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Abstract  There has been a continuous argument on the correctness of the Laskin‟s solution for the infinite square well 

problem in the fractional quantum mechanics. In this paper, we prove that the Laskin‟s functions are not amathematical 

solution to the fractional Schrödinger equation and the equation does not have any nonzero solutions at all in the sense of 

mathematics. As in the standard quantum mechanics, we view the infinite square well problem as the limit of the finite well 

problem, and define the solution for the infinite square well problem as the limit of the solution for the finite square well 

problem. Using the simple property of the infinite operators, we show that Laskin‟s function can be the limit solution for the 

infinite square well problem. The single-sided well problem and the 3 dimensional well problem are included. This operator 

method works for the same problems in the relativistic quantum mechanicsas well. 

Keywords  Fractional quantum mechanics, Relativistic quantum mechanics, Fractional Schrödinger equation, 

Relativistic Schrödinger equation  

 

1. Introduction 

In 2000, Laskin introduced the fractional quantum 

mechanics [1-3]. As an example he solved the infinite square 

well problem in a piecewise fashion [3]. However, in 2010 

Jeng, et al [4] criticized that it was meaningless to solve a 

nonlocal equation in a piecewise fashion and they 

demonstrated that it was impossible for the ground state 

function to satisfy the fractional Schrödinger equation near 

the boundary inside the well. In a series of papers [5-8], 

Bayin insisted that he explicitly completed the calculation in 

Jeng‟s paper and the wave functions did satisfy the fractional 

Schrödinger equation inside the well. Hawkins and Schwarz 

[9] claimed that the Bayin‟s calculation contained serious 

mistakes. Luchko [10] provided some evidence that the 

solution did not satisfy the equation outside the well. On the 

other hand, Dong [11] re-obtained the Laskin‟s solution by 

solving the fractional Schrödinger equation with the path 

integral method. It is not easy for readers to judge their 

mathematical argument [12, 13], but weagree with Jeng‟s 

opinion, including that the piecewise way to solve the 

equation is wrong, and that the solution does not satisfy the 

fractional Schrödinger equation, since we will inarguably 

show that the Laskin‟s functions do not satisfy the fractional 

Schrödinger equation ( 1  ) anywhere on the x-axis.  

However, in fact, this solution does not satisfy the  
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standard Schrödinger equation either, and it is nothing but 

the limit of the solution to the finite square problem. Without 

a mathematical definition of the eigenvalues and 

eigenfunctions of a Hamiltonian operator with local infinity, 

the argument will be endless. Therefore, in this paper we 

mathematically define the infinite square well problem as a 

limit of the finite well. This viewpoint is also useful for other 

potentials with infinity, such as the coulomb potential in the 

hydrogen atom, the single-sided harmonic oscillator, etc. 

Since it is difficult to solve the fractional Schrödinger‟s 

equation with a finite square well potential, we wish a direct 

way to find the solution of the infinite square well problem. 

Fortunately, we can express the fractional Hamiltonian in 

terms of the standard Hamiltonian. In the same way, we can 

also solve the infinite square well problem in the relativistic 

quantum mechanics, since the fractional and relativistic 

quantum mechanics are closely related. We acknowledge 

that these solutions need to be verified when the solutions to 

the finite square well problem are reported later.   

We first recall the infinite square well problem in standard 

quantum mechanics, and then solve the problem in the 

fractional quantum mechanics and in the relativistic quantum 

mechanics.  

2. Definition of the Infinite Well 
Problem  

In this section we will recall the relation between the finite 

and infinite square well problems in the standard quantum 

mechanics, and accordingly define the infinite square well 
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problem in the fractional quantum mechanics.  

2.1. The Finite and Infinite Potential Wells in the 

Standard Quantum Mechanics 

In the standard quantum mechanics [14], the one 

dimensional time-independent Schrödinger equationis 

   H x E x  ,             (1) 

where  x  is a wave function defined on the x-axis, and 

E is an energy. The Hamiltonian operator 

 H T V x                 (2) 

is the summation of the kinetic energy and the 

potentialenergy of a particle.  

The standard kinetic energy operator is  

2 2 2

22 2

p d
T

m m dx
   ,            (3) 

where p is the one dimensional momentum operator   

d
p i

dx
  .                 (4) 

As usual, m is the mass of the particle and ℏ  is the 

reduced Plank constant. 

A finite square well [15] is defined as  

 f
0

0      ,

   
 ,

x a
V x

V x a

 
 


            (5) 

where 0 0V   is the depth of the well and 2a is the width of 

the well. The subscript f means the finite square well.  

The eigenequation of the finite square well problem is  

     
2 2

22
f

d
V x x E x

m dx
     .      (6) 

This equation can be solved separately in three regions 

first and then the piecewise solutions are connected by the 

continuity condition that the wave function and its derivative 

must be continuous. This process generates the eigenvalues 

( )fnE x
 

and eigenstates ( )fn x , with 1,2,3n  . The 

state with n=1 is the ground state [15].  

One can easily verify that the explicit solutions satisfy the 

eigenequation at every point on the whole x-axis 

     
2 2

fn f fn fn22

d
V x x E x

m dx
     ,   (7) 

which convinces us that the continuity condition we use is 

suitable. In fact this continuity condition comes from the 

Schrödinger equation.  

The infinite square well potential is defined as   

 i

0      ,

   
.

x a
V x

x a

 
 

 
            (8) 

At x a  , the potential has two infinite jumps. The 

subscript imeans the infinite square well. 

Obviously the potential iV  is not real in physics and not 

well-defined in mathematics, since we do not know how to 

determine the value of the multiplication  i ( )V x x
 

outside the well, even if the wave function outside the well is 

zero. (Does 0  equal 0,1, or  ?) In physics this 

potential is used as a simplified model for „a very deep finite 

square well‟.  

Conventionally the Schrödinger equation  

     
2 2

i22

d
V x x E x

m dx
            (9) 

is solved in a piecewise way again [15]. The wave function 

outside the well is zero because the potential is infinite and 

the wavefunction inside the well is a sine or cosine function. 

The revised continuity condition for this case is that the wave 

functions must be continuous but their derivative should not 

be. The infinite square well problem has the simple and 

well-known solution 

 

1
sin  ( ) ,  

2
 

0 ,
n

n
x a x a

ax a

x a






 

 
   

   (10) 

2 2 2

28
n

n
E

ma


              (11) 

for 1,2,3, .n   

However, we emphasize that this solution does not satisfy 

the Schrödinger Equations (9). Take the ground state as an 

example, we have       

   

   

2 2

1 12

2

1 1

2

( ) ( )
4

i

d
V x x

m dx

E x x a x a
ma a

 


  

 

     

.  (12) 

The wave function satisfies the Schrödinger equation 

everywhere except at x=a and x=-a. This is not a small flaw 

for a differential equation, and we have to say that the wave 

functions in (10) are not the solution of the Schrödinger 

equation at all. The extra terms in the above equation comes 

from the discontinuity of the derivative of the wave function, 

but if we keep the derivative of the wavefunction continuous, 

we can only get a trivial solution   0x  , which is 

meaningless in physics. We have to say that the Schrödinger 

equation with the infinite square well potential does not have 

solutions in mathematics. (See the appendix if one feels 
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surprised.) 

Since the infinite square well is a limit of the finite square 

well, conventionally we call the limit of the solutions of the 

finite square well problem  

0 0

lim ( ) ( ),    lim ( )fn n fn n
V V

x x E x E 
 

  ,   (13) 

the solution of the infinite square well, and symbolically 

write 

     
2 2

22
n i n n n

d
V x x E x

m dx
     .   (14) 

The piecewise way to solve the Schrödinger equation for 

the infinite square well, together with the aforementioned 

revised continuity condition, is nothing but an easy and 

direct way to get the limit of the finite square well solution 

without solving the finite square well problem.  

This definition for the infinity potential is applicable for 

several important cases in quantum mechanics. It helps us to 

answer the following questions: 

(1)  in what sense the wave functions of the hydrogen 

atom [14]can satisfy the Schrödinger equation at 

the origin 0r   where the coulomb potential 

( ) 1/V r r   is undefined. (r is the distance of a 

point to the origin.)  

(2)  why the wave functions for the potential 
2( ) 1/ /V r r r  

 
[14], where 0  is 

much smaller than 1, can be divergent at the origin 

while we claim that the wave functions should be 

be continuous and differentiable everyday,  

(3)  why only the odd (rather than even) 

eigen-functions of the simple harmonic oscillator 

[15] are the solutions of the single-sided oscillator 

2 21
2

0
( )

0

m x x
V x

x

 
 

 
.        (15) 

(4)  why half-sine functions are the solution of the 

single-sided infinite square well ( or infinite wall) 

but half-cosine functions are not. We will explain 

this case further in the section III.  

In one word, the different continuity conditions of wave 

functions in quantum mechanics are used in order that one 

can directly find the limit solution for a potential with 

infinity, instead of solving the Schrödinger equation with a 

corresponding finite potential first and then calculating the 

limit of the solutions.  

2.2. The Laskin’s Solution of the Infinite Square Well   

In 2000, Laskin generalized the classical kinetic and 

momentum relation to    

/2
2

2 21
2 2

| |
| |

p d
T D p mc D

mc dx




  

  
     

   

, (16) 

where the coefficient 
2 / ( )D mc mc 

 
with χ a 

positive real number, and c is the speed of the light. When 

2  , taking 1/ 2   and hence 1/ (2 )D m , the 

fractional kinetic energy recovers the standard kinetic energy, 

i.e. 2
2 / (2 )T p m T   . Originally Laskin [1-3] required 

the fractional parameter 1 2  , but in this paper we 

allow 0 2  . 

The fractional Schrödinger equation is  

   xH x E             (17) 

H T V   .            (18) 

For the infinite square well problem, we have  

     
2

2

2
( ) ( ) i

d
D x V x x E x

dx

 
     . (19) 

Laskin [3] solved the equation above in a piecewise 

fashion, and got the same wave functions and a new energy 

level    

 

1
sin  ( ) ,  

2
 

0 ,
n

n
x a x a

ax a

x a






 

 
 

    (20) 

2
n

n
E D

a



 

 
  

 
.            (21) 

However, in 2010 Jeng, et al [4] criticized that it was 

meaningless to solve the nonlocal equation (19) in a 

piecewise fashion and by contradiction they demonstrated 

that the ground state function did not satisfy the fractional 

Schrödinger equation. 

We believe that Jeng et al is correct and Basin is wrongin 

this argument. There are two reasons.  

(1)  The inarguable evidence is that the solution does 

not satisfy the fractional Schrödinger equation 

( 1  ) anywhere on the x-axis. Taking the 

ground state as an example, we have the fact  

2
2 1/2

1 1 12

1

1

( ) ( ) ( ) *(1/ )

Si( ) Si( ) cos
2 2 2 22

Ci( ) Ci( ) sin .
2 2 2 22

d d
D x D x x

dxdx

D x x x

a a aa a

D x x x

a a aa a

  

    

    

 
   

 

 
    

 

 
    

 

 (22) 

The above function is not proportional to 1( )x  inside 

the well, it is not zero outside the well, and it is divergent at 

the boundaries x a  . Here Si and Ci are sine and cosine 

integral functions, respectively.  

(2)  In fact, the fractional Schrödinger equation with 

the infinite square well (19) does not have any 
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nonzero solutions. Since the potential ( )V x  is 

infinity, to avoid ( ) ( )V x x  be infinity, we have 

to let ( )x  be zero outside the well, that is, 

( )x  is a compactly supported function. 

Thuswe have ( ) ( ) 0V x x   on the x-axis (if 

we take 0 0  ). For 0 2,   the kinetic 

energy operator is nonlocal, so the resultant 

function | | ( )D p x
  will be extended 

outside the well. Therefore Equation (19) requires 

a compacted function to equal a non-compacted 

function. This is impossible. Therefore there are 

no nonzero solutions to the fractional Schrödinger 

equation (0 2) 
 
with an infinite square 

well potential. By the way, Luchko [10] ever had a 

conjecture that the solution for the infinite square 

well problem in fractional quantum mechanics 

should be treated as a new special function. 

Now let us define the infinite square well problem and its 

solutionin the fractional quantum mechanics 

mathematically.  

Definition 1. The solution of the infinite square well 

problem. 

Suppose the fractional Schrödinger equation for the finite 

square well potential  

     
2

2

2
( ) ( )f f f f

d
D x V x x E x

dx

 
       

has the solutions ( )fn x  and fnE  with 1,2,3,n  . 

If their limits exist 

0 0

lim ( ) ( ), limfn n fn n
V V

x x E E    
 

  ,    (23) 

we say that they are the solutions for the infinite square well 

problem, and symbolically write    

     
2

2

2
( ) ( )n i n n n

d
D x V x x E x

dx

 
        . 

Obviously it will be difficult and complicated to solve the 

infinite square well problem according to the above 

definition. Before any strict solutions have been reported in 

the publications, let us develop a tentative way to solve the 

infinite square well problem based on some intuitive 

property of the infinity operator.  

3. The Infinite Square Well Problems in 
Fractional Quantum Mechanics 

Based on the relation between the standard and fractional 

Hamiltonians, one can construct a non-piecewise method for 

the infinite square well. There are three cases, (1) one 

dimensional, (2) three dimensional and (3) one-sided infinite 

square well problems.  

3.1. The 1D Infinite Square Well Problem 

For the 1D infinite square well problem, the fractional 

Hamiltonian 

( )iH T V x                 (24) 

can be expressed in terms of the standard Hamiltonian   

( )iH T V x  .              (25) 

as 

/2 /2(2 )H m D H 
  .          (26) 

Here is the deduction of the above operator relationship 

  

  

/2/2 /2 /2

/2 /2

/2/2

2 /2

(2 ) (2 )

(2 ) | |

(2 ) | |

( ) | |

| |

| |

| |

0 | |

| |

0 | |

| |

.

m D H m D T V x

m D T x a

m D V x x a

D p x a

x a

T x a

x a

x a
T

T x a

x a
T

x a

T V H

  
 

 















 

 

 
 



 
 

 


 

 


  

  


  

 

  

  (27) 

Therefore we have  

 

/2 /2

/2/2

( ) (2 ) ( )

(2 ) ( )

( )
2

n n

n n

n

H x m D H x

m D E x

n
D x

a

 
 








 










 
  

 

.   (28) 

We see that the wave functions of the fractional 

Hamiltonian are the same functions of the original 

Hamiltonian, and the new energy levels are 

2
n

n
E D

a



 

 
  

 
 .            (29) 

That is to say, the Laskin‟s solution is re-obtained in a 

non-piecewise fashion.  

In the above deduction, we use some formal operations of 

the infinity operator  , such as  

/2 .

T

T


  

   

  

                (30) 
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3.2. The 3D Infinite Square Well Problem 

In quantum mechanics, the 3D infinite square well is 

defined   

 
0 , ,  and 

( )
other

,
w

,
ise.

y z
x y z

x a a a
V V

   
  


r (31) 

Here ( , , )x y zr
 

is a point in the 3D Euclidean space.   

Please notice that the 3D infinite square well potential is 

the summation of three one dimensional infinite square 

wells,  

       , , i i ix y z x yV V V V z      (32) 

since 0 0 0,0 ,  and       . 

By the way, a 3D finite square well potential does not have 

such a simple relation, so it is very difficult and complicated 

to solve. Here we see that the use of the infinity potential   

can greatly simplify the problem with a very big finite 

potential.   

The standard Hamiltonian is  

2 2 2 2 2

2 2 2
( ) ( , , )

2 2
H V V x y z

m m x x x

   
       

   

p
r  (33) 

where p  is the 3D momentum operator.  

The Schrödinger‟s equation   

( , , ) ( , , )H x y z E x y z          (34) 

has the solution  

( , , ) ( ) ( ) ( )n m lx y z x y z         (35) 

2 2
2 2 2

2
( )

8
lmnE n m l

ma


   ,       (36) 

with , , 1,2,3n m l  . ( )n x  is defined in (10) 

The fractional Hamilton is  

 
/2

2

/2
2 2 2

2 2 2

( )

( )

H D V

D V
x x x










 

   
     

   

p r

r

.   (37) 

Again, we have the same relation between the standard 

and fractional Hamiltonian 

/2 /2(2 )H m D H 
             (38) 

Therefore, the fractional Schrödinger equation  

( , , ) ( , , )H x y z E x y z           (39) 

has the solution  

( , , ) ( ) ( ) ( )n m lx y z x y z   
  

     (40) 

2 2 2 /2( )
2

nmlE D n m l
a




 

 
   

 
,   (41) 

With , , 1,2,3n m l  . 

3.3. One-sided Infinite Square Well  

The 1D one-sided infinite square well is defined as  

 
     x 0,

0        x > 0. 
U x

 
 


           (42) 

The standard Hamilton is  

 
2

2

p
H U x

m
  .             (43) 

The Schrödinger equation  

 
2

( ) ( ) ( )
2

p
H x x U x x

m
            (44) 

has the solution   

0 0
( )

sin( ) 0

x
x

kx x


  


           (45) 

2 2

2

k
E

m
                (46) 

with 0k  . 

Here we repeat that the wave function in (45) does not 

satisfy the Schrödinger equation (44) at x=0. Then one 

natural question is why we do not call 

0 0
( )

cos( ) 0

x
x

kx x


  


          (47) 

a solution. 

In fact, for a finite single–sided square well 

  0V      x 0,

0        x>0, 
fU x


 


           (48) 

the solution to the Schrödinger equation is   

0

exp( ) 0
( )

sin( ) 0
f

A x x
x

kx x






  

 

         (49) 

Here the parameters 0k   and 2 2
02 /mV k   . 

The other parameters A and 0  
are chosen so that this 

solution is continuous and differentiable at x=0.  It is easy to 

verify that  

0

0 0,
lim ( )

sin( ) 0.
f

V

x
x

kx x


  


      (50) 

This is the reason why the half-sine function in (45) is a 

solution, but the half-cosine function ( )x
 

in (47) is not.   

The fractional Hamiltonian is  

 H D T U x
   .         (51) 
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Based on (26), the fractional Schrödinger equation  

 ( ) ( ) ( )H x D T x U x x
                                     (52) 

has the solution  

0 0
( )

sin( ) 0

x
x

kx x


  


                                    (53) 

 E D k


                                         (54) 

with 0k  .  

4. Infinite Square Well Problems in Relativistic Quantum Mechanics 

According to special relativity [14], the relation between the kinetic energy rT
 

and the 3D momentum p  is  

2 2 2 4
rT c m c p .                                    (55) 

The subscript r means special relativity.  

The relativistic Hamiltonian [14] is 

 2 2 2 4
rH c m c V  p r .                                (56) 

In Summerfield‟s quantum theory [14], this Hamiltonian leaded to an energy formula for the coulomb potential, which 

accurately matches the hydrogen spectrum with the fine structure.    

Accordingly, the relativistic Schrödinger equation is  

 2 2 2 4( , ) ( , ) ( , )i t c m c t V t
t
  


  


rr p r r .                         (57) 

The square root operator above is defined by the Fourier Transformation of the wave function,  

3 3

2 2 2 4 3 2 2 2 4 3

3

1
( , ) exp( / ) exp( '/ ) ( ', ) '

(2 ) R R
c m c t d i c m c i t d 


      p r p p r p p r r r .    (58) 

Obviously it is difficult to deal with this equation 

mathematically [14], so this equation had been abandoned 

until recently when we discovered that its energy formula 

has an extremely valuable 
5  terms, which is 41% of the 

experimental Lamb shift [16, 17]. As the only exception in 

this paper, the notation   stands for the fine structure 

constant rather than the fractional order.  

For a low speed motion, the relativistic equation (57) 

recovers the Schrödinger equation  

 
2

2( , ) ( , ) ( , )
2

i t mc t V t
t m
  

 
   

  

p
r r rr ,  

whose fractional parameter 2  . 

For a very high speed motion, if the rest energy can be 

neglected approximately, we have    

 2( , ) ( , ) ( , )i t c t V t
t
  


 


r p r rr ,   (59) 

which is the fractional Schrödinger equation with 1  . 

Generally speaking, if the speed of a particle increases 

from low to high, the relativistic Schrödinger equation (57) 

will approximately relate to a fractional Schrödinger 

equation, whose parameters   changes from 2 to 1. 

Therefore the fractional and the relativistic Schrödinger 

equation should be studied at the same time as two sister 

equations.   

4.1. The 1D Infinite Square Well  

For the one-dimensional infinite square well problem, the 

relativistic Hamiltonian is  

 

 

2 2 2 4

2
2 2 2 4

2
.

r i

i

H p c m c V x

d
c m c V x

dx

  

   

   (60) 

Again, we can express the relativistic Hamiltonian in 

terms of the classical Hamiltonian as 

2 2 42rH mc H m c  ,          (61) 

since 
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2 2 4

2 2
2 2 4

2

2
2 2 2 4

2

2

2 ( )
2

( ) r

mc H m c

d
mc V x m c

m dx

d
c m c V x H

dx



 
    

 

    

.    (62) 

See the stepwise deduction in (27) for details. 

Therefore the Laskin‟s wave functions ( )n x  satisfy 

the relativistic Schrödinger equation  

( ) ( )r n rn nH x E x            (63) 

with a new energy level 

2 2 2 2
2 4

24
rn

n c
E m c

a


          (64) 

for 1,2,3, .n   

For the extreme relativistic case, we have  

   
2

n

n c
E

a


 .               (65) 

4.2. The 3D Infinite Square Well Problem 

The relativistic Hamiltonian  

 2 2 2 4
r iH c m c V  p r         (66) 

can be expressed in terms of the classical Hamiltonian  

 
2

2
iH V

m
 

p
r  

as 

2 2 42rH mc H m c  .           (67) 

Therefore, the relativistic Schrödinger equation  

( ) ( )r rH E  r r              (68) 

has the solution  

( , , ) ( ) ( ) ( )n m lx y z x y z         (69) 

2
2 2 2 2 4( )

2
rnml

c
E n m l m c

a

 
    

 
.    (70) 

4.3. The One-sided Infinite Square Well Problem  

The relativistic Hamiltonian for the one-sided square well 

is    

 
2

2 2 2 4

2
.r

d
H c m c U x

dx
         (71) 

Based on the relation between the relativistic standard 

Hamiltonians (61), we know that the relativistic Schrödinger 

equation has the solution  

0 0
( )

sin( ) 0

x
x

kx x


  


          (72) 

2 2 2 2 4
rE k c m c  .            (73) 

5. Conclusions 

We agree with Jeng et al that the fractional Schrödinger 

equation cannot be solved in a piecewise fashion, and the 

Laskin‟s functions are not a mathematical solution of this 

equation. On the other hand, since these functions are not the 

mathematical solution of the standard Schrödinger equation 

either and are just the limit of the solutions of the finite 

square well, to disprove the Laskin‟s solution, one needs to 

solve the finite square well problem and take the limit of the 

solutions. Before the solution of the finite square well 

problem is reported, we develop a tentative direct method to 

solve the infinite square well problem in three cases using the 

straightforward property of the infinity operator. Meanwhile, 

we point out that the relativistic quantum mechanics is an 

approximate realization of the fractional quantum mechanics 

and the infinite square well problem can be treated in a same 

way. 

Note 1. We just noticed that the paper [18] reported some 

initial research on the one dimensional relativistic infinite 

square well, but to utilize the existing mathematical results, 

they used a completely different definition on the infinite 

square well, which had no relation to the finite square well. 

They defined 0 0   in the multiplication ( )V x , 

and artificially demanded the resultant function of the 

Hamiltonian operator to become zerooutside the well though 

they are actually not. From the viewpoint of physics, they 

changed the infinite square well problem to another one.   

Note 2. In [4], there were two sentences that “By raising 

that Hamiltonian to the power α/2, we get a plausible 

fractional Laplacian and Eq. (7) is indeed a solution. 

However, this is not the Riesz fractional derivative.” These 

words remind us that Jeng et al knew the method used in this 

paper but thought it did not work since the operator in this 

method was not Riesz fractional derivative. In fact, this is the 

Riesz fractional derivative, see Equation (7) in [1] for the 

definition. 
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Appendix 1. ‘Particle in a box’ 

Usually in quantum mechanics it is also demanded that the 

derivative of the wavefunction in addition to the 

wavefunction itself be continuous; here this demand would 

lead to the only solution being the constant zero function, 

which is not what we desire, so we give up this demand (as 

this system with infinite potential can be regarded as a 

nonphysical abstract limiting case, we can treat it as such and 

"bend the rules"). Note that giving up this demand means 

that the wavefunction is not a differentiable function at the 

boundary of the box, and thus it can be said that the 

wavefunction does not solve the Schrödinger equation at the 

boundary points x = 0 and x = L (but does solve everywhere 

else). 

http://en.wikipedia.org/wiki/Particle_in_a_box 

Appendix 2. An Alternative Definition 
on the Infinite Square Well Problem  

Definition 2. The solution of the infinite square well 

problem. 

We define a potential  

 
2

0

m

m

x
V x V

a

 
  

 
 

with 0V >0 and a>0, m=1,2,3 . 

Suppose the fractional Schrödinger equation for the finite 

potential  mV x  

     
2

2

2
( ) ( )m m m f

d
D x V x x E x

dx

 
       

has the solutions ( )mn x  and mnE  with 1,2,3,n  .  

If their limits exist 

lim ( ) ( ), limmn n mn n
m m

x x E E    
 

  , 

we say that they are the solutions for the infinite square well 

problem, and symbolically write    

     
2

2

2
( ) ( )n i n n n

d
D x V x x E x

dx

 
        . 
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