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Abstract  The phase diagram of the superconducting cuprates is a manifestation of quantum phase transition (QPT). 
There is still controversy if the quantum fluctuations generating the pseudogap region is a precursor to the superconducting 
region or they are competing phases. By modelling the basic possible Hamiltonian for this class of materials as a nonlinear 
dynamic system, using doping as the tuning parameter, it is possible to obtain a visualized phase diagram which captures 
fairly the phase diagram of the superconducting cuprates. The numerical results depict that as we doped from slight to 
optimal, there are three quantum critical points (QCPs): the first at the QPT from the Mott insulator and antiferromagnetic 
(AFM) phase to the pseudogap at slight doping, the second at the QPT from the pseudogap to the superconducting phase at 
minimum doping and the third is a hidden QPT due to collapse of the pseudogap around optimal doping. Therefore, the 
results obtained here in the context of nonlinear dynamic visualization shed new light on the study of the phase diagram of 
the high TC superconducting cuprates. 
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1. Introduction 
Understanding the physics of the phase diagram of the 

superconducting cuprates has remained one of the 
outstanding problems in condensed matter physics since the 
discovery of high TC in these materials. The expectation has 
always been on the possibility of understanding the origin 
of the superconducting phase in order to possibly design 
room temperature superconductors. The superconducting 
phase of the cuprates is a manifestation of new mechanism 
of interaction of the material carriers when they are 
properly doped. One of the consensus from all these years 
of intense study of the superconducting cuprates is that their 
electronic phase diagram is the same [1-6]. As the 
temperature is reduced from about 300 K which is near 
room temperature (297 K), the superconducting cuprates 
show signs of the superconducting state, even though their 
conductivity is ordinary. The general believe is that a 
superconducting state evolves when the electrons pair up to 
form Cooper pairs and are propagated coherently. The 
difference in the energy of the Cooper electrons and the 
so-called free electrons is called the energy gap. Thus one 
classic sign of superconductivity is the emergence of an  
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energy gap which is a range of energy levels that are 
forbidden to electrons, with all states below the gap 
completely filled [7-9]. In conventional low-temperature 
superconductivity, the presence of this gap signifies the 
sudden transition to the superconducting state at TC. 
However in the case of the high-temperature 
superconductors, a similar energy gap also occurs under 
certain circumstances above the transition temperature 
when the parent materials are slightly doped. This onset of a 
gap at higher temperature designated T* (T-star) that is far 
above TC, is generally called a pseudogap. Thus the 
pseudogap is a set of anomalous physical properties below 
the characteristic temperature T* and above TC [10-13]. 
Condensed matter physicists hope that understanding this 
shadow of the superconducting state will shed light on the 
mechanism for high TC superconducting cuprates [1, 13-17]. 
There are basically two schools of thoughts here. The first 
school believe that as the temperature is lowered, first 
reaching T*, a few electron pairs start to form, but they are 
sparse and lack the long-range coherence for the Cooper 
pair condensate propagation. It follows that as the 
temperature continues to fall, more such pairs are formed 
until, upon reaching TC, virtually all conducting electrons 
are paired and the Cooper channel is formed giving rise to 
the superconducting state. These workers therefore believe 
that since the order parameter is the same, then there is a 
single phase transition and that is at the onset of the 
superconducting state while the pseudogap is merely a 
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precursor to it [18-20]. A very encouraging prediction from 
this line of thinking is that since the onset of the pseudogap 
is close to room temperature, then there is the possibility of 
seeking means to enhance the formation of the Cooper pairs 
and its coherent propagation to make TC tend to T*.  

The second group believe that the onset of the energy gap 
is a signature for a phase transition at T* and therefore the 
pseudogap is a different phase in nature from that of 
superconductivity [6, 15, 16, 21, 22]. This implies that the 
order parameter of the pseudogap is probably different from 
that of the superconducting phase. This existence of 
competing order means there is the existence of a quantum 
critical point (QCP) which is a point along a line at zero 
temperature where phases meet [16, 23]. This process is 
called a quantum phase transition (QPT) and is attained by 
varying the tuning parameters in the Hamiltonian [24]. This 
parameter could be the external pressure, the density of 
electrons in the material which can be controlled by 
chemical doping or the value of an external magnetic field. 
When the tuning parameter reaches a particular value, the 
so called QCP, the system’s Hamiltonian ground state 
changes drastically, which manifest as an abrupt 
modification of the macroscopic properties of the system. 
Thus the effect of the tuning parameter is to induce 
quantum fluctuations as governed by the Heisenberg 
uncertainty principle. Although it is impossible to achieve T 
= 0 due to the third law of thermodynamics, the effects of 
QPTs can be observed at finite temperatures whenever the 
de Broglie wavelength is greater than the correlation length 
of thermal fluctuations [24]. The purpose of this current 
study is to attempt to visualize the QCP(s) in the phase 
diagram of the cuprates. The basic physical criterion 
employed is that since superconducting materials are 
mutli-body systems, they are non-linear [25] and therefore 
can be considered as having chaotic tendency [26-28]. Here 
the chaotic tendency is generated by a non-linear system 
that has sensitivity dependence on initial conditions. While 
Chaos theory embodies an approach and a set of methods to 
deal with the complex behaviour found in many physical 
systems, the modelled and visualized phase diagram in this 
current study is not chaotic: instead it clearly shows 
transient states. Therefore, the issue on the extent of 
applicability of chaos to quantum mechanics phenomena 
such as superconductivity which is still an ongoing debate 
[29, 30] is inconsequential here especially as this study is 
not to use any of the chaotic approaches [27, 28] to study 
the nitty-gritty of the phase diagram. Instead, the approach 
here is to pedagogically provide a visual insight into the 
possible type of phase crossing [24] in the slightly doped, 
minimal doped and optimal doped regions of the phase 
diagram of the superconducting cuprates. Thus the 
modelling relies on slight variation of the chemical 
composition of the parent materials by doping. Therefore 
doping here is considered the tuning parameter that drives 
the system into the QPT. The rest of this paper is planned as 
follows. In section 2, the modelling of the Hamiltonian for 
the high TC superconducting cuprates phase diagram is done 

using a non-linear pendulum dynamic equation. The 
visualized results which remarkably reproduce the complex 
phase diagram of the superconducting cuprates in line with 
several theoretical and experimental studies are discussed in 
section 3 and this will be followed by a conclusion in 
section 4.  

 

 
Figure 1.  (colour online): The transition phase diagram of high 
temperature superconducting cuprates showing the various phases at various 
temperatures and doping levels 

2. Modeling 
Modeling is an attempt to mimic reality in a controlled 

scenario. In physics, a model can be conceived as a simple 
and well understand phenomenon or system designed to 
represent and explain a complex and not well understand 
phenomenon or system. Therefore the model should possess 
the domineering properties of the phenomenon or system it is 
supposed to represent. The two main components of chaotic 
tendency are the ideas that (1) that small changes in the 
initial conditions can lead to widely diverging outcomes and 
(2) no matter how complex a system may be, it rely upon an 
underlying order [31, 32]. It is stated above that the transition 
from normal to superconducting state is nonlinear hence a 
chaotic tendency. Since doping influence the electronic 
composition of the parent materials, then we need to first 
identify the material specifics in which changes in their 
initial conditions in the normal state gives rise to the 
transition phase diagram hence superconductivity [25, 
33-37]. In their structural analysis of the high TC 
superconducting cuprates, Villars and Philips observed that 
there are three ‘golden coordinates’ that drives the 
superconductivity namely orbital radii, valence election and 
electronegativity [34]. This has been recently extended to the 
valence electrons, atomic number, formula weight and other 
factors [35]. Their study is an attempt to generalize the 
Matthias approach [36, 37] of using periodic table and 
material specifics to predict superconducting materials and 
their transition temperatures which was successful for the 
conventional superconductors to other families of 
superconductors. While there have been no experiment to 
confirm or refute their predictions, it is my thinking that their 
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approach may help to understand the high TC 
superconducting cuprates. Therefore in the study here, the 
changes in the aforementioned material specifics will be 
modelled as influencing the doping which in turn triggers the 
phase diagram.  

Classically, the motion of a body can be described by its 
dynamic variables such as its velocity, mass and time. 
However, the Heisenberg principle restricts such description 
in quantum mechanics to variables such as momentum p, 
position r and time t (not often). This restriction makes it 
necessary to re-express the total energy of a quantum 
physical system in terms of p, r, and t only. This can be 
expressed mathematically by the conventional quantum 
mechanical equation in relative coordinates and reduced 
mass for two electrons in singlet coupling as 
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where m is the mass of the electrons. 
The replacement of the classical variables in Eq. (1) by 

their corresponding quantum mechanical operators will 
result in a second order differential equation Hamiltonian 
for two repelling electrons and therefore a nonlinear system: 
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By second quantization of this Hamiltonian [38, 39], we 
obtain the Hamiltonian with the creation and annihilation 
operators. This could be the Hubbard model and its various 
extensions [40, 41] or its strong coupling limit known as the 
t-J model and its various extensions [38, 42, 43]. The 
general form of these models can be expressed as [24]: 

int)( HgHgH ct +=             (2) 

where tH  is the kinetic part and intgH  is the interaction 
part which determine the quantum fluctuation with the g
denoting the tuning parameter. The QCT occurs when g  
reaches a value denoted by cg that can trigger the QCP.  

The classic system to describe nonlinear physical systems 
is the nonlinear pendulum and the equation of its dynamics 
is [28]  

cF
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dq

L
g

dt
d

+−=+
θθθ sin2

2

        (3) 

where 
g is acceleration due to gravity, 
L is the length of string, 

dt
dq θ

 is the velocity dependent damping force and 

Fc is the sinusoidal driving force that captures the initial 
conditions of the material specifics such as orbital radii r, 
electronegativity 𝒳𝒳, valence electron count N, atomic 
number Z and formula weight Fw [35], that is, 

tFwZNrFc ),,,,sin( ∆∆∆∆∆= χ       (4) 

In the Hamiltonian representation of the high-TC 
superconducting cuprates in (2), the effects of both the 
damping force and the driving force are captured in its 
interaction part. In the modelling here, we assume the 
system with only damping force as the undoped case while 
the inclusion of the driving force is the doped case. 
Therefore the value of Fc hence the changes in the initial 
conditions will determine the phase transition, with Fc = 0 
being the system with no changes in the initial conditions. 
Further, we start from the basic assumption of the Hubbard 
model that the undoped material is antiferromagnetic (AFM) 
at low temperature and that doping eradicates the 
antiferomagnetism hence the material becomes 
superconductive [40]. In the case of the t-J model, we start 
with the basic assumption that the undoped material is AFM 
at low temperature as in Hubbard model while the doped 
material of the t-J model is assumed to possess short range 
AFM and SC [41]. 

Comparing (2) and (3), the first part of both the LHS and 
RHS of (3) represents the kinetic part of (2) and the 
remaining part is its interaction part. Therefore, the 
dynamics of the phase diagram of the superconducting 
cuprates is simulated with (3) by representing the 
temperature with theta and the doping with time. This is 
achieved by using a modified Euler’s Method for solving 
differential equation, the Euler-Cromer Method [28] to 
solve (3) after breaking it down to two first order systems: 

Diiii Ftqt
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g
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with 

tiii ∆+= ++ 11 ωθθ .           (6) 

Equations (5) and (6) are then coded using Python to 
obtain the solution of the (3). 

3. Presentation and Discussion of Results 
The starting point of the numerical results is to consider 

the normal state conditions wherein Fc = 0. As depicted in 
Figure 2, the output is a normal damped sinusoidal curve 
which will be considered as the insulator and AFM state of 
the phase diagram as shown in Figure 1. Introducing changes 
in the initial conditions implies that Fc > 0 resulting in a 
transient waveform depicted by the red box followed by a 
normal sinusoidal curve in Figure 3. If we compare Figures 1 
and 3, then the transient waveform in Figure 3 is the 
pseudogap in Figure 1 while the normal sinusoidal curve is 
the superconducting state. This scenario of changes from Fc 
= 0.01 (Figure 3a) to Fc = 0.02 (Figure 3b) is equivalent to 
slight enhancement of the doping as we increase the amount 
of the material specifics. In both cases, there is still a small 
region of damped sinusoidal curve, followed by a pseudogap 
phase and then a superconducting phase. However, it is easy 
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to see that as we increase from Fc = 0.01 (Figure 3a) to     
Fc = 0.02 (Figure 3b), both the regions of damped curve and 
pseudogap curves decrease while that of the superconducting 
region increases. Further, the portion of the visualized phase 
diagram where the QCP indicating the change from the 
pseudogap to the superconducting curves is likely to be, is 
from time = 95 – 146 when Fc = 0.01 and from time = 64 – 
113 when Fc = 0.02. The common feature to both visualized 
phase diagrams is that the change from the AFM region to 
the peudogap region was abrupt while that of the pseudogap 
to the superconducting region is slow. This is a visualization 
of the well known results of the time-resolved reflectivity 
measurements at different temperatures which shown that a 
fast-changing, negative signal sets in below T* that is 
distinct from the slow-changing, positive signal at the onset 
of TC [21]. This is often considered as the signature for the 
different nature of both pseudogap and superconducting 
phases [15, 16, 21]. Increasing the material specifics from 
this point (starting from Fc = 0.03), the visaulized phase 
diagram now starts from the pseudogap region followed by a 
more enhanced superconducting phase and the region to find 
the change from pseodogap to superconducting region 
decreases where for Fc = 0.03 (Figure 4a) it now lies from 
time = 62 – 97 and for Fc = 0.27 (Figure 4b) it lies from time 
= 49 – 96. Also, the pseudogap curve seems to be changing 
gradually into a sinusordal-like curve as the driving force is 
increased from Fc = 0.03 to Fc = 0.27. Logical prediction 
expects both the pseudogap region and the region of the 
transition from the pseudogap transient waveform to the 
superconducting region to shrink further  and even probably 
be absorbed into the superconducting phase as we increase 
the Fc beyond Fc = 0.27. But as clearly shown in Figures 5a 
and 5b, the pseudogap changes into a damped-like curve 

whose size increases as the driving force is increased from Fc 
= 0.28 to Fc = 0.29. Similarly, the region where the QCP lies 
is also increased from time = 49 – 94 for Fc = 0.28 to time = 
79 – 111 for Fc = 0.29. This means the new damped-like 
curve which we likened to the strange metal region in Figure 
1 now increases rapidly at the expense of the 
superconducting region in the optimal doping level. This is 
in line with the experimental observation of the change in the 
quasiparticle decay rate and the sign of the photoinduced 
change in reflectivity measurement in BSCCO system 
superconductors precisely at optimal doping [44]. Thus this 
is an indication that the onset of quantum fluctuation 
responsible for the pseudogap region at T* are quenced 
around the optimal doped region. This agrees with the 
experimental observation that the pseudogap state only sets 
in when the hole doping of the cuprate is neither too low nor 
too high [20]. The reason why the pseudogap curve does not 
return to exactly to the waveform of the normal state after the 
quenching of the quantum fluctuations that caused it may be 
due to the nonadiabtic nature of this quantum criticality [24, 
45]. Thus the inference is that in this optimal doped level, the 
pseudogap has crossed into the strange metal regime in 
agreement with studies [22, 44, 46] which observed the 
existence of an additional hidden QCP around the optimal 
doping. This may also be related to the experimental study of 
the electronic Raman scattering in overdoped 
(Y,Ca)Ba2Cu3Oy wherein it is observed that there is 
electronic crossover due to the collapse of the pseudogap 
[46]. This has been visualized here as the values beyond the 
optimum doping, that is, Fc > 0.29, which is choatic and 
hence non-superconducting state as shown in Figure 6 for  
Fc = 0.30.  

 

 

Figure 2.  The damped sinusoidal curves of the normal state, that is, when there are no changes in the initial conditions so that FC = 0 
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 (a)                                                          (b) 

Figure 3.  (colour online). The damped curves, chaotic curve and sinusoidal curve when there are changes in the initial conditions so that Fc > 0 for (a) Fc 
= 0.01 and Fc = 0.02. In both cases, the red dash line indicates the pseudogap phase while the inserts are the regions wherein the quantum critical point 
possibly lies (a) from (time = 95 – 146) and (b) from (time = 64 – 113) 

 
Figure 4.  (colour online). The damped curves, chaotic curve and sinusoidal curve when there are changes in the initial conditions so that Fc > 0 for (a) FC 
= 0.03 and Fc = 0.27. In both cases, the red dash line indicates the pseudogap phase while the inserts are the regions wherein the quantum critical point 
possibly lies (a) from (time = 62 – 97) and (b) from (time = 49 – 96) 

 
Figure 5.  (colour online). The chaotic curve and sinusoidal curve when there are changes in the initial conditions so that (a) FC = 0.27 and FC = 0.28. In 
both cases, the red dash line indicates probably the strange metal region while the inserts are the regions wherein the quantum critical point possibly lies (a) 
from (time = 49 – 94) and (b) from (time = 78 – 111) 
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Figure 6.  The nonsinusoidal curves of the nonsuperconducting state, that is, when there are changes in the initial conditions beyond optimum doping so 
that for Fc = 0.30 

4. Conclusions 
A basic Hamiltonian to account for the phase diagram of 

the high TC superconducting cuprates has been modelled as a 
nonlinear system. It turns out that the visualized phase 
diagram fairly captures the essential features of phase 
diagram of the high TC superconducting cuprates. At small 
values of the driving force which represents the material 
specifics that influence the doping, there is abrupt change 
from the normal damped curve representing the Mott 
insulator and antiferomagnetic state to a transient waveform 
which depicts the pseudogap region. This abrupt change is a 
signature of avoided crossing [24] and it indicates the 
presence of a QCP and therefore the pseudogap is a 
manifestation of QPT due to quantum fluctuations. Now as 
the driving force is increased, there is a slow change from the 
pseudogap transient curve into a sinusoidal curve. This is 
likened to change from the pseudogap region into the 
superconducting phase. One is tempted to assume that this 
slow change is a signature of smooth crossing so that there is 
no QCP between the pseudogap and the superconducting 
state. This would have supported the school of thought that 
the same carriers interaction mechanism is responsible for 
both the pseudogap and the superconducting regions of the 
phase diagram of the high TC superconducting cuprates. This 
expectation is enhanced by an observable trend of a 
decreasing pseudogap curve that seems to be gradually 
changing into a sinusoidal-like form and more slowly 
crossing into an expanding superconducting curve as the 
driving force is increased from Fc = 0.03 to Fc = 0.27. It is 
observed, however, that as the driving force is increased to Fc 
= 0.28, the pseudogap transient curve abruptly changes into a 
damped-like curve but still maintain its smooth change into 

the sinusoidal curve. It is pertinent to point out that this 
behaviour have been observed  in superconductivity 
fluctuation measurement of high-TC cuprate wherein it was 
observed for the hole doped LSCO, the universality class 
was found to change twice as a function of doping, starting 
from the 2D-XY, changing to the 3D XY and another 2D 
“unknown” behaviour [22]. Therefore we assume here that at 
around the optimal doping the pseudogap phase has transit 
into a different phase (likely the strange metal region) from 
the superconducting phase but may be related to the normal 
state as both have damp-like waveforms. Thus the 
pseudogap all along has been a competing phase with the 
superconducting phase and not its precursor [15, 16, 20, 22, 
44]. It follows then that if we are to critically study the phase 
diagram of the high TC superconducting cuprates using the 
visualized phase diagram as our guide, then we have to first 
confirm the existence of the three quantum critical  points 
and these are the QPT from the Mott insulator and AFM 
phase to the pseudogap at slight doping, the QPT from the 
pseudogap to the superconducting phase at minimum doping 
and the hidden QPT of the pseudogap probably into the 
strange metal region around optimal doping.  

The fair representation of the often considered complex 
phase diagram of the superconducting cuprates by a simple 
nonlinear dynamic equation has also provided a guide to the 
possible Hamiltonian as well as the possible theory for this 
class of superconducting materials. The formulation should 
be such that the quantum fluctuations to kick start the 
pseudogap region at slight doping will competes with the one 
responsible for the superconductivity at minimum doping 
until it will be quenched around the optimal doping. The 
emerging state from the collapsed pseudogap state is 
nonadiabatically related to the normal state as well as the 
non-Fermi liquid state.  
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