0V =r , the standard Schrödinger equation  
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 ( ) ( ) ( )
2

2
2

H EV
m

ψ ψ= − ∇ =r r r

                         (122) 

has the solutions  

 ( ) exp( )iψ = ⋅r k r                                  (123) 

 
2 2

2
kE
m

=


.                                     (124) 

From the relationship between the fractional Hamiltonian and the standard Hamiltonian  

 2 /2 /2 /2| | ( ) (2 ) (2 )H T D D D mT D mHα α α α
α α α α α α= = = = =p p ,        (125) 

we see that the fractional Schrödinger equation  

 ( ) ( )H Eα α α αψ ψ=r r                                (126) 

has the solutions  

 ( ) exp( )iαψ = ⋅kr r                                (127) 

 ( )E D k α
α α=  .                                 (128) 

In the spherical coordinate system, the classical Schrödinger equation  

 ( ) ( ) ( )
2

2
2

H EV
m

ψ ψ= − ∇ =r r r

                       (129) 

has solutions  

 ( ) ( ) ( , )m
l lj kr Yψ θ ϕ=r .                            (130) 

Since 

 
/2

2 2 /2

( ) ( , ) (2 ) ( ) ( , )

( ) ( ) ( , ) ( ) ( ) ( , )

m m
l l l l

m m
l l l l

H j kr Y D mH j kr Y

D k j kr Y D k j kr Y

α
α α

α α
α α

θ ϕ θ ϕ

θ ϕ θ ϕ

=

= = 

          (131) 

the solutions to the fractional Schrödinger equation has an alternative form     

 ( ) ( ) ( , )m
l lj kr Yαψ θ ϕ=r ,                           (132) 

 ( )E D k α
α α=  .                                (133) 

Problem 11. The function  

 3
3

3
1 1( ) exp( )

(2 ) | |R
Y r i d

D α
απ

= ⋅∫
p r p

p 



                      (134) 

and E=0 is a solution of the fractional Schrödinger equation H Eαψ ψ=  with the potential  

 ( ) ( ) / ( )V r Y rδ= − r ,                               (135) 

where 2( ) ( ) ( ) ( ) ( ) / (2 )x y z r rδ δ δ δ δ π= =r  is the Dirac’s delata function in the 3D space.   
Proof. It is easy to verify that  

 | | ( ) ( ) ( ) ( ) ( ) 0D Y r V r Y rα
α δ δ+ = − =p r r .                     (136) 

This completes the proof.   
There are two special cases, where the wave functions and the potential energy can be given explicitly:  
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(1) When 2α =  we have  

 

3

3

3
3 2

3
3 2 2 2 2

1 2( ) exp( )
(2 )

1 2 2 1 1exp( )
4 2(2 )

R

R

mY r i d

m m mi d
r r

π

π ππ

= ⋅

= ⋅ = =

∫

∫

p r p
p

k r k
k





  

                (137) 

and 

 
2

2( ) ( ) / )( 1 ()V r Y r r
rm

δ δ= −− =r 

.                          (138) 

Therefore we say that for the central potential 
2

2( )) 1 (r
rm

V r δ−=


, the Schrödinger equation H Eψ ψ=  has a 

solution 2
1( )

2
mr

r
ψ

π
=


 and E=0. 

(2) When 1α = , we have  

3 3

3

3 3
3 3

1 1

3
3 2 2

1 1

1 1 1 1( ) exp( ) exp( )
| | | |(2 ) (2 )

4 1 1 1 1exp( )
4 | |(2 ) 2

R R

R

Y r i d i d
D D

i d
D D r

π π
π

ππ π

= ⋅ = ⋅

= ⋅ =

∫ ∫

∫

p r p k r k
p k

k r k
k

 



 

,     (139) 

and 

 1( ) ( ) / ( ) ( )V r Y r D rδδ= − = −r  .                   (140) 

Therefore, for the central potential 1( )) (DV rr δ−=  , the fractional Schrödinger equation 1H Eψ ψ=  has a 

solution 2 2
1

1 1( )
2

r
D r

ψ
π

=


 and E=0.  

 
Problem 12. (The harmonic oscillator potential.) 
For a harmonic oscillator potential  

2( )V k=r r ,                                      (141) 

the fractional Schrödinger equation 1H Eψ ψ=  has solutions(in the momentum representation) 

1( ) ( ) Ai( )np p r
p

ϕ ϕ κ= = −p                             (142) 

2 2 1/31
12( ) | |n nE k D r=  .                                (143) 

where Ai(x) is the Airy function, nr  is its n-th zero point, and 2 1/3
1(2 / ( ))D kκ ≡  .   

Proof. 
The fractional Hamiltonian is   

 2
1 1 | |H D k= +p r .                                (144) 

In the momentum representation, the Hamiltonian operator and its eigen-equation are   

 2 2
1 1 | |H k D= − ∇ +p p                               (145) 

 2 2 ( ) | | ( ) ( )k D Eϕ ϕ ϕ− ∇ + =p p p p p
                          (146) 
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In the spherical coordinate system, the Laplace operator 2∇p  is expressed as  

 
2 2

2
2 2 2 2 2

1 1 1(sin )
sin sin

p
p p p p

θ
θ θθ θ ϕ

∂ ∂ ∂ ∂
∇ = + +

∂ ∂∂ ∂
p .                (147) 

For a s-state wave function, ( ) ( )pψ ψ=p , the eigen-equation becomes  

 
2

2
12

1 ( ) ( ) ( )k p p D p p E p
p p

ψ ψ ψ∂
− + =

∂
 .                   (148) 

Let ( ) ( )u p p pψ= . Then we have  

 
2

2
12 ( ) ( ) ( )dk u p D pu p Eu p

dp
− + = .                     (149) 

The solution of this equation under the condition (0) ( ) 0u u= ∞ = is  

 ( ) Ai( )nu p p rκ= −                                 (150) 

 2 2 1/31
12( ) | |,n nE k D r=                               (151) 

where Ai  is the Airy function, nr  is its n-th zero point, and 2 1/3
1(2 / ( ))D kκ ≡   [4]. This completes the proof.  

 
Problem 13. (The Coulomb potential.) 

For the Coulomb potential 2( ) /V r Ze r= − with Z>0, and e is the charge of the electron, the fractional Schrödinger 

equation has a solution ( ) 1/ rψ =r with E=0 when 2
12 /Ze D π=  .  

 
Proof. 
In fact we have  

3

3 3

3

3
3 2

3 31 1
3 2 3

31 1
3 3

1

2

1
2 2

1
1 1 exp( )

(2 )
1 1| | exp( ) exp( )

(2 ) (2 )
4 41 1exp( )

4(2 ) (

1| | | |

2
1

4

)

2

R

R R

R

i d
k

D Di d i d
kk

D Di

D D

r

r

d
k r

D

π

π π
π π

ππ

π

π

π

= ⋅

= ⋅ = ⋅

= ⋅ =

=

∫

∫ ∫

∫

k r k

k k r k k r k

k r k

p p

 

 



            (152) 

and 

 
2

. 2 2
1 1 1( )

4 4 2
Ze DV r

r rr rπ π π
= − = −



.                         (153) 

Therefore we have  

 1

1

1| |
4

| | ( ) ( )

1 0
4

0.

D
r

D

V
r

V
π

ψ
π

ψ

=

=

+

+

p

p r r
                             (154) 

This completes the proof.  
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4. Solutions to the Relativistic Schrödinger Equation  
Again, let us study the one dimensional problems first and then the 3D problems.  

4.1. One Dimensional Problems  

Problem i. (The free particle.) 
For V(x)=0, the solution for the relativistic Schrödinger equation rH Eψ ψ=  

is 

 ( ) exp( )x ikxψ =                                   (155) 

 2 2 4( )E kc m c= + .                               (156) 

with k−∞ < < ∞ .  
Proof. According to the definition of the square root operator [18-20] 

2 2 2 4 2 2 2 2 4exp( ) exp( )  p c m c ikx k c m c ikx k R+ = + ∈ ,            (157) 

the above statement is obvious. 
The solution can also be written as   

 ( ) sin( ) or cos(kx)x kxψ =                             (158) 

 2 2 4( )E kc m c= + .                              (159) 

with 0k ≥ .  
Further, when V(x)=V0 with V0 a constant, the wavefunctions do not change but the new energy levels become 

2 2 4
0( )E kc m c V= + +                               (160) 

Problem ii. (A periodic potential.) 
For the potential   

 ( ) ( )2 2 4 2
0

0
( )

cos( )
bV x k c m c mc

b k x
= + −

+
                     (161) 

where 0 /k aπ= , a is a length, and b  is a real number, the relativistic Schrödinger equation rH Eψ ψ=  has a solution  

 ( ) 0cos( )x b k xψ = +                               (162) 

 2 2 4
0( )E k c m c= + .                          (163) 

Proof. 
From the definition of the square root operator [18-20],  

 2 2 2 4 2 2 2 2 4exp( ) exp( )  p c m c ikx k c m c ikx k R+ = + ∈ ,          (164) 

We get that 

 2 2 2 4 2 2 2 2 4
0 0 0cos cos( ) p c m c k x k c m c k x+ = +             (165) 

 2 2 2 4 2  1     1.p c m c mc+ =                        (166) 

Therefore we have  
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( )

( )

( ) ( )
( ) ( ) ( )

2 2 2 4
0

2 2 4 2
0 0

2 2 4 2 2 4 2
0 0 0

2 2 4 2 2 4 2
0 0 0 0

0

cos( )

( ) cos( )

( ) cos( ) ( )

( ) cos( ) ( ) cos( )
cos( )

.

r rT

p c m c b k x

k c m c k x mc b

k c m c b k x k c m c mc b

bk c m c b k x k c m c mc b k x
b k x

E V

ψ

ψ ψ

= + +

= + +

= + + − + −

= + + − + − +
+

= −



 

 

     

(167) 

This completes the proof.  
Further, we can calculate the average of the kinetic and potential energies.   
The normalized function is  

( ) ( )02

1 cos( )
(2 1)

x b k x
a b

Ψ = +
+

.                             (168) 

The averages of the kinetic and the potential energies are    

 
2

*
2 2

2 2 2 4
0

2 1( ) ( )
2 1 2 1

( )
a

r ra
mbT x T x dx

b
c k c

b
c m

−
< >= Ψ Ψ = + +

+ +∫ 

.              (169) 

 ( )2 2 4 2
0

2
*

2 ( )2( ) ( )
2 1

a

a
b k c m c mcV x V x dx

b−
< >= +Ψ Ψ = −

+∫ 

.                 (170) 

The total energy is  

 2 2 4
0( )rH T V k c m c E< >=< > + < >= + = .                       (171) 

Problem iii. (The delta potential well.) 
For a Dirac delta function potential 0 ( )V V xδ= −  with 0 0V > , the relativistic Schrödinger equation rH Eψ ψ=  

has a solution 

 ( ) ( ) ,    E=-x xψ δ= ∞                                (172) 

in the sense of a certain limit.  
Proof. The proof is similar to Problem 3. 
The relativistic Schrödinger equation   

 ( ) ( ) ( )2 2 2 4
0 - (x)   rp c m c x V x E xψ δ ψ ψ+ =                        (173) 

can be rewritten in the momentum space as [22] 

 ( ) ( ) ( )2 2 2 4 0 - dp  
2 r
Vp p p pc m c Eϕ ϕ ϕ
π

∞

−∞
+ =∫



                (174) 

 ( ) ( ) ( )2 2 2 4 0 +| |   dp
2r
Vp p pm c E pc ϕ ϕ ϕ
π

∞

−∞
+ = ∫



                (175) 

We first change the integral limit to a positive number 0p mc> , and then let 0p → +∞ . Thus we have  

 ( ) ( ) ( )0

0

2 2 2 4 0 +| |   dp
2

p
r p

Vpp c m c p pEϕ ψ ϕ
π

+

−
+ = ∫



              (176) 
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 ( ) ( )0

0

0
2 2 2 4

1  dp
2 | |

p

p
r

V

p c m c E
p pϕ ϕ

π
+

−
=

+ +
∫



                (177) 

Taking integral of the two sides, we have   

 ( ) ( )0 0 0

0 0 0

0
2 2 2 4

1dp  dp
2 | |

p p p

p p p
r

V dp
p c m c

p p
E

ϕ ϕ
π

+ + +

− − −
= ⋅

+ +
∫ ∫ ∫



       

  (178) 

If ( )0

0
dp 0

p

p
pϕ

+

−
≠∫ , we have  

 0 0

0

0 0
02 2 2 4 2 2 2 4

1 11   
2 | | | |

p p

p
r r

V Vdp dp
p c m c E p c m c Eπ π−

= =
+ + + +

∫ ∫
 

.     (179) 

If the above integration is calculated only on a subinterval 0 0[ , ] [0, ]mc p p⊂ , we have 

 00
2 2 2 4

1 1
| |

p

mc
r

V dp
p c m c Eπ

<
+ +

∫


.                        (180) 

Since  

 

2 2 2 2 2 2 4

2 2 2 2 2 4

2 2 2 4

2 2 2 4

2 2 2 4

2

2

2 | | | |
1 1 ,

2 | | | |

r r

r r

p mc p m c p c m c

p c p c m c

pc p c m c

pc E p c m c E

pc E p c m c E

> ⇒ > ⇒ >

⇒ > +

⇒ > +

⇒ + > + +

⇒ <
+ + +

                    (181) 

we have  

 00 1 1
2 | |

p

mc
r

V dp
pc Eπ

<
+∫



                         (182) 

 0 0 | | /( 2 ) ln 1
2 | | /( 2 )

r

r

V p E c
c mc E cπ

+
<

+

                       (183) 

Further we have 

 
2

0 0

0

exp( 2 / ))|E | > 2
exp( 2 / ) 1r

p c mc c V
c V

π
π

−
−




.                    (184) 

We see  

 0|E | ,    as  r p→ ∞ → ∞ ,                         (185) 

and hence the bound state energy   

 E r = −∞ .                                (186) 

The wave function  

 ( )
2 2 2 4 2 2 2 4

1 1  
| | / | | 1r rp c m c E p c m c E

pϕ
+ + + +

 

          (187) 

 



106 Yuchuan Wei:  Some Solutions to the Fractional and Relativistic Schrödinger Equations  
 

From Equation (185), we have 

 ( ) 01  as  p pϕ → → ∞ .                         (188) 

Accordingly, in the real space we have   

 ( ) 0( )  as  x x pψ δ→ → ∞ .                       (189) 

Again, a particle with a relativistic kinetic energy is easier to be trapped than a particle with a Newtonian kinetic energy.  
 
Problem iv. (The linear potential.) 
For a linear potential V Fx=  with 0F > , the solution to the relativistic Schrödinger equation rH Eψ ψ=  is  

 2 2
0

(x) cos( 1 ln( 1) )bu u b u u u duψ ξ
∞

= + + + + −∫           (190) 

2 3
( ) ,

2
E mc mx b
F F

cξ = − =
 

                       (191) 

with E R∈ . 
 
Proof. 
The relativistic Hamilton is   

 2 2 2 4H  =r p c m c Fx+ + .                           (192) 

In the momentum representation,  

 2 2 2 4 =Hr p c m c diF
dp

+ + 
.                         (193) 

The relativistic Schrödinger equation is  

 2 2 2 4 ( ) ( ) ( )di F
dp

p c m c p p E pϕ ϕ ϕ+ =+                   (194) 

This equation can be solved easily  

 2 2 2 41 ( )
( )

d
dp F

i iEp p c m
F

c
p

ϕ
ϕ

= + −
 

.                  (195) 

 2 2 2 4ln ( ) i ip p c m c E
F

p
F

dϕ = + −∫
 

.                    (196) 

 

( )2 2 2

2 2 2
2 2 2 2 2

ln ( ) /

2
ln

icp p m c E c dp

p p m cic iEp p m c m c p
m

F

F Fc

ϕ = + −

 + + = + + −
 
 

∫


 

            (197) 

 
2 2 22 3

2 2 2
2 2

( ) exp ln
p p m cic im c iEp A p p m

mc F
p

F
c

F
ϕ

 + + = + + −
 
 
  

,       (198) 

where A  is an arbitrary constant.  
Via Fourier transform, we can get the wavefunction in the real space 
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1

2 2 22 3
2 2 2

2 2 22 3
2 2 2

0

2 3 2 3
2 2

1(x) = ( )exp( / )
2

exp( ln )
2

2 co

2 2

(s( ln )
2

2 cos( 1 ln( 1) (
2

)
2 2

)
2 2

p ipx dp

p p m cA ic im cp p m c dp
mc

p

iE ipxp
F F F

E px
p m cA c m cp p m c dp
mc

Amc m c m cu u u u

F F F

Ex
F F F

ψ ϕ
π

π

π

π

∞

−∞

∞

−∞

∞

+ +
= + +

+ +
= + + +

= + + +

−

+ +

− +

−

∫

∫

∫

   

  















0

2 2
0

)

cos( 1 ln( 1) )

du

C bu u b u u du

umc

uξ

∞

∞
= + + + + +

∫

∫



    

(199) 

 (2 ,  , 
2

) ,AmcC p umc E mcx
F

ξ
π

−= = =




                      (200) 

Further, we point out that  

 0  as (x)  .xψ → → +∞                           (201) 

It is because the value of (x)ψ  is equal to the sum of an alternating series and the absolute values of the terms in the 
series become smaller when x → +∞ .  

Specifically, let us consider the integral  

 
0

I( ) cos ( , )G u duξ ξ
∞

= ∫                             (202) 

with 

 2 2G(u, ) ( 1 ln( 1)bu u b u uuξ ξ= + + + + + .                   (203) 

For a fixed 0ξ > , suppose that nu with n=0,1,2,3 satisfy that   

 ( , ) / 2nG u nξ π π= +                                  (204) 

 ,os ( ) 0c nG u ξ = .                                    (205) 

We have  

 0 1 2I( ) nI I I Iξ = + + + + +                          (206) 

With  

 

0

1

0

1

0 0

1

I ( ) cos ( , )

I ( ) cos ( , )

I ( ) cos ( , )n

n

u

u

u

u
n u

G u du

G u du

G u du

ξ

ξξ

ξ

ξ

ξ
−

=

=

=

∫

∫

∫



                              (207) 

Since the terms nI  alternately change their sign, and  

 1 2| | | | | |nI I I< < < <  .                                (208) 

The series of I( )ξ  converges for any given 0ξ > . 

As ξ → ∞ , the interval between any two adjacent points, 1n nu u+ − , becomes closer to each other, every term 
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( ) 0nI ξ → , and hence their alternating summation ( ) 0I ξ → .    

In other words, for any fixed ξ → ∞ , we have  

 0  as (x)  .xψ → → +∞                             (209) 

It is relatively complicated to discuss the limit behavior of the wavefunction as x → −∞ , so we omit it temporarily. 
Interested readers can observe its behavior intuitively on a graph.    

4.2. Three Dimensional Problems  

Problem v. (The free particle.) 
For ( ) 0V =r , the solutions to the relativistic Schrödinger equation ( ) ( )r r r rH Eψ ψ=r r  are 

 ( ) exp( )r iψ = ⋅kr r                                 (210) 

 2 2 2 2 4
rE c m c= +k                             (211) 

with k a three dimensional vector. An alternative form of the eigen-functions is 

 ( ) ( ) ( , )m
r l lj kr Yψ θ ϕ=r .                             (212) 

Proof. For ( ) 0V =r , the standard Schrödinger equation  

 ( ) ( ) ( )
2

2
2

H EV
m

ψ ψ= − ∇ =r r r

                        (213) 

has the solutions  

 ( ) exp( )iψ = ⋅r k r                               (214) 

 
2 2

2
kE
m

=


                                    (215) 

where | |k = k  is the length of the vector k. 
From the relationship between the relativistic Hamiltonian and the standard Hamiltonian  

 2 2 2 4 2 2 4 2 2 4 = 2  = 2rH c m c mc T m c mc H m c= + + +p               (216) 

we know that the relativistic Schrödinger equation  

 ( ) ( )r r r rH Eψ ψ=r r                                 (217) 

has the solutions  

 ( ) exp( )r iψ = ⋅kr r                                  (218) 

 2 2 2 2 4
rE c m c= +k .                             (219) 

Obviously, the wavefunction can also be expressed in the spherical coordinate system.  
 
Problem vi. The function  

3
3

3 2 2 2 4

1 1( ) exp( )
(2 ) R

Y r i d
c m cπ

= ⋅
+

∫
p r p

p 



                   (220) 

and E=0 is a solution of the relativistic Schrödinger equation ( ) ( )rH Eψ ψ=r r with the potential  

 ( ) ( ) / ( )V r Y rδ= − r .                               (221) 

Proof. It is easy to verify that  
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 2 2 2 4 ( ) ( ) ( ) ( ) ( ) 0c m c Y r V Y δ δ+ + = − =p r r r r .                (222) 

This completes the proof.   
 
Problem vii. (The harmonic oscillator potential) 

For a harmonic oscillator potential 2( )V k=r r , the s-state energies for the relativistic Schrödinger equation, nE , 
satisfy 

 2 2 1/3 21 1
2 2( ) | | (2 )n nk c r E n mcω< < − +                       (223) 

where 1, 2,3, ,n =  2 /k mω ≡ , and nr  is the n-th zero point of the Airy function Ai(x).  
Proof. 
In the momentum space, we have   

 2 2 2 4 2 2 2 2 4 2 2
rH c m c k c m c k= + + = + − ∇pp r p 

              
 (224) 

The Schrödinger equation is   

 2 2 2 2 2 4( ) ( ) ( )rk c m c Eϕ ϕ ϕ− ∇ + + =p p p p p .                (225) 

Up to some constants, this equation is mathematically the same as the Schrödinger equation in the real space with a square 
root potential  

 
2

2 2 2
0( ) ( ) ( )

2
k r r E

m
ψ ψ ψ− ∇ + + =r r r

,                   (226) 

with k and r0 are positive numbers. We also know that in standard quantum mechanics the energy levels become higher if the 
potential becomes higher. Now let us return to the current problem.  

Since  

 
2

2 2 2 4 2| |
2

c c m c mc
m

< + < +
pp p ,                        (227) 

we see that the relativistic kinetic energy is smaller than the classical kinetic energy plus the rest energy 2mc , but greater 
than the energy levels of  the fractional energy with 1α =  and 1D c= .  

Specifically, for s-state, we have  

 2 2 1/3 21
2

1( ) | | (2 )
2n nk c r E mc n ω< < + −                      (228) 

1, 2,3, .n =   
Here we used the result of Problem 12 and the energy formula for the classical harmonic oscillator [22].   
 
Problem viii. (The Coulomb potential.) 

For the Coulomb potential 2 /V e r= − , wheree is the charge of the electron, the energy eigen value of the relativistic 
Schrödinger equation ( ) ( )rH Eψ ψ=r r is    

 ( )2 2 4 5 6
02 4 3

1 1 3 64 11 α α α α
1/ 2. 4 152n 2nnl l
nE mc O

l n
δ

π
  = − − − + +  +  

          (229) 

where 2α=e / c  is the fine structure coefficient, n is the principle quantum number, l is the angular momentum quantum 
number. Only in this problem and its solution, α is not fractional parameter.   

Proof. 
The relativistic Hamiltonian is  
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2
2 2 2 4  -  eH c m c

r
= +p                                 (230) 

The Schrödinger equation  

 
2

2 2 2 4( ) ( ) - ( ) ( ) eH c m c E
r

ψ ψ ψ ψ= + =r p r r r                 (231) 

has no analytic solutions by now. Since the relativistic effect is very small, we can use the perturbation method based on the 
classical Hamiltonian 

 
2 2

2
0  -  

2
eH mc

m r
= +

p
                               (232) 

The classical Schrödinger equation  

 
2 2

0 2 0 0 0 0
0 ( ) ( ) ( ) - ( ) ( ) 

2
eH mc E

m r
ψ ψ ψ ψ ψ= + =

pr r r r r                (233) 

has the well-known wave function ( )0
nlmψ r  and energy levels  

0 2 2
n 2

1E 1 α
2n

mc = − 
 
 

.                             (234) 

According to the perturbation theory [22], the first order approximation of the energy is 

( )
3

2
2 2 2 4

nl

0* 2 2 2 4 0 3 2
2

2 2 4 5 6
0

2

2 4 3

E     >   <

1 ( ) ( )   α
n

1 1 3 64 11 α α α α
1/ 2 4 152n 2n

nlm nlmR

l

eH c m c
r

c m c d

nmc O
l n

mcψ ψ

δ
π

= < > = < + − >

= + −

  − − − + +  +  
=



∫

p

p p p p
              (235) 

where 

( )3
0 0 3

3

1( ) exp( )
(2 )

nlm nlmR
i dφ ψ

π

⋅
= −∫

p rp r r




                   (236) 

 

is the wavefunction in the momentum space[23]. The details 
of the calculation can be found in [19].  

The new energy levels contain a valuable 5α  term, 
which is 41% of the observed Lamb shift [19]. We are trying 
to find the exact solutions for the relativistic Schrödinger 
equation with a Coulomb potential to see whether we can 
explain the Lamb shift better in the framework of quantum 
mechanics.     

5. Conclusions 
Jeng’s critique resulted in a crisis of fractional quantum 

mechanics, that is, the fractional Schrödinger equation was 
difficult to solve in mathematics and had no realization in the 
real world. To eliminate this crisis, we present various 
solutions to the fractional Schrödinger equation, and 
introduce the relativistic Schrödinger equation as a 

realization of the fractional Schrödinger equation. Several 
solutions to the relativistic Schrödinger equation are also 
presented. The standard, fractional and relativistic 
Schrödinger equation should be studied together.  

We wish that the winter of the fractional quantum 
mechanics could go away and its spring could come soon.   

ACKNOWLEDGEMENTS 
The research on the relativistic Schrödinger equation was 

supported by Gansu Industry University (currently called 
Lanzhou University of Technology) during 1989-1991, with 
a project title ‘On the solvability of the square root equation 
in the relativistic quantum mechanics’. 

Cooperative research, joint grant applications and 
seminars on the new quantum mechanics are welcome.   

 

 



 International Journal of Theoretical and Mathematical Physics 2015, 5(5): 87-111 111 
 

REFERENCES 
[1] N. Laskin, “Fractional quantum mechanics,” Physical 

Review E 62, pp3135-3145 (2000). 

[2] N. Laskin, “Fractional Schrödinger equation,” Physical 
Review E66, 056108 (2002). 

[3] N. Laskin,“ Fractional and quantum mechanics,” Chaos 10, 
pp780-790 (2000). 

[4] M. Jeng, S.-L.-Y.Xu, E. Hawkins, and J. M. Schwarz, “On the 
nonlocality of the fractional Schrödinger equation,” Journal 
of Mathematical Physics 51, 062102 (2010). 

[5] S. S. Bayin, “On the consistency of the solutions of the space 
fractional Schrödinger equation,” J. Math.Phys. 53, 042105 
(2012). 

[6] S. S. Bayin, “Comment‘On the consistency of the solutions of 
the space fractional Schrödinger equation,’” Journal of 
Mathematical Physics 53, 084101 (2012). 

[7] S. S. Bayin,“Comment‘On the consistency of the solutions of 
the space fractional Schrödinger equation,’” Journal of 
Mathematical Physics 54, 074101 (2013). 

[8] S. S. Bayin, “Consistency problem of the solutions of the 
space fractional Schrödinger equation”,Journal of 
Mathematical Physics 54, 092101(2013). 

[9] E. Hawkins and J. M. Schwarz, “Comment‘On the 
consistency of the solutions of the space fractional 
Schrödinger equation,’” Journal of Mathematical Physics 54, 
014101 (2013). 

[10] Y. Luchko, “Fractional Schrödinger equation for a particle 
moving in a potential well,”Journal of Mathematical Physics 
54, 012111 (2013). 

[11] J. Dong, “Levy path integral approach to the solution of the 
fractional Schrödinger equation with infinite square well,”  
preprint arXiv:1301.3009v1 [math-ph] (2013). 

[12] J. Tare and J. Esguerra, “Bound states for multiple Dirac-δ 
wells in space-fractional quantum mechanics,”Journal of 
Mathematical Physics 55, 012106 (2014). 

[13] J. Tare and J. Esguerra, “Transmission through locally 
periodic potentials in space-fractional quantum mechanics,” 
Physica A: Statistical Mechanics and its Applications 407 
(2014), pp 43–53. 

[14] Y. Wei, “The infinite square well problem in standard, 
fractional and relativistic quantum mechanics”, International 
Journal of theoretical and mathematical physics 5 (2015), pp 

58-65. 

[15] X. Guo and M. Xu, “Some physical applications of fractional 
Schrödinger equation,” J. Math. Phys. 47, 082104 ,2006. 

[16] J. Dong and M. Xu,“Some solutions to the space fractional 
Schrödinger equation using momentum representation 
method,”J. Math.Phys. 48, 072105, 2007. 

[17] J. Dong and M. Xu, “Applications of continuity and 
discontinuity of a fractional derivative of the wave functions 
to fractional quantum mechanics,” J. Math.Phys. 49, 052105, 
2008. 

[18] A.Messiah, Quantum Mechanics vol. 1, 2(North Holland 
Publishing Company 1965). 

[19] Y. Wei, “The Quantum Mechanics Explanation for the Lamb 
Shift,” SOP Transactions on Theoretical Physics1(2014), no. 
4, pp.1-12. 

[20] Y. Wei, “On the divergence difficulty in perturbation method 
for relativistic correction of energy levels of H atom”, College 
Physics 14(1995), No. 9, pp25-29. 

[21] K.Kaleta et al,“One-dimensional quasi-relativistic particle in 
a box,”Reviews in Mathematical Physics25, No. 8 (2013) 
1350014 

[22] D. Y. Wu, Quantum Mechanics(World Scientific, Singapore, 
1986) pp. 46-49,260. 

[23] H. A. Bethe and E. E. Salpeter.Quantum Mechanics of One- 
and Two-Electron Atoms (Springer,1957) p. 38,39 

[24] F. W. King, Hilbert Transform, vol.1, 2. (Cambridge 
University Press 2009). 

[25] I. Richards, H. Youn, Theory of Distributions: A 
Non-Technical Introduction, Cambridge University Press, 
1990. 

[26] Y. Wei and G.Wang,“ An intuitive discussion on the ideal 
ramp filter in the computed tomography (I),”Computers & 
Math. Appl. 49 (2005), pp731–740. 

[27] Y. Wei, et al, “General formula for fan-beam computed 
tomography” Phys. Rev. Lett. 95, 258102, (2005). 

[28] Y. Wei, Common Waveform Analysis, (Kluwer, 2000). 

[29] Y. Wei, N. Chen, “Square wave analysis,” J. Math. Phys., 39 
(1998), pp. 4226–4245. 

[30] Y. Wei,“Frequency analysis based on general periodic 
functions,” J. Math. Phys., 40 (1999), pp. 3654–3684.

 

 


	1. Introduction
	2. The Relativistic Schrödinger Equation: A Realization of the Fractional Schrödinger Equation
	3. Solutions to the Fractional Schrödinger Equation
	4. Solutions to the Relativistic Schrödinger Equation
	5. Conclusions
	ACKNOWLEDGEMENTS

