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Abstract  Classical oscillator differential equation is replaced by the corresponding (finite time) difference equation. The 
equation is, then, symmetrized so that it remains invariant under the change d→-d, where d is the smallest span of time. This 
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1. Introduction 
In 1900 Max Planck presented his quantum hypothesis [1], 

which sets a lower limit to energy transfer. In 1905 Albert 
Einstein presented his relativistic postulate [2], which sets an 
upper limit to velocity. Apart from the fact that, they talk of 
different quantities (energy and velocity), there is a 
reciprocal relation between the two. Every number has a 
unique reciprocal. [3], [4]. There will be no ambiguity if, 
instead of representing distance, time etc. by x, t, etc., we 
represent them by their reciprocals (x → 1/x, t → 1/t etc.). 
Here we can recall the principle of objectivity that physics 
should be independent of the quantities we define. The study 
of motion in terms of slowness (reciprocal of velocity) is as 
valid as the study in terms of velocity. 

Velocity is defined as the distance covered in unit time,  
V = x/t. 

Reciprocally, we may define slowness V’ as the reciprocal 
of V i.e.  

V’ = t/x 
Physics does not depend on the quantities we define 

(objectivity). Therefore, it should be possible to describe 
motion in terms of slowness just as it is possible in terms of 
velocities [5]. 

Let us consider the well known function exp(iwt) which 
describes an oscillating motion. Energy of the oscillator is 
proportional to the square of w. exp(iwt) is the solution of a  

 
* Corresponding author: 
borhan_phy@yahoo.com (M. Borhan Uddin) 
Published online at http://journal.sapub.org/ijtmp 
Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved 

differential equation. Classical oscillator differential 
equation can be replaced by the corresponding (finite time) 
difference equation. The equation, then, can be symmetrized 
so that it remains invariant under the change d→-d, where d 
is the smallest span of time. This symmetric equation has 
solutions, which come in reciprocally related pairs. The 
angular speed w is modified to w` or w``. w` contains a part 
with an integer. W`` contains a part with a half integer. This 
corresponds to quantum mechanical oscillator energy levels. 
f=a.exp(iwt) describes oscillation between -a and +a. if we 
make w=0, f describes free oscillation between –a and +a. 

The difference equation 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝑖𝑖𝑖𝑖                  (1.1) 

has a unique solution 𝑓𝑓 = 𝑎𝑎. exp(𝑖𝑖𝑖𝑖𝑖𝑖), f describe the motion 
of a harmonic oscillator if  

𝑤𝑤 = �𝑘𝑘
𝑚𝑚

 

Where k is a constant and m is the mass. 
Classical energy of the oscillator 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is proportional 

to 𝑤𝑤2 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1
2
𝑚𝑚(𝑎𝑎𝑎𝑎)2          (1.2) 

The corresponding finite difference equation has more 
solutions [6], which come in reciprocal pairs. When the 
function represents a harmonic oscillator, different solutions 
will contribute to oscillator energy in different ways. We 
intend to study these contributions and compare them to the 
corresponding quantum mechanical values. 

Let the oscillator having amplitude ‘a’ oscillate between 
–a and +a. We place two perfectly rigid reflecting walls at –a 
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and +a. the presence of the walls does not influence the 
oscillation in any way. Now we make k=0 so that w=0. This 
makes the oscillator a free particle. Therefore, in the case 
(w=0) the non-vanishing energy term should the energy 
levels of a free particle bouncing between reflecting walls. 

2. Oscillator Finite Difference Equation 
Classical simple harmonic oscillator function f (with 

angular speed w) satisfies differential equation (1.1). 
To exploit its symmetry properties we replace the above 

differential equation by the corresponding symmetric finite 
difference equation [7] 

𝐷𝐷𝑔𝑔±
𝐷𝐷(𝑡𝑡,𝛿𝛿)

= 𝑖𝑖𝑖𝑖. 𝑔𝑔±             (2.1) 

Where, 
𝐷𝐷𝑔𝑔±(𝑤𝑤,𝑡𝑡)
𝐷𝐷(𝑡𝑡,𝛿𝛿)

= 𝑔𝑔±(𝑤𝑤,𝑡𝑡+𝛿𝛿)−𝑔𝑔±(𝑤𝑤,𝑡𝑡−𝛿𝛿)
2𝛿𝛿

       (2.2) 

The above difference quotient has the following symmetry 
under the change δ→-δ 

𝐷𝐷𝑔𝑔±
𝐷𝐷(𝑡𝑡,−𝛿𝛿)

= 𝐷𝐷𝑔𝑔±
𝐷𝐷(𝑡𝑡,𝛿𝛿)

             (2.3) 

We require that at least one of the solutions, 𝑔𝑔+, of (2.1) 
should go over to (1.1) in the limit δ→0 

𝐷𝐷𝑔𝑔+
𝐷𝐷(𝑡𝑡,𝛿𝛿)

= 𝑖𝑖𝑖𝑖(𝑤𝑤)𝑔𝑔+ 𝛿𝛿→0
�⎯� 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑖𝑖𝑖𝑖𝑖𝑖    (2.4) 

With 
𝑔𝑔+ 𝛿𝛿→0

�⎯�𝑓𝑓  and  W
𝛿𝛿→0
�⎯�𝑤𝑤         (2.5)  

(2.1) has solutions in pairs. One of the pairs is [8] 

𝑔𝑔+ = exp �2𝜋𝜋
𝑑𝑑
𝑠𝑠+ + 𝑠𝑠𝑠𝑠𝑠𝑠−1(𝑤𝑤𝑤𝑤 )

𝑑𝑑
� 𝑖𝑖𝑖𝑖 = exp(𝑤𝑤+𝑖𝑖𝑖𝑖)  (2.6) 

𝑔𝑔− = exp �2𝜋𝜋
𝑑𝑑
𝑠𝑠− −

𝑠𝑠𝑠𝑠𝑠𝑠−1(𝑤𝑤𝑤𝑤 )
𝑑𝑑

� 𝑖𝑖𝑖𝑖 = exp(𝑤𝑤−𝑖𝑖𝑖𝑖)  (2.7) 

Where 

𝑠𝑠+ =integer                 (2.8) 

𝑠𝑠− =Half-integer 
With the correspondence relation (for 𝑠𝑠+ = 0) 

𝑔𝑔+ 𝑑𝑑→0
�⎯�𝑓𝑓                   (2.9) 

𝑔𝑔+ and 𝑔𝑔−  are related through the reciprocity relation 
𝑔𝑔+. 𝑔𝑔− = (−1)𝑡𝑡/𝑑𝑑               (2.10) 

2.1. Assumption of Classical Physics 

We consider an oscillator oscillating along x line between 
–a and +a  

𝑥𝑥 = 𝑎𝑎. sin𝑤𝑤𝑤𝑤             (2.1.1) 
x=0 at t=0. we measure at intervals of d. we are not able to 

measure at any interval less than d. After time d the value of 
x is 

𝑥𝑥 = 𝑎𝑎. sin𝑤𝑤𝑤𝑤             (2.1.2) 
What is the value x after time d’, where d’<d? The 

classical assumption is  
𝑥𝑥 = 𝑎𝑎. sin𝑤𝑤𝑤𝑤′     (2.1.3) 

It is an assumption because no observations have been 
made for any interval d’<d. in (2.9) and (2.10) of this paper 
we have replaced assumption (2.1.3) by the less stringent 
assumptions below and we write for the displacement x  

𝑥𝑥+ = 𝑎𝑎. sin(2𝜋𝜋
𝑑𝑑
𝑠𝑠+ +  𝑤𝑤)𝑖𝑖𝑖𝑖 = 𝑎𝑎. sin(𝑤𝑤+𝑖𝑖𝑖𝑖)   (2.1.4) 

𝑥𝑥− = 𝑎𝑎. sin(2𝜋𝜋
𝑑𝑑
𝑠𝑠− −  𝑤𝑤)𝑖𝑖𝑖𝑖 = 𝑎𝑎. sin(𝑤𝑤−𝑖𝑖𝑖𝑖)   (2.1.5) 

We require that 𝑥𝑥+ and 𝑥𝑥− agree with the observed value 
at t=d so that 

𝑥𝑥+ = 𝑎𝑎. sin(𝑤𝑤+𝑖𝑖𝑖𝑖) =  𝑥𝑥− = 𝑎𝑎. sin(𝑤𝑤−𝑖𝑖𝑖𝑖) 
= 𝑥𝑥 = 𝑎𝑎. sin(𝑤𝑤𝑤𝑤𝑤𝑤)     (2.1.6) 

(2.1.4) and (2.1.5), therefore, express our ignorance about 
the values of x for t<d. 

2.2. Classical and Quantum Energy Levels 

The energies of the reciprocal symmetric oscillator 𝑬𝑬±
𝑹𝑹.𝑺𝑺 

are [9] 

𝑬𝑬+
𝑹𝑹.𝑺𝑺 =

𝟏𝟏
𝟐𝟐
𝒎𝒎(𝒂𝒂.𝒘𝒘+)𝟐𝟐 = 

𝟏𝟏
𝟐𝟐
𝒎𝒎𝒂𝒂𝟐𝟐[�𝟐𝟐𝝅𝝅+

𝒅𝒅
�
𝟐𝟐

+ 𝟐𝟐[�𝟐𝟐𝝅𝝅+
𝒅𝒅
�𝒘𝒘 + 𝒘𝒘𝟐𝟐]  (2.2.1) 

𝑬𝑬−𝑹𝑹.𝑺𝑺 = 𝟏𝟏
𝟐𝟐
𝒎𝒎(𝒂𝒂.𝒘𝒘−)𝟐𝟐 = 𝟏𝟏

𝟐𝟐
𝒎𝒎𝒂𝒂𝟐𝟐[�𝟐𝟐𝝅𝝅𝒔𝒔−

𝒅𝒅
�
𝟐𝟐

+ 𝟐𝟐[�𝟐𝟐𝝅𝝅𝒔𝒔−
𝒅𝒅
�𝒘𝒘 + 𝒘𝒘𝟐𝟐] 

(2.2.2) 
For s+ =0, (2.2.1) gives the classical value (1.3). 
The middle term of (2.2.2) is 

𝑬𝑬−𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑹𝑹.𝑺𝑺 = −𝒎𝒎𝒂𝒂𝟐𝟐 �𝜋𝜋

𝑑𝑑
� (2𝑠𝑠−)w   (2.2.3) 

It corresponds to quantum mechanical value. [10] 
𝐸𝐸𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜂𝜂(2𝑠𝑠−)𝑤𝑤       (2.2.4) 

The important difference is that there is no Planck’s 
constant in (2.2.3). 

3. Reciprocal Symmetry 
Let 𝑔𝑔± be of the form 𝑔𝑔+ = (±𝑎𝑎)±𝑡𝑡/𝛿𝛿  so that  

𝑔𝑔+(𝑤𝑤, 𝑡𝑡)=(−1)𝑡𝑡/𝛿𝛿𝑔𝑔−(𝑤𝑤, 𝑡𝑡)         (3.1) 
Consider equation (2.1) 

𝑔𝑔+(𝑤𝑤,𝑡𝑡+𝛿𝛿)−𝑔𝑔+(𝑤𝑤,𝑡𝑡−𝛿𝛿)
2𝛿𝛿

= 𝑖𝑖𝑖𝑖. 𝑔𝑔+(𝑤𝑤, 𝑡𝑡)    (3.2) 

Using (3.1) we find that 𝑔𝑔−also satisfies the equation. 
This establishes reciprocal symmetry of (2.1), that the 
equation remains invariant under transformation (3.1). 

3.1. Reciprocal Symmetric Solutions 

(2.1) has a pair of solutions 

𝑔𝑔± �
𝑤𝑤𝑤𝑤
2
� = (±

1±𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝑤𝑤𝑤𝑤2 �

1∓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝑤𝑤𝑤𝑤2 �
)
𝑡𝑡
𝛿𝛿 = (±1)

𝑡𝑡
𝛿𝛿exp(±𝑖𝑖𝑖𝑖𝑖𝑖)(3.1.1) 
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𝑔𝑔+ and 𝑔𝑔− satisfy (2.1) with  

𝑊𝑊 = sin (𝑤𝑤𝑤𝑤 )
𝛿𝛿

            (3.1.2) 

We may write 

𝑔𝑔+ = exp �(2𝑛𝑛)𝜋𝜋𝜋𝜋
𝛿𝛿

𝑖𝑖� exp(𝑖𝑖𝑖𝑖𝑖𝑖) = exp(𝑖𝑖𝑤𝑤+𝑡𝑡)  (3.1.3) 

𝑔𝑔− = exp �(2𝑛𝑛+1)𝜋𝜋𝜋𝜋
𝛿𝛿

𝑖𝑖� exp(−𝑖𝑖𝑖𝑖𝑖𝑖) = exp(𝑖𝑖𝑤𝑤−𝑡𝑡)  (3.1.4) 

Where 

𝑤𝑤+ = (2𝑛𝑛)𝜋𝜋
𝛿𝛿

+ 𝑤𝑤 = 𝑦𝑦+ + 𝑤𝑤     (3.1.5) 

𝑤𝑤− = (2𝑛𝑛+1)𝜋𝜋
𝛿𝛿

− 𝑤𝑤 = 𝑦𝑦− − 𝑤𝑤  (3.1.6) 

4. Classical and Hall-Integral Energy 
Levels 

Simple harmonic oscillator function f satisfies the 
differential equation  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
−=  ±𝑖𝑖𝑖𝑖𝑖𝑖 

The corresponding finite difference symmetric equation is 
𝐷𝐷𝐷𝐷

𝐷𝐷(𝑡𝑡, 𝛿𝛿)
= ±𝑖𝑖𝑖𝑖𝑖𝑖 

It has two solutions 𝑔𝑔 = 𝑔𝑔1 and 𝑔𝑔 = 𝑔𝑔2 [10] 

𝑔𝑔1 = 𝐴𝐴(
1 − 𝑖𝑖 1 − �1 + (𝑖𝑖𝑖𝑖𝑖𝑖)2

𝑤𝑤𝑤𝑤

1 + 𝑖𝑖 1 − �1 + (𝑖𝑖𝑖𝑖𝑖𝑖)2

𝑤𝑤𝑤𝑤

)𝑡𝑡/𝛿𝛿      

And  

𝑔𝑔2 = 𝐴𝐴(
1 + 𝑖𝑖 1 − �1 + (𝑖𝑖𝑖𝑖𝑖𝑖)2

𝑤𝑤𝑤𝑤

1 − 𝑖𝑖 1 − �1 + (𝑖𝑖𝑖𝑖𝑖𝑖)2

𝑤𝑤𝑤𝑤

)𝑡𝑡/𝛿𝛿  

In the limit as 𝛿𝛿 → 0, 𝑔𝑔1 gives the classical oscillator 
function f  

𝑔𝑔1 = 𝐴𝐴(𝑒𝑒2𝑛𝑛𝑛𝑛𝑛𝑛
1 ± 𝑖𝑖 1 − �1 + (𝑖𝑖𝑖𝑖𝑖𝑖)2

𝑤𝑤𝑤𝑤

1 ∓ 𝑖𝑖 1 − �1 + (𝑖𝑖𝑖𝑖𝑖𝑖)2

𝑤𝑤𝑤𝑤

)
𝑡𝑡
𝛿𝛿
𝛿𝛿→0
�⎯� 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
2𝑛𝑛𝑛𝑛
𝛿𝛿

± 𝑤𝑤� 𝑖𝑖𝑖𝑖 

Half integral energy levels  
𝑔𝑔2 gives 

𝑔𝑔2 = 𝐴𝐴(−
1 + 𝑖𝑖 1 − �1 + (𝑖𝑖𝑖𝑖𝑖𝑖)2

𝑤𝑤𝑤𝑤

1 − 𝑖𝑖 1 − �1 + (𝑖𝑖𝑖𝑖𝑖𝑖)2

𝑤𝑤𝑤𝑤

)
𝑡𝑡
𝛿𝛿
𝛿𝛿→0
�⎯�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴′𝑡𝑡 

Where 

𝑤𝑤′ =
(2𝑛𝑛 + 1)𝜋𝜋

𝛿𝛿
+ 𝑤𝑤 = 𝑦𝑦 + 𝑤𝑤 

The energy of the oscillator is proportional to  
(𝑤𝑤′)2 = 𝑦𝑦2 + 2𝑦𝑦𝑦𝑦 + 𝑤𝑤2 

= {
(2𝑛𝑛 + 1)𝜋𝜋

𝛿𝛿
}2 + 2 �

2(𝑛𝑛 + 1)𝜋𝜋
𝛿𝛿

�𝑤𝑤 + 𝑤𝑤2 

The middle terms contain half-integral multiples. To this 
extent it corresponds to quantum mechanical value. 

The first term of this equation, 𝑦𝑦2 = {(2𝑛𝑛+1)𝜋𝜋
𝛿𝛿

}2 , 
corresponds to the energy levels of a free particle oscillating 
between reflecting walls. A similar term with (2n+1) 
replaced by 2n comes from 𝑔𝑔1 solution. Adding terms, we 
get the total energy, Ey, of a free particle oscillating between 
reflecting walls as 

𝐸𝐸𝑦𝑦 =
1
2
𝑚𝑚{
𝐴𝐴𝐴𝐴𝐴𝐴
𝛿𝛿

}2 

Where m is the mass, 2A is the width of the well and n is 
an integer. 

The energy of the oscillator is proportional to  
(𝑤𝑤+)2 = 𝑦𝑦+

2 + 2𝑦𝑦+𝑤𝑤 + 𝑤𝑤2 

= {2𝑛𝑛𝑛𝑛
𝛿𝛿

}2 + 2 �2𝑛𝑛𝑛𝑛
𝛿𝛿
�𝑤𝑤 + 𝑤𝑤2    (4.1) 

(𝑤𝑤−)2 = 𝑦𝑦+
2 + 2𝑦𝑦−𝑤𝑤 + 𝑤𝑤2 

= {(2𝑛𝑛+1)𝜋𝜋
𝛿𝛿

}2 + 4 �
𝑛𝑛+1

2 𝜋𝜋

𝛿𝛿
�𝑤𝑤 + 𝑤𝑤2(4.2) 

For n=0 (4.1) gives the classical value. The middle term of 
(4.2) is a product term of half-integers and w. to this extent it 
corresponds to quantum mechanical value. 

5. Conclusions 
The pair of reciprocal symmetric functions 𝑔𝑔± of (2.9) 

and (2.10) describes a classical oscillator, which has discrete 
energy levels (2.2.1) and (2.2.2). One of the terms (2.2.3) 
compares well with the corresponding quantum mechanical 
term (2.2.2). 

We have replaced oscillator differential equation by the 
corresponding symmetric discrete equation (2.1). This has 
brought to surface important parts of oscillator function, 
which were lost in the conventional solution. These parts 
contain discrete-integral and half-integral energy levels. 
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