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Abstract  Harish and Golomb developed a mathematical model of vibrissa motoneurons (vMN), which was described by 
a system of ordinary differential equations based on the Hodgkin–Huxley formalism. This model can generate repetitive 
spiking in response to external stimulation. The present study used this model to reveal the relationship between the repetitive 
spiking and variations in two system parameters of the vMN model: a maximal conductance of a persistent sodium current 
(gNaP) and a maximal conductance of a transient sodium current (gNa). Numerical analysis by computer simulation clarified 
the (gNaP, gNa)-parameter space that supported the repetitive spiking. 
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1. Introduction 
Membrane electrical excitability of living cells such as 

neurons and endocrine cells represents a physical 
phenomenon that can be analyzed via mathematical models 
such as the Hodgkin–Huxley model (page 144 in [1]). This 
model is described by a system of nonlinear ordinary 
differential equations (ODEs), and its nonlinear dynamics is 
studied in the field of theoretical and mathematical physics 
[2]. In addition, physics textbook points out that a detailed 
analysis of membrane conductance in the Hodgkin–Huxley 
model is not only interesting but also very important (page 
26 in [3]). In fact, analysis of the electrosensory 
ghostbursting neuron model, which is formulated based on 
the Hodgkin–Huxley scheme, reveals the relationship 
between model dynamics and potassium conductance 
(Figure 13 in [4]). In addition, analysis of the endocrine cell 
model, which is also formulated based on the 
Hodgkin–Huxley scheme, reveals the dependence of the 
model dynamics on two different types of potassium 
conductance (Figure 3 in [5], Figure 12 in [6], and Figure 4 
in [7]). Although analyses of various types of potassium 
conductance were extensively performed as described above, 
analysis of sodium conductance, in particular the analysis of 
the effect of several types of sodium conductance on the 
neuron model dynamics is limited except for a few studies 
such as Figure 2 in [8] and Figure 2 in [9]. Therefore, to  
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facilitate further a detailed analysis of membrane 
conductance, it will be important to analyze sodium 
conductance in detail. 

In the present study, we focused on a mathematical model 
of vibrissa motoneurons (vMN), which plays an important 
role for vibrissa motor control [10, 11]. This model is also 
formulated based on the Hodgkin–Huxley scheme and 
described by a system of nonlinear ODEs (refer to Materials 
and Methods Section of this paper and Methods Section in 
[10]). In response to injection of a supra-threshold excitatory 
current, the vMN model shows repetitive spiking (Figure 2A 
in [10]). Similar behavior is experimentally observed in the 
electrophysiological recording (Figure 2 in [12]). Although 
two types of sodium conductance i.e., persistent sodium 
conductance and transient sodium conductance are assumed 
to play an important role in this spiking activity, the 
influence of variations in these two conductance values on 
the spiking activity was not clarified in detail in a previous 
study [10]. Investigation of this influence will provide a 
deeper understanding of the characteristics of sodium 
conductance. Therefore, in the present study, computer 
simulations were carried out to clarify how the repetitive 
spiking of the vMN model depends on a maximal 
conductance of persistent sodium current (gNaP) and a 
maximal conductance of transient sodium current (gNa). 

2. Materials and Methods 
The vMN model used in the present study is based on the 

study by Harish and Golomb [10], and it is described by a 
system of nonlinear ODEs. The model consists of five state 
variables i.e., a membrane potential of the vMN model    

 



 International Journal of Theoretical and Mathematical Physics 2015, 5(3): 48-52 49 
 

[V (mV)] and four gating variables of ionic currents (h, n, u, 
and r). The time evolution of the five state variables is 
described as follows:  

( , ) ( )app Na NaP
dVC I I V h I V
dt

= − −  

( , ) ( , ) ( , ) ( )Kdr AHP h LI V n I V u I V r I V− − − −     (1) 

( ) ( )( )1

X

dX X V X
dt Vτ ∞= − (X = h, n, u, r)  (2)–(5) 

where C is the membrane capacitance (1 µF/cm2); Iapp is the 
externally injected current of a constant amplitude; INa(V, h), 
INaP(V), IKdr(V, n), IAHP(V, u), Ih(V, r), and IL(V) denote the 
transient sodium current, persistent sodium current, delayed 
rectifier potassium current, calcium-dependent potassium 
current, hyperpolarization-activated h-current, and leak 
current, respectively, which are defined below in Equations 
(6)−(11). τX(V), X∞(V) are time constants of activation/ 
inactivation and steady-state activation/inactivation 
functions, respectively, which are defined below in 
Equations (12)−(19). 

( )3( , ) ( )Na Na NaI V h g m V h V V∞= −      (6) 

( )( ) ( )NaP NaP NaI V g p V V V∞= −       (7) 

( )4( , )Kdr Kdr KI V n g n V V= −          (8) 

( )( , )AHP AHP KI V u g u V V= −         (9) 

( )( , )h h hI V r g r V V= −            (10) 

( )( )L L LI V g V V= −            (11) 

where gNa, gNaP, gKdr, gAHP, gh, and gL are maximal 
conductances of a transient sodium current (from 0 to 100 
mS/cm2), a persistent sodium current (from 0.00 to 0.04 
mS/cm2), a delayed rectifier potassium current (20 mS/cm2), 
a calcium-dependent potassium current (10 mS/cm2), a 
hyperpolarization-activated h-current (0.05 mS/cm2), and a 
leak current (0.12 mS/cm2), respectively. VNa, VK, Vh, and VL 
are reversal potentials of a sodium current (55 mV), a 
potassium current (−90 mV), a hyperpolarization-activated 
h-current (−27.4 mV), and a leak current (−70 mV), 
respectively. m∞(V) and p∞(V) are defined in Equations (20) 
and (21), respectively. 

( ) ( 50)/15 ( 50)/16
30

h V VV
e e
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+

       (12) 

( ) ( 40)/40 ( 40)/50
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e e
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+
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( ) ( 140)/21.6 ( 40)/22.7
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+
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+
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( ) ( 25)/3
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1 Vu V
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+
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( ) ( 83.9)/7.4
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1 Vr V
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+
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( ) ( 28)/7.8
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1 Vm V
e∞ − +=

+
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( ) ( 53)/5
1

1 Vp V
e∞ − +=

+
       (21) 

See paper [10] for detailed explanations of the equations. 
A slow potassium current (M current), an external input 
current describing noise, and a CPG input current contained 
in the original model (see Equation (1) in [10]) were not 
included in Equation (1) of the present study because the 
spiking activity considered in the present study was observed 
in the absence of these three currents. 

The free and open source software Scilab 
(http://www.scilab.org/) was used to numerically solve the 
ODEs (initial conditions: V = −65.84 mV, h = 0.92141213,  
n = 0.0497938, u = 0.00040176, and r = 0.095137881). The 
detailed information about the vMN model is provided by 
the ModelDB website: https://senselab.med.yale.edu/Model
DB/ShowModel.cshtml?model=127022.  

3. Results 
Time courses of the membrane potential of the vMN 

model at various conditions are illustrated in Figure 1. Figure 
1A1 shows the repetitive spiking in response to a weak 
stimulus (Iapp = 1.0 µA/cm2) injected between 0.2 and 1.8 s. 
When the value of gNaP was decreased to zero while the other 
parameter values remained the same as in Figure 1A1, the 
spiking was completely blocked (Figure 1A2). When the 
value of gNa was decreased to zero while the other parameter 
values remained the same as in Figure 1A1, the spiking was 
also blocked (Figure 1A3). Figure 1B1 shows the repetitive 
spiking in response to a strong stimulus (Iapp = 2.5 µA/cm2). 
Under this condition, the spiking frequency was greater than 
that in Figure 1A1. Contrary to Figure 1A2, when the value 
of gNaP was decreased to zero with the other parameter values 
remaining the same as in Figure 1B1, the spiking was not 
blocked, but the spiking frequency decreased compared with 
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that in Figure 1B1 (Figure 1B2). When the value of gNa was 
decreased to zero with the other parameter values remaining 
the same as in Figure 1B1, the spiking was completely 
blocked (Figure 1B3), which was similar to that in Figure 
1A3. 

The dynamical states of the vMN model at various gNaP 
and gNa values are shown in Figure 2. It was revealed that 
irrespective of Iapp, the (gNaP, gNa)-parameter space was 

divided into two dynamical states i.e., the repetitive spiking 
state (black circle) and the quiescent state (white circle). 
Figure 2 illustrates that irrespective of Iapp, the gNa range in 
which the repetitive spiking appeared decreased with a 
decrease in gNaP. When comparing Figures 2A and 2B, it was 
observed that when Iapp increased (Figure 2A → 2B), the area 
of the spiking state (black circle) expanded and the area of 
the quiescent state (white circle) shrunk.   

 

Figure 1.  Numerical simulation results of time evolution of the vMN model membrane potential. (A1) (Iapp, gNaP, and gNa) = (1.0 µA/cm2, 0.04 mS/cm2, and 
100 mS/cm2). (A2) (Iapp, gNaP, and gNa) = (1.0 µA/cm2, 0.00 mS/cm2, and 100 mS/cm2). (A3) (Iapp, gNaP, and gNa) = (1.0 µA/cm2, 0.04 mS/cm2, and 0 mS/cm2). 
(B1) (Iapp, gNaP, and gNa) = (2.5 µA/cm2, 0.04 mS/cm2, and 100 mS/cm2). (B2) (Iapp, gNaP, and gNa) = (2.5 µA/cm2, 0.00 mS/cm2, and 100 mS/cm2). (B3) (Iapp, 
gNaP, and gNa) = (2.5 µA/cm2, 0.04 mS/cm2, and 0 mS/cm2) 
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Figure 2.  Phase diagrams illustrating the dependence of the dynamical states of the vMN model on gNaP and gNa. (A) Iapp = 1.0 µA/cm2. (B) Iapp = 2.5 
µA/cm2. Black circle indicates the state of repetitive spiking, while white circle indicates the state of quiescence 

4. Discussions  
The present study revealed the sensitivity of the spiking 

activity to variations of two types of sodium conductance. In 
contrast to a previous study [10], the present study clearly 
indicates the roles of different types of sodium conductance: 
a transient sodium conductance is indispensable to the 
repetitive spiking irrespective of the amplitude of injected 
current (Figures 1A3 and 1B3), while the necessity of a 
persistent sodium conductance in the repetitive spiking is 
dependent on the amplitude of injected current i.e., when the 
amplitude is large, the persistent sodium conductance is not 
indispensable (Figure 1B2), whereas it is indispensable when 
it is small (Figure 1A2). 

Based on previous studies, we can categorize the 
relationship between neuronal pacemaking and sodium 
conductance into two types. The first type consists of 
transient sodium conductance range in which pacemaking 
appears that decreases with a decrease in persistent sodium 
conductance such as in the amacrine cell model (Figure 2 in 
[8]). The second type consists of transient sodium 
conductance range in which pacemaking appears that 
increases with a decrease in persistent sodium conductance 
such as in the pyramidal neuron model (Figure 2 in [9]). The 
present results (Figure 2) indicate that the relationship 
between the vMN model pacemaking and sodium 
conductance can be categorized into the first type. When we 

carefully compare Figure 2 in [8] with Figure 2 in the present 
study, we found the following important difference: under 
excitable conditions, pacemaking in the amacrine model can 
occur in the absence of transient sodium conductance but 
cannot occur in the absence of persistent sodium 
conductance (see Figure 2A, 2B, and 2C in [8]), while 
pacemaking in the vMN model can occur in the absence of 
persistent sodium conductance but cannot occur in the 
absence of transient sodium conductance (see Figure 2B in 
the present study). In other words, we can categorize the first 
type further into the following two subtypes: one in which a 
persistent sodium conductance plays a more important role 
in pacemaking than a transient sodium conductance and the 
other in which a transient sodium conductance plays a more 
important role than a persistent sodium conductance. 

5. Conclusions 
The present study conducted a computational analysis of 

the vMN model. By integrating the results obtained in the 
present study and previous results, we can propose a new 
subtype regarding the relationship between neuronal 
pacemaking and different types of sodium conductance. This 
leads to a deeper understanding of the characteristics of 
sodium conductance, thus greatly contributing to a detailed 
analysis of membrane conductance of the neuron model. 
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