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Abstract  This is a multi-disciplinary paper. It borrows ideas from mathemat ics, engineering software, and digital 
communicat ion engineering. Uncertainty principle is at the foundation of quantum mechanics. (A) It is well known that this 
principle is a consequence of Fourier transform (FT). The FT is based on infinity assumption. As infinity is not realistic and 
mean ingful in nature, and in engineering, we show that replacing in fin ity by any finite value changes the lower bound of the 
uncertainty principle to any desired accuracy number. (B) The paper points out, that uncertainty principle vio lates a very 
fundamental and well known concept in mathematics: the infinite d imensionality property of functions over finite  intervals. 
(C) It is important to realize that no engineering experiment can prove any theory. Engineering is created out of objects of 
nature. Nature does not and cannot make any assumptions. Thus all engineering experimental setups will automatically 
eliminate all assumptions from all theories. To establish this obvious and logical fact, we discuss many laws of nature, which 
modern microprocessor based engineering systems implement. Therefore it  is not possible to prove uncertainty principle by 
any physical experiment, because the principle has many assumptions. (D) We exp lore several published proofs of 
uncertainty principle, including Heisenberg’s and Operator theoretic, and analyze the assumptions behind them to show that 
this theory cannot be a law of nature. The paper ignores the relativistic effects. 
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1. Introduction 
Mathematics has lots of implicit and exp licit assumptions. 

The major idea that we want to establish is that nature does 
not and cannot make any assumptions; therefore 
mathematics cannot be used to describe nature. Contrary to 
the common understanding that these assumptions are for 
approximations; in reality their removal can dramat ically 
change the outcomes. One example is the infinity 
assumption in FT. You make it finite then there will be no 
uncertainty, as we show. During the last 50 years 
engineering technology has significantly advanced due to the 
advent of microprocessors. On the other hand our 
mathematics, did not keep pace with it, and is still using 100 
and even 200 years old concepts. The ideas and philosophies 
of simpler requirements of those days are deeply embedded 
in this mathematics. A 100 year o ld theory cannot be used in 
modern technology. We show that the idea – whatever 
happens in mathematics will happen in nature – does not 
have any experimental foundation. 

We describe some laws of nature that are quite obvious but 
we have never formally included them in our physics and 
mathemat ics textbooks. However, these lawsareimplement
ed in all embedded engineering systems, which are built 
around microprocessors , elect ron ic d ig ital and  analog  
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hardware, embedded software, and multitasking real time 
operating systems (RTOS). These laws are necessary in 
thistechnology to satisfy modern complex engineering 
requirements. These embedded systems are part of nature, 
because they are built using objects of nature, and they also 
interact with nature using analog to digital and digital to 
analog converters. In this paper, we use these embedded 
systems as representatives of nature, to explain  nature, and to 
test our theories. We show that they are immensely complex, 
and yet are of significantly lower level of sophistication 
compared to real nature.  

It is well known that these embedded systems are full of 
patches and kludges, and therefore are very  unreliable, 
unpredictable, and crashes quite often. These engineering 
products are made to work by using multip le redundancies, 
including automatic hardware-software resets by watch dog 
timers. More details of this specific engineering problem 
have been presented in Das1. All these failures happen 
because it uses math and science theories that were 
developed 100 years before. Yet these embedded systems do 
not contradict nature, but truly represent nature, do not make 
any assumptions, and can be used for testing our theories. 
Once we understand these laws of nature, we will realize that 
mathematics cannot be used to describe nature. Use of 
mathematics to describe nature is itself an assumption. 
Although our focus in this paper is uncertainty principle, but 
since we are searching for the root cause of this uncertainty, 
and its testability, we have to feel the complexity of nature 
and then realize the limitations of mathemat ics. We illustrate 
this concept of unsuitability of mathematics, by often using 
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the embedded engineering systems, which are manmade 
copies of nature. 

Thus we observe, very similarly, that no physical 
experiment, which is also an engineering experiment, can 
verify any scientific theory. The reason is quite simple and 
obvious. Since engineering products obey all laws of nature, 
therefore they cannot make any assumptions, because nature 
does not and cannot make any assumptions. On the other 
hand all theories of mathematics and science have 
assumptions. Thus all experiments inherently and 
automatically eliminate all assumptions from a theory, so the 
theory becomes invalid. Without assumptions these theories 
are not meaningfu l. Therefore experiments are not really 
testing any theory. 

To avoid any confusions and misinterpretations, we 
examine many published proofs of uncertainty principle, 
(including the one given by Heisenberg), from many 
different references to convince the reader that the 
uncertainty principle has nothing to do with  physics or nature 
but is a property of Fourier Transform and other mathematics. 
We show its equivalence with concepts like time-bandwidth 
product or dimensionality theorem as used in digital signal 
processing and communication engineering. They are all 
based on the same infinite time property of FT, as described 
in Das2. All these results change when we rep lace the infinity 
by finite values in the definition of FT. The new results 
become more mean ingful and useful also. Besides FT, there 
are other proofs of uncertainty principle, like operator 
theoretic. We investigate them also in this paper, and 
highlight the assumptions behind them, contrasting with 
these laws of nature. 

The paper is organized in the following way. We start with 
some defin itions, for d ifferentiating and comparing: math, 
science, engineering, and nature; and also for testing 
concepts. Then we briefly describe some laws of nature that 
embedded engineering is forced to implement, to make 
engineering work with nature. The first proof of uncertainty 
principle that we provide is taken from Heisenberg’s book. 
Then we take another proof from a newer textbook on 
quantum mechanics. These two proofs and their similarities 
will convince the reader that the uncertainty principle is 
based on FT theory and has nothing to do with nature. We 
also examine the proof based on operator theory and the 
hidden assumptions behind it. Uncertainty principle is also 
widely used in engineering and we exp lore their proofs and 
show that they are all based on FT. Finally we show that by 
eliminating infinity assumption from FT we can remove the 
uncertainty. 

2. Definitions 
We want to convince the reader that engineering really  

knows the nature better than any branch of human research 
activities. This is so because, all engineering activ ities make 
products out of objects taken from nature. Therefore a 
product cannot be made that violates any laws of nature. 

Thus engineering cannot make any assumptions about nature. 
We give some basic defin itions to clear the perspective. 

Nature has only two  kinds of things; some objects (liv ing 
and non-living) and some act ions. Actions are like forces of 
nature and have some energy associated with them. In some 
sense actions are characteristics of objects also. For example 
light energy is a characteristic of sun; similarly wind fo rce is 
a characteristic of earth. 

2.1. Defini tion of Laws of Nature 

The laws of nature are the universal characteristics of the 
objects of nature. They exist independent of human 
experiences and assumptions. 

Everything that we see around us is engineering. The cars, 
airplanes, roads, buildings are all products of engineering. A 
product is a physical hardware that we can see and touch.  

2.2. Defini tion of Engineering  

It is a process that is required to create an useful product. 
Thus engineering is not the textbooks on engineering 

subjects, like mechanical, electrical, etc. A ll products use 
objects of nature, and therefore all products also obey laws of 
nature. Thus we can define science in the following way. 

2.3. Defini tion of Science 

It is a  collection of manmade theories that tries to exp lain  
the laws of nature. 

2.4. Defini tion of Mathematics 

It is a symbolic language, used to describe expressions of 
natural language. Its main purpose is to justify the scientific 
theories.  

Consider an example to clarify the distinction between 
science and engineering. If we p lace a magnetic needle under 
a wire, and pass current through the wire, then the magnet 
will be deflected. We call this an engineering experiment. It 
is a product that we can see, touch, and learn about it; and it 
does something useful also. The process used to demonstrate 
this needle movement is engineering. The science part says 
that the magnet has a field called magnetic field, the 
electricity creates a field called electric field (or may be a 
magnetic field); these two fields interact and create a force 
that deflects the magnet. Thus when Newton is making a lens 
he is doing engineering, when he is proposing corpuscular 
theory of light he is a scientist, and when he is writing f=ma 
he is a mathemat ician.  

2.5. Defini tion of Theory 

A Theory is (a) a collect ion of assumptions and (b) a 
collection of conclusions that only hold under the 
assumptions. 

It appears that all theories have assumptions. Somehow 
mankind forgot to realize that assumptions are not acceptable 
to nature, until we encountered modern software based 
engineering technology, which failed to incorporate such 
theories. The truth is: nature does not and cannot make any 
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assumptions. 

2.6. Example of a Theory 

Newton’s First law: (a) In the absence of any interaction 
with something else (b) An object at rest will remain at rest 
(c) An object in motion will continue in motion at constant 
velocity, that is, in constant speed in a straight line 

The item (a) in the above law is the assumption. The items 
(b) and (c) are the conclusions. The last two  items will be 
valid only when the first item (a) is valid. A theory has two 
parts, if any one of the two parts fails then that theory will be 
invalid  and we will say that the theory does not work in 
engineering or simply does not work. 

2.7. Defini tion of Invalidity 

A Theory is invalid  if (a) Its assumptions cannot be tested 
or implemented or (b) Its conclusions cannot be verified by 
any experiment  

Incidentally, we all know that Newton’s first law cannot 
work in nature, because of the assumption it makes. Here is a 
physics textbook by Ferraro3, which  says on page 8 - “We 
could hardly sustain that this principle [First law] is a strict 
experimental result. On the one hand it is not evident how to 
recognize whether a body is free of forces or not. Even if a 
unique body in the universe were thought, it is undoubted 
that its movement could not be rectilinear and uniform in 
every reference system”. Many such examples on 
assumptions can be found in Das1. 

2.8. Testing a Theory 

In many cases we see that experimental results seem to 
suggest that the theory is correct. But that is not a verification 
of a theory. All experiments are engineering experiments. 
Engineering is part of nature and therefore obeys the laws of 
nature. Since nature does not and cannot make any 
assumption, all experiments automatically eliminate all 
assumptions of all theories. Therefore experiments do not 
and cannot prove theories. 

To test a theory, which claims to be a law of nature, we 
must first establish the environment, to  verify the 
assumptions in nature, and not in an artificial environment. 
Then we must test the results or conclusions under those 
assumptions. As an example, Newton's First law can never 
be tested, because it has an assumption - "In the absence of 
any interaction with something else". This assumption is 
never valid in nature. Grav itational fo rce is always there in 
space and near earth. So, accord ing to our definition of 
invalid ity, this First law is false. Note that this law is not an 
approximate theory either. An object left  stationary in space 
will not remain stationary, and will soon start moving and 
reach very high speed on a curved trajectory. We give 
another test example later for the operator theoretic 
approach. 

Same is true for uncertainty princip le which, as we show, 
uses Fourier Transform (FT). The FT uses infinite time 
assumption. Since we can never perform an experiment for 

infinite time, we can never verify uncertainty principle. If we 
replace infin ite time by finite time, we will not get an 
approximate result, as we show there will be no uncertainty, 
a dramatic change. Thus in reality, we have never tested the 
uncertainty principle. 

All we want is to make the readers understand, that 
assumptions are invalid in engineering, and therefore in 
nature also; and thus assumptions cannot be used to describe 
a law of nature. We claim that all mathematics and therefore 
sciences have assumptions. Therefore no theory can be 
tested using any experiment, because all experiments will 
eliminate all assumptions, thus making the theories not 
testable and therefore invalid. 

3. The Laws of Nature 
In this section our objective is to show that mathematics 

cannot be used to describe nature. Therefore what happens in 
mathematics will not and cannot happen in nature. We have 
three main points to convince the reader about this objective. 
(A) Mathematics uses lots of assumptions, but nature does 
not. Thus inherently mathematics violates the laws of nature. 
(B) Mathematics is a symbolic language, and is not capable 
of presenting our ideas, thoughts, and intelligence. We 
cannot even express our feelings successfully using our oral 
language, then how can we express ourselves using a 
symbolic language like mathematics. (C) Nature is 
immensely complex. We do not have even enough 
intelligence to understand it. Nature has created humans, it is 
therefore impossible for us to comprehend nature. It is 
similar to the case that our computers will never be able to 
understand us. Thus what we do not understand, the nature in 
this case, cannot be described by mathematics. 

In this section we present the following new laws of nature: 
(a) boundedness law (b) fin ite time law (c) simultaneity law 
and (d) the complexity law. We describe them in some 
details in the subsections below. More can be found in Das1. 
We discuss these laws mostly using engineering examples 
and context. A little imagination will reveal that they are 
more complex in real nature. We will make more comments 
later – about the use of mathematics for nature - which will 
require an understanding of the complexity  of nature. If 
manmade engineering, which is part of nature, can be so 
complex then you can imagine how complex the real nature 
can be. 

This section addresses three important issues. (A) We 
show that these are laws of nature, and they are implemented 
in all modern engineering systems. (B) Mathematics violates 
all o f these laws. Therefore mathematics cannot describe 
nature. (C) All engineering  experiments to test mathematics 
and science will fail. These laws will not allow the 
assumptions in engineering. Since these are laws of nature, 
the nature will similarly remove all assumptions, and thus 
invalidate the theories, since the theories work only under 
their assumptions. 

3.1. Boundedness Law 
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This law shows that every engineering system is 
non-linear by design. It will be clear that nature also obeys 
this law. Most of the mathematical theories that we use in 
quantum mechanics (QM) like Fourier Transform, Lap lace 
Transform, Linear ordinary and partial differential equations 
like Schrodinger’s equation, linear operator theory, Hilbert 
space, inner products, all vio late this law of nature and 
therefore cannot be used to describe nature. Their use in 
uncertainty principle to characterize nature cannot be correct. 
These theories require linearity assumptions. Moreover this 
law prevents infinity assumptions also. In this sense linearity 
automatically assumes infin ity. 

Let x denote any physical variable, like voltage, current, 
water pressure, position, velocity etc. In engineering and in 
nature also, x always has a lowest and a highest possible 
value. Or in other words they cannot take any arbitrary value 
from -∞ to +∞. We call this feature of a variable as the 
boundedness law of nature. In engineering they are also 
known as nonlinearity or saturation or limiter law. Using 
mathematical notations we can express this law in the 
following way: 

L ≤  x ≤  U                (1) 
Here L can be positive, zero, or any negative number but 

cannot be minus infinity. Similarly  U can  be negative, zero, 
or any positive number, but cannot be positive infin ity. 
However U must be greater than L.  

Figure 1 describes graphically the logic to implement (1). 
The horizontal axis is the input axis for the variable x. Along 
the horizontal axis, x can take any value from minus infinity 
to plus infinity. We show the boundedness of x in the vertical 
or output axis of the graph. The graph shows that when x is 
between a and b, whatever way x changes, similar changes 
happen in the output axis. However, when x goes beyond b 
you can see that on the output axis it stays fixed at U. That is 
the output is limited to U. The same is true in the lower 
direction of x, and is limited by L. The box in Figure 1 
represents a non-linear system.  

 
Figure 1.  Saturation Non-Linearity 

Wherever there is an engineering variable in a system, an 
embedded engineer adds this box at that location of the 
system, to protect the components there, otherwise the 
system will fail or burnout. This box is implemented in 
analog hardware circuits in the form of automatic gain 
control. It is also implemented in both digital hardware and 
embedded microprocessor based software. All hands-on 
experienced engineers will automatically place these boxes 

in their design. This is a very common embeddedengineering 
practice. We should know that local linearization cannot 
work in engineering, see Das1 for details. 

Since the box is a nonlinear box representing the natural 
law, and implemented by design, all engineering systems are 
nonlinear systems. Or in other words there are no linear 
systems in engineering and in nature. It is clear that this is a 
law of nature. No variable or object in nature can violate this 
boundedness law. However mathematics and science have 
largely ignored the boundedness law. Thus this law will 
prevent testing of any mathemat ical theory. 

3.2. Finite Time Law 

Fin ite time is a law of nature. In fact we should recognize 
that infinity is invalid for mass and length dimensions also, 
just for the same reason for time d imension. Time here is 
defined and measured as the period between two events. In 
this sense, this law includes the boundedness law also. The 
FT, Operator theory, Hilbert space, inner products, Schwartz 
inequality, use infinity in their definit ions. Thus their 
applications cannot be valid for nature. Also they cannot be 
tested, because all engineering products use fin ite values. 
Any time we try  testing a theory, the test will eliminate all 
assumptions of the theory, including infinity. Since we 
cannot perform a test for infinite time, we really  have never 
tested the uncertainty principle.  

Although the earth is going round the sun forever, but we 
see the rotation around sun, and the rotation around earth’s 
own axis, are finite duration activities. Everything in nature 
goes through a birth process, maturity process, and death 
process. All these processes are fin ite duration act ivities. Our 
physicists have detected the birth and death of stars. Human 
lives are no exception to this finite duration activities. We 
should recognize that a d istance of a billion light years is also 
a fin ite number.  The mass of a galaxy is also fin ite. The 
time between birth and death of a star is fin ite. Although our 
systems run continuously, like GPS transmitters and 
receivers, traffic light systems at street corners, but if you 
look at  the internals you will always find that the building 
blocks are based on finite duration processes. 

These days most of the complex engineering systems are 
controlled by one or more digital microprocessors and 
software. All activit ies that these systems perform are done 
in small interval of t ime duration, of the order of several 
micro  or milliseconds. And such activities are repeated 
continuously as detailed in Das1. 

Consider the example of a robotic arm, p icking up an item 
from one place and dropping it in another place and repeating 
the process in, say, less than a second of time. Similarly, a 
digital communication receiver system, like GPS, receives 
an electrical signal of microsecond duration, for example, 
representing the data, extracts the data from the signal, sends 
it to the output, and then goes back to repeat the process.  

Our embedded software runs under real t ime mult itasking 
operating systems which are also nothing but finite state 
mach ines. A finite state machine is a collect ion of fin ite 
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number of activ ities of finite durations, repeated 
asynchronously and/or synchronously based on the external 
as well as internal events. Every time a task returns, it finds a 
different environment. The previous tasks have operated on 
the system and created a new environment. Thus the same 
fin ite duration task or act ivity is always performed on 
different signal and under different environment. Thus 
system is changing after every finite interval. The same is 
true for nature. 

Note that for any practical applications a large number can 
be considered as infinity. When we replace infinity by this 
large number, however, the characteristics of the original 
mathematical theory dramat ically change, as we show in this 
paper using the case of Fourier Transform (FT). In case of FT, 
we show that uncertainty goes away. In case of Laplace 
Transform, see Das1 for example, the complex plane 
becomes analytic, when we eliminate infin ity. Thus we can 
claim that infinity is not natural, and therefore should be 
considered as an assumption, behind any theories that we use 
to describe nature and to build engineering products. Again, 
it shows that nature does not and cannot make any 
assumptions. This shows that using infin ity is not an 
approximation or simplification as is commonly assumed by 
students. 

3.3. Simultaneity Law 

The simultaneity law defines the characteristics of all 
objects in nature. Everything in nature occurs simultaneously 
and interactively. We show that this law is implemented in 
the embedded systems also. Since no two  objects can be 
present at same place in same time, the impact of 
simultaneity law is different for different objects, including 
quantum mechanical particles. Thus no two  particles can be 
compared. They have different characteristics. They all come 
from their own simultaneous environments. For the same 
reason, a particle taken out of its simultaneous environment 
is completely  different. When I am outside my home I am a 
different person. The simultaneity law implies there is no 
isolated environment. We show that all algebra, in particular, 
vector space, operator theory, Schwartz inequality, are 
designed for isolated environments only. Newton’s first law 
failed because it v iolated this simultaneity law and assumed 
instead an isolated environment. 

Thus if we want to add two vectors, the addition will be 
mean ingful, only when the vectors belong to same class. But 
if we assign one physical variable to one vector and another 
physical variable to another vector then they cannot be added 
any more. All physical variab les are different and have 
different characteristics. Thus we see that this law has 
immense implications for mathematics. It indicates that 
mathematics cannot even comprehend the objects of nature. 
This law essentially  prevents us from using Schwartz 
inequality to two different quantum mechanical particles. 
Similarly, it prevents cascading two operators, because 
output of one operator cannot be used as input to another 
operator. Operator inputs must have specific characteristics, 
once we use an operator, we have changed the characteristics 

of the output object, and this changed characteristics is 
invalid as input for the second operator. The simultaneous 
environments of inputs and outputs are different. An 
operator takes an object out of its environment, making it a 
different object. It is like same task always operates on 
different environment in a RTOS. 

All humans are interacting constantly, simultaneously, 
and all over the world  and fo r all time. So is true with all 
physical objects in nature. The whole world is financially 
integrated and working simultaneously in an integrated way. 
Our solar system is clearly simultaneously interactive and so 
is our galaxy . Inside an atom all elements are also 
simultaneously interacting. No electron or proton is isolated. 
We are never isolated. In fact nothing can be isolated. In our 
solar system the simultaneous environment of earth and  mars 
are different, same is true for two electrons in an atom. The 
earth taken out of its environment, like out of its orbit, will 
not remain the earth. 

A company on precision weight measurement system, see 
reference Boynton4, uses the moon’s gravity effect, as it 
travels over earth, to precisely measure the weight of a mass 
on earth. Thus simultaneity is global and not just local even 
in engineering. This company’s products show how complex 
and sophisticated our modern engineering requirements are 
today. Before we even realize, everything in  engineering will 
be simultaneously integrated together just like our natural 
world is. But our math and science are not yet ready for it. 
Most of the theories that we use now are more than 100 years 
old. Requirements, concepts, and philosophies of those 
simpler days are deeply embedded in those theories. 

To understand the limitations of mathemat ics we should 
understand operating systems. The real time operating 
system (RTOS) implements this simultaneity law in 
engineering. It is a mult itasking system that interacts with 
interrupts from external and internal sources. Basically 
RTOS is a co llect ion of tasks and is designed to 
simultaneously accept the changes in the environment. Many 
of our embedded systems interact with external computers 
via serial interfaces. In many cases these interfaces bring 
user commands also. These interfaces are constantly 
monitored by several tasks to reconfigure the system 
according to the changes in the environment. Thus 
simultaneity is built into all embedded systems and similarly 
also in nature. Isolated environment or system or object is 
not feasible. The output of any engineering experiment is 
thus a result of many such simultaneous influences. 

An interesting result of simultaneity law is humans as an 
engineering product of nature. A person is described by the 
social and economic conditions of the place where he was 
born and raised. The person is also described by the values 
and culture of his parents. He is similarly defined by all his 
teachers, schools, and colleges where he got his educations. 
He is also the product of many simultaneous interactions of 
all h is friends, colleagues, children etc. Thus every person 
has many different characteristics and therefore no two 
persons can be similar and compared. Similarly the results of 
two different engineering experiments on a system cannot be 
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compared. The results are unique and unequal. Not only the 
operators are different, they were used at two different times. 
The results represent two different characteristics of same 
particle. 

Clearly, RTOS is beyond the scope of mathemat ics and 
science, but it is an integral part  of modern  engineering as 
well as nature. Anytime a task switches from one to another, 
it finds the environment completely  changed. When the task 
was in sleep mode, the simultaneity law worked and changed 
that environment. But our present theories rely on the 
continuity of states from one task to another, but that does 
not hold under RTOS and all other laws discussed here. It is 
clear that most of our mathemat ical and scientific theories do 
not have any means to accommodate all the laws ment ioned 
above. Thus all engineering experiments will remove all 
isolated environment based assumptions.  

Mathematics is designed based on the assumption of 
isolated environment. Nature never obeys that assumption. 
Thus it is completely unreliab le to  trust mathematics and 
think that math can define nature. Mathematics has no 
comprehension of nature at both galaxy and part icle level in 
describing our nature. The real characteristic of the 
simultaneity law is truly mind boggling. 

3.4. Complexi ty Law 

All natural systems are immensely complex and 
indescribable. When all the previous and many other 
unknown laws work together then a global space time 
environment is created, which is beyond our comprehension. 
Therefore our mathematics cannot capture such design in 
their equations with their embedded assumptions. All 
assumptions will simultaneously fail in all experiments 
giving no foundation for any theory. 

To illustrate the complexity, consider the Grand Canyon. 
If we ask the best author of the world  to describe the Grand 
Canyon in written language; you will find that the 
description will be of no match with your experience and 
feeling when you personally see the Grand Canyon. This 
written document is a model of the Grand Canyon. Thus 
nature is beyond description by our language and therefore 
cannot be modelled  by a symbolic language like 
mathematics. The Grand Canyon is a static example of 
complexity. The dynamic complexity of nature is even more 
severe than Grand Canyon. Here is another example to 
convince the readers about the complexity law. Watch the 
3D animat ion of the human brain in operation from the 
discovery channel5 to comprehend the nature. It is a 
simulation; the real thing is lot more complex. 

Nature has evolved over billions of years. As a result 
everything is very complex in  nature. From a very  small 
thing like an atom to a very large system like a galaxy are all 
very complex. We should recognize that not only the objects 
are complex; the laws that govern them are also equally 
complex. Our engineering uses these complex components 
from nature and also implements these complex laws of 
nature to make products that are supposed to satisfy very 
complex requirements. Thus embedded engineering is very 

complex, yet its complexity is insignificant compared to real 
nature.  

Imagine what is inside a microprocessor. It has billions of 
electronic components inside it. The processor has hundreds 
or thousands of 32-b it registers, each bit must be carefully 
programmed to make it work according to desired 
performances and requirements. These registers exchange 
and process information with nature via analog to digital and 
digital to analog converters at nanoseconds andmicroseconds 
speed. The numbers inside the microprocessor also change 
continuously because of variations in nature, like changes in 
temperature, d rift of component parameters etc. The nature 
looks completely different at that level o f speed and 32-b it 
resolutions. Our mathematics, which was developed 100 of 
years back, cannot even comprehend such complexities of 
our technology. How can it then characterize nature? 

Even today many embedded software do not use floating 
point processors. The integer processors require scaling of 
variables. Scaling is a nonlinear process to keep variables 
within bounds, essentially implement ing the boundedness 
law. Even  this static scaling process can never work, in  real 
time and under the circumstances governed by the laws 
mentioned. Texas Instrument, which  manufactured such a 
processor finally decided to make a floating point version to 
better accommodate boundedness law in engineering. 
Matlab simulation software created dynamic scaling every 
time it scaled a variable in its simulation to give correct 
results. This approach, although correct, is clearly not 
feasible in real time engineering.  

All the previous three laws, boundedness, finite t ime, and 
simultaneity, are all working together in nature and therefore 
also in embedded engineering. This togetherness adds 
another dimension to the complexity of nature. We call this 
complex nature as the global space time (GST) environment 
and it is tightly integrated with all embedded systems and 
pervades in nature. If we try to comprehend GST then we 
will realize mathematics cannot and should not be used in 
describing quantum mechanical particles. 

4. Proofs of Uncertainty Principle 
We give many proofs of uncertainty principle. First we 

start with Heisenberg’s own proof from h is book. This proof 
will clearly show that it is based on Fourier Transform (FT). 
We copy the entire proof, almost exactly, to avoid any 
misinterpretations. We show later that proofs in  modern 
books are simpler. However that modern proof is also based 
on FT theory. In a third subsection we discuss the operator 
theoretic proof of uncertainty principle. In all cases we point 
out that these derivations violate the laws of nature described 
in previous section. These violations indicate that these 
theories can never be tested by any engineering experiment. 
We will also see, during their derivations, that they are not 
based on any experimental evidences.  

4.1. Heisenberg’s Method 
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Heisenberg’s 1927 paper6 gives a proof of uncertainty 
principle, we discuss that later. However, his book7 of 1930 
gives more details about the proof. In this proof he made two 
important assumptions: (A) he assumes that momentum and 
position are related by FT pair, and (B) he ignores the infinity 
assumption of FT theory. 

The following proof is taken from the book: Heisenberg7 
pages 15-19. In  all integrals, Heisenberg assumes, the lower 
limit  is -∞ and the upper limit is +∞. Th is is an  important 
assumption, which goes against the finite space time law and 
the boundedness law. Therefore according to our defin ition 
of invalidity, this theory cannot be tested. The average value 
of the position q of an electron can be given by the 
probability amplitude S(q’) as: 

𝑞𝑞� = � 𝑞𝑞′ |𝑆𝑆(𝑞𝑞′ )|2 𝑑𝑑𝑑𝑑′ 

Then ∆𝑞𝑞  is defined by 
(∆𝑞𝑞)2 = 2 ∫(𝑞𝑞′ − 𝑞𝑞�)2|𝑆𝑆(𝑞𝑞′ )|2 𝑑𝑑𝑑𝑑′         (2) 

This can be called the uncertainty in the knowledge of the 
electron’s position. In the same way the momentum p and its 
uncertainty may be defined as 

𝑝̅𝑝 = � 𝑝𝑝′ |𝑇𝑇(𝑝𝑝′ )|2 𝑑𝑑𝑑𝑑′ 
(∆𝑝𝑝)2 = 2 ∫(𝑝𝑝′ − 𝑝̅𝑝)2|𝑇𝑇(𝑝𝑝′ )|2 𝑑𝑑𝑑𝑑′        (3) 

Here T(p’) is the probability  amplitude of the electron’s 
momentum. After these definitions, Heisenberg makes his 
very crucial assumption. He claims that the two probability 
amplitudes are related by the equations 

𝑇𝑇(𝑝𝑝′ ) = ∫ 𝑆𝑆(𝑞𝑞′ )𝑅𝑅(𝑞𝑞′𝑝𝑝′ )𝑑𝑑𝑑𝑑′           (4) 
𝑆𝑆(𝑞𝑞′) = ∫ 𝑇𝑇(𝑝𝑝′)𝑅𝑅∗(𝑞𝑞′𝑝𝑝′ )𝑑𝑑𝑑𝑑′           (5) 

Observe that (4-5) are equivalent to an abstract Fourier 
Transform pair. He reveals the details within next  few steps 
given below. This is a very unrealistic assumption on nature. 
There is no reason to believe, that nature will know our 
mathematics, and then obey the relation (4) and (5), 
connecting position and momentum. 

He defines R(q’p’) as the matrix o f the transformation 
from a Hilbert space, in which q  is a d iagonal matrix, to one 
in which p  is d iagonal. The matrix R(q’p’) satisfies the 
following equation 

∫ 𝑝𝑝(𝑞𝑞′𝑞𝑞")R(q"𝑝𝑝′ )𝑑𝑑𝑑𝑑" = ∫𝑅𝑅(𝑞𝑞′𝑝𝑝")p(p"𝑝𝑝′ )𝑑𝑑𝑑𝑑"    (6) 
which is equivalent to the differential equation 

ℎ
2𝜋𝜋𝜋𝜋

𝜕𝜕
𝜕𝜕𝑞𝑞′

𝑅𝑅(𝑞𝑞′𝑝𝑝′ ) = 𝑝𝑝′𝑅𝑅(𝑞𝑞′𝑝𝑝′ )          (7) 

Whose solution is given by 

𝑅𝑅 = 𝑐𝑐𝑒𝑒
2𝜋𝜋𝜋𝜋
ℎ 𝑝𝑝′𝑞𝑞′                (8) 

The details of (6-7) are given in the Appendix of the same 
book7 which uses 𝛿𝛿  functions and Schrodinger’s equation. 
Observe that (6-8) are equivalent statements, i.e., one can be 
derived from the other. Thus the form of R in (8) could have 
been assumed direct ly. In the next proof we show, that is 
what has been done. 

Normalizing gives c the value 1/√ℎ . He claims, quite 
naturally that, the values of Δp and Δq are thus not 
independent. This is also obvious from his assumption of 
relating  p and q v ia (4-5). To  simplify fu rther calculations, he 
introduces the following abbreviations: 

𝑥𝑥 = 𝑞𝑞′ − 𝑞𝑞� ,      𝑦𝑦 = 𝑝𝑝′ − 𝑝̅𝑝 

𝑠𝑠(𝑥𝑥) = 𝑆𝑆(𝑞𝑞′ )𝑒𝑒
2𝜋𝜋𝜋𝜋
ℎ 𝑝𝑝 ̅𝑞𝑞′  

𝑡𝑡(𝑦𝑦) = 𝑇𝑇(𝑝𝑝′)𝑒𝑒−
2𝜋𝜋𝜋𝜋
ℎ 𝑞𝑞�(𝑝𝑝 ′ −𝑝𝑝 ̅) 

Then equations (2) and (3) become 
(∆𝑞𝑞)2 = 2 ∫ 𝑥𝑥2 |𝑠𝑠(𝑥𝑥)|2 𝑑𝑑𝑑𝑑           (9) 
(∆𝑝𝑝)2 = 2 ∫ 𝑦𝑦2 |𝑡𝑡(𝑦𝑦)|2 𝑑𝑑𝑑𝑑          (10) 

while equations (4-5) become 
𝑡𝑡(𝑦𝑦) = 1

√ℎ
∫ 𝑠𝑠(𝑥𝑥)𝑒𝑒

2𝜋𝜋𝜋𝜋
ℎ 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑          (11) 

𝑠𝑠(𝑥𝑥) = 1
√ℎ
∫ 𝑡𝑡(𝑦𝑦)𝑒𝑒−

2𝜋𝜋𝜋𝜋
ℎ 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑         (12) 

The expressions (11) and (12) can be verified by direct 
substitution of definit ions of x, y, t(y), s(x), and R in (4) and 
(5). Observe that (11-12) could have been directly assumed 
instead of (4-5), since they all are merely assumptions. There 
was no need to introduce the intermediate steps related to 
(4-8). In fact  in the next  proof of uncertainty principle given 
in next subsection we will see that we can jump from (3) 
directly to (11).  

Now we can clearly see that (11) and (12) are classical 
infinite Fourier Transform pair, (10) represents the variations 
in time and (9) represents variations in spectrum. Thus the 
uncertainty principle is nothing but the product of time and 
bandwidth. We will talk more about the time bandwidth 
product later in another section. 

Combin ing (9-11), the expression for (∆𝑝𝑝)2  may be 
transformed, giv ing 

1
2

(∆𝑝𝑝)2 =
1

√ℎ
� 𝑦𝑦2𝑡𝑡∗ (𝑦𝑦) 𝑑𝑑𝑑𝑑 � 𝑠𝑠(𝑥𝑥) 𝑒𝑒

2𝜋𝜋𝜋𝜋
ℎ 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑  

        =
1

√ℎ
� 𝑡𝑡∗(𝑦𝑦)  𝑑𝑑𝑑𝑑 � 𝑠𝑠(𝑥𝑥) �

ℎ
2𝜋𝜋𝜋𝜋

𝑑𝑑
𝑑𝑑𝑑𝑑
�

2

 𝑒𝑒
2𝜋𝜋𝜋𝜋
ℎ 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 

        =
1

√ℎ
 �

ℎ
2𝜋𝜋𝜋𝜋

�
2

 � 𝑡𝑡∗ (𝑦𝑦) 𝑑𝑑𝑑𝑑  �
𝑑𝑑2𝑠𝑠
𝑑𝑑𝑥𝑥2  𝑒𝑒

2𝜋𝜋𝜋𝜋
ℎ 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 

        = �
ℎ

2𝜋𝜋𝜋𝜋
�

2

� 𝑠𝑠∗(𝑥𝑥) 
𝑑𝑑2𝑠𝑠
𝑑𝑑𝑥𝑥2  𝑑𝑑𝑑𝑑 

Thus he writes, by using integration by parts, and noting 
that S(q’) is related to probability density function vanishing 
at two ends: 

1
2

(∆𝑝𝑝)2 = ℎ2

4𝜋𝜋2 ∫ �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2
𝑑𝑑𝑑𝑑           (13) 

Now the fo llowing expression 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2

≥
1

(∆𝑞𝑞)2
|𝑠𝑠(𝑥𝑥)|2 −

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑥𝑥

(∆𝑞𝑞)2
|𝑠𝑠(𝑥𝑥)|2� 

          −
𝑥𝑥2

(∆𝑞𝑞)4  |𝑠𝑠(𝑥𝑥)|2  

can be proved by rearranging 
� 𝑥𝑥

(∆𝑞𝑞)2  𝑠𝑠(𝑥𝑥) + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2
≥ 0           (14) 

Hence it follows from equations (9) and (13) that 
1
2

(∆𝑝𝑝) 2  ≥  
1
2

 
ℎ2

4𝜋𝜋2 
1

(∆𝑞𝑞)2  

Or 
∆𝑝𝑝 ∆𝑞𝑞 ≥ ℎ

2𝜋𝜋
                 (15) 

which was to be proved. The equality can  be true in  (15) only 
when the left side of (14) vanishes, i.e., when 
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𝑠𝑠(𝑥𝑥) = 𝑐𝑐 𝑒𝑒
−

𝑥𝑥2

2(∆𝑞𝑞) 2 
or 

𝑆𝑆(𝑞𝑞′ ) = 𝑐𝑐 𝑒𝑒
−
�𝑞𝑞′ −𝑞𝑞��2

2(∆𝑞𝑞) 2 −
2𝜋𝜋𝜋𝜋
ℎ 𝑝𝑝 ̅𝑞𝑞′

 
where c is an arbitrary constant. Thus Gaussian probability 
distribution causes the product ∆𝑝𝑝 ∆𝑞𝑞  to assume its 
minimum value. 

In summary, Heisenberg assumed that momentum and 
wave functions are related by the Fourier transform pair (11) 
and (12). Then he defined the variances of the time and 
spectrum functions using (9) and (10). Then a simple 
algebraic manipu lation proved the uncertainty relation (15). 
From (15) we see that uncertainty is the product of time and 
spectrum variances (bandwidth) of FT pair. It is clear from 
the above proof that there is no physical or experimental 
support behind the result (15), the uncertainty principle. It  is 
a consequence of Fourier Transform which has its own 
assumptions as we will examine later. In particu lar, we will 
show that by removing infinity assumption we can remove 
the uncertainty. 

4.2. Ohanian’s Method 

A relatively modern textbook by Ohanian8 gives the proof 
of uncertainty principle in the following way. This proof also 
makes the same two assumptions that Heisenberg did. 
Ohanian begins his chapter two, on page 21, with the 
following physical relat ions obtained from experiments and 
calculations 

𝜐𝜐 =
𝐸𝐸
ℎ

 , 𝜆𝜆 =
ℎ
𝑝𝑝

 , 𝑘𝑘 =
2𝜋𝜋
𝜆𝜆

=
𝑝𝑝
ℎ

 , 𝑤𝑤 = 2𝜋𝜋𝜋𝜋,   ℎ� ≜
ℎ

2𝜋𝜋
 

Then on page 22, Ohanian8 starts with four conceivable 
harmonic waves 
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 −𝑖𝑖𝑖𝑖𝑖𝑖  , 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 +𝑖𝑖𝑖𝑖𝑖𝑖 , sin(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤), 𝑎𝑎𝑎𝑎𝑎𝑎  cos(𝑘𝑘𝑘𝑘 − 𝑤𝑤𝑤𝑤) 
Using some selection criteria he finally decides that 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 −𝑖𝑖𝑖𝑖𝑖𝑖  from the list as the correct wave function 
describing a free particle. Then he finds the equation that this 
function must satisfy. He writes, it is easy to check that the 
second derivative of 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 −𝑖𝑖𝑖𝑖𝑖𝑖  with respect to x and the first 
derivative with respect to time t  are p roportional, that is, we 
can write 

−
ℎ�2

2𝑚𝑚
𝜕𝜕2

𝜕𝜕𝑥𝑥2  𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 −𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖ℎ�  
𝜕𝜕
𝜕𝜕𝜕𝜕

 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 −𝑖𝑖𝑖𝑖𝑖𝑖  

The above equation is a linear equation and therefore will 
be compatible with the superposition principle. Therefore 
any function 𝜓𝜓(𝑥𝑥, 𝑡𝑡) that can be written as a superposition 
of a finite or infinite number of waves of the type 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 −𝑖𝑖𝑖𝑖𝑖𝑖  
will satisfy the differential equation 

− ℎ�2

2𝑚𝑚
𝜕𝜕2

𝜕𝜕𝑥𝑥2  𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝑖𝑖ℎ�  𝜕𝜕
𝜕𝜕𝜕𝜕

 𝜓𝜓(𝑥𝑥, 𝑡𝑡)       (16) 
The above (16) is the Schrodinger’s wave equation for the 

free part icle. Then on page 32 Ohanian introduces the FT 
𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 1

√2𝜋𝜋
∫ 𝜙𝜙
∞
−∞ (𝑘𝑘, 𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑       (17) 

The function 𝜙𝜙(𝑘𝑘, 𝑡𝑡)  is called the amplitude in 
momentum space. This is where Ohanian makes the same 
assumption as Heisenberg did. He assumes position and 
momentum are related by inverse FT. There is no reason to 

believe that nature will obey this relation. This assumption is 
also not based on any experimental observations. On the 
other hand it is quite natural that a part icle can have any 
momentum at any position. Also note that it introduces the 
infinity assumption in (17). Then he finds 𝜙𝜙(𝑘𝑘, 𝑡𝑡)  by 
substituting (17) in (16) g iving  

−
ℎ�2

2𝑚𝑚
�

1

√2𝜋𝜋
� −𝑘𝑘2𝜙𝜙
∞

−∞
(𝑘𝑘, 𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑�

= 𝑖𝑖ℎ� �
1

√2𝜋𝜋
�  

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜙𝜙

∞

−∞
(𝑘𝑘, 𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑�  

Now comparing both sides the coefficients of 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  we 
obtain the following differential equation  

ℎ�2𝑘𝑘2

2𝑚𝑚
𝜙𝜙(𝑘𝑘, 𝑡𝑡) = 𝑖𝑖ℎ�   

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜙𝜙(𝑘𝑘, 𝑡𝑡) 

Which has the solution given by (18); this way Ohanian 
gets a general expression (18) of momentum in the time 
dimension. 

𝜙𝜙(𝑘𝑘 , 𝑡𝑡) = 𝜙𝜙(𝑘𝑘, 0)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖/ℎ�          (18) 
where 

𝐸𝐸 =
ℎ�2𝑘𝑘2

2𝑚𝑚
 

Thus the general solution of the Schrodinger’s wave 
equation for a free particle can be written from (17) as 

𝜓𝜓(𝑥𝑥, 𝑡𝑡) =
1

√2𝜋𝜋
� 𝜙𝜙
∞

−∞
(𝑘𝑘, 0)𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−ℎ

�𝑘𝑘2

2𝑚𝑚 𝑡𝑡 )𝑑𝑑𝑑𝑑 

The above solution can be written in terms of the 
momentum 𝑝𝑝 = ℎ�𝑘𝑘 as in (19) 

𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 1
�2𝜋𝜋 ℎ�

∫ 𝜙𝜙
∞
−∞ (𝑝𝑝,0)𝑒𝑒𝑖𝑖(𝑝𝑝ℎ� 𝑥𝑥−

𝑝𝑝2

2𝑚𝑚ℎ�𝑡𝑡 )𝑑𝑑𝑑𝑑   (19) 

Thus the last equation makes a direct connection of 
momentum and position v ia Fourier Transform. Therefore, 
as mentioned by Heisenberg, the two properties of the 
particle cannot be independent now. This will naturally 
dictate the uncertainty princip le. If we assume something in 
some place then naturally consequence can be observed at 
another place. 

Now on page 39 Ohanian8 introduces the Gaussian wave 
packet as momentum amplitude in the p dimension. 

𝜙𝜙(𝑝𝑝 ,0) = 1
�𝑏𝑏√2𝜋𝜋

𝑒𝑒−(𝑝𝑝−𝑝𝑝0)2/4𝑏𝑏2
       (20) 

The advantage of choosing momentum as Gaussian 
function is that its inverse FT is also Gaussian. This helps to 
find the variances easily. Heisenberg had to compute the 
variances in a complicated way, Ohnaian skipped that 
complicated derivation. Ohanian  then says, for a precise 
definit ion of the uncertainty of any quantity with a 
probability distribution, we will hereafter adopt the 
root-mean square (rms) deviation from the mean. Thus 

(Δp) 2 = 〈(𝑝𝑝 − 𝑝𝑝0 )2〉 = � (𝑝𝑝 − 𝑝𝑝0 )2
∞

−∞
|𝜙𝜙(𝑝𝑝, 0)|2  

Calculation of the integral using (20) gives the result 
Δp = �〈(𝑝𝑝 −𝑝𝑝0 )2〉 = b 

Substituting the Gaussian momentum amplitude (20) into 
equation (19) we find the wave function 

𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 
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1
�2𝜋𝜋 ℎ�

∫ 1

�∆𝑝𝑝√2𝜋𝜋

∞
−∞  𝑒𝑒−(𝑝𝑝−𝑝𝑝0)2/4 (Δp )2

𝑒𝑒𝑖𝑖(
𝑝𝑝
ℎ� 𝑥𝑥−

𝑝𝑝2

2𝑚𝑚ℎ�𝑡𝑡 )𝑑𝑑𝑑𝑑    (21) 

From above we can derive the result 
|𝜓𝜓(𝑥𝑥,𝑡𝑡) |2

=
1
√𝜋𝜋

�
ℎ�2

2(Δp)2 +
2(tΔp) 2

𝑚𝑚2 �
−1/2

𝑒𝑒𝑒𝑒𝑒𝑒

⎣
⎢
⎢
⎡
−

(𝑥𝑥 −𝑝𝑝0 𝑡𝑡/𝑚𝑚)2

ℎ�2

2(Δp) 2 + 2(tΔp) 2

𝑚𝑚2 ⎦
⎥
⎥
⎤
 

From the last expression we see that the mean is 𝑝𝑝0 𝑡𝑡/𝑚𝑚 and 
we can then find that the uncertainty in x is as given by  

Δx = �〈(𝑥𝑥 − 𝑝𝑝0 𝑡𝑡/𝑚𝑚)2〉 = �� ℎ�

2  ∆𝑝𝑝
�

2
+ �𝑡𝑡 ∆𝑝𝑝

𝑚𝑚
�

2
�

1/2

   (22) 

From this (22) we see that at t=0 the uncertainty relat ion: 

Δx Δp =
h�

2
 

From (22) we see that for all other time for a g iven Δp the 
value for Δx increases because of t in (22), which then gives 

Δx Δp ≥
h�

2
 

We can see from this proof that the uncertainty principle 
can be proven without going through the higher level 
analysis that Heisenberg has given. Note that Heisenberg 
also uses the Schrodinger equation. It is clear from 
Ohanian’s proof also that there is no physics involved. It is 
all mathematical manipulation of FT theory. 

Summarizing, Ohanian8 assumes that momentum and 
wave function are related by the infinite inverse FT in (17). 
He then gets a general expression (18) for the time dimension 
of momentum by using Schrodinger’s equation. Then he 
assumes a Gaussian function (20) for the momentum 
dimension. Finally the uncertainty result is obtained as the 
product of the variances from (20) and (21).  

Thus we see that Ohanian’s proof is almost same as the 
Heisenberg’s proof, so far as assumptions are concerned. 
There is no physics involved here; it essentially tries to say 
that whatever happens in mathematics, will happen in nature 
also. The proof forgets that nature cannot make the two 
assumptions used in the derivations (a) infin ity in FT and (b) 
the relation  (17) that says momentum and position are related 
by the FT. It cannot be said that this uncertainty relation is 
derived from any experimental observation. 

On the contrary, all experimental efforts to verify the 
principle will inevitably fail, because we cannot setup the 
assumptions used in the derivation. In particular, we cannot 
test it for infin ite time as required  by the theory of Fourier 
Transform. The theory is valid only under infinite time 
assumption. As we show later, if we replace the in fin ity by 
any finite value then there will be no uncertainty. Thus finite 
time approximat ion cannot be used to test the principle. 
Fin ite time will not be an approximat ion, it will be a dramat ic 
change as we have mentioned. 

4.3. Operator Theoretic Proof 

This proof is based on the operator theoretic approach and 
follows closely the book9. It shows that the uncertainty 
principle is a property of Hermit ian operators on Hilbert 

space. In our analysis we may consider measurable functions 
along with Lebesgue integrations.  

However, we point out that in engineering we never see 
even piecewise continuous functions with discrete jumps. 
Thus non-continuous measurable functions are non-existent 
in nature. If we put an oscilloscope probe on any pin of a 
digital microprocessor you will always see a continuous 
function. Thus piecewise continuous functions are 
nonexistent even in digital systems. Moreover we are not 
thinking about infinity, thus real life , in mathematical sense, 
is not at all abstract. Thus it is difficult to believe that nature 
will obey our manmade abstract mathematics, which is so 
full of assumptions. 

This derivation makes three assumptions. (A) It  uses a 
Hilbert space, which is a linear vector space. As we have 
described before, because of the boundedness law there is no 
linear space in nature. (B) It assumes infinity in its definition 
of inner product. We know that infin ity violates the finite 
time law. (C) It assumes isolated environment violat ing the 
simultaneity law. Thus we see that this theory cannot be 
tested also, because of the infinity assumption, if not for any 
one of the other assumptions. In the following, first we show 
the proof, and then we discuss their assumptions. 

Let V be a complex Hilbert space, let 𝜙𝜙 and 𝜓𝜓 be any 
two complex valued functions in V, let the inner product in  V 
be denoted by 

(𝜓𝜓, 𝜙𝜙) = � 𝜓𝜓 (𝑡𝑡)�������𝜙𝜙(𝑡𝑡)
∞

−∞
 𝑑𝑑𝑑𝑑 

For convenience we note the fo llowing properties of 
complex inner product: 

(𝑢𝑢 , 𝑣𝑣) = (𝑣𝑣, 𝑢𝑢)�������, (𝐴𝐴𝐴𝐴, 𝑣𝑣) = (𝑢𝑢, 𝐴𝐴†𝑣𝑣) 
Let X be a linear operator mapping V into V. Then we 

define the mean 〈𝑋𝑋〉  and variance of 〈(Δ𝑋𝑋)2〉  in the 
following way, with respect to a given normalized vector 𝜓𝜓. 

〈𝑋𝑋〉 = (𝜓𝜓, 𝑋𝑋𝑋𝑋) = � 𝜓𝜓 (𝑡𝑡)�������𝑋𝑋𝑋𝑋(𝑡𝑡)
∞

−∞
 𝑑𝑑𝑑𝑑  

〈(Δ𝑋𝑋)2〉 = (𝜓𝜓, {𝑋𝑋 − 〈𝑋𝑋〉}2𝜓𝜓) 

                =�  𝜓𝜓 (𝑡𝑡)�������{𝑋𝑋 − 〈𝑋𝑋〉}2𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑
∞

−∞
 

We present the following lemma9, called the Schwartz 
inequality taken from page 14; the proof is given in a later 
section. 

Lemma Let 𝜙𝜙 and 𝜓𝜓 be two arbit rary vectors. Then 
|(𝜙𝜙, 𝜓𝜓)|2 ≤ (𝜙𝜙, 𝜙𝜙)(𝜓𝜓, 𝜓𝜓) 

The proof of uncertainty princip le starts with the 
following lemma9 on page 119. 

Lemma Let O1 and O2 be two Hermitian operators. Then 
〈𝑂𝑂1

2〉〈𝑂𝑂2
2〉 ≥ 1

4
|〈[𝑂𝑂1, 𝑂𝑂2]〉|2            (23) 

The mean values are computed using any normalized 
vector 𝜓𝜓. 

Proof Let us apply the Schwartz inequality to vectors 
𝑂𝑂1𝜓𝜓 and 𝑂𝑂2𝜓𝜓. Because O1 and O2 are Hermit ian, one has 

〈𝑂𝑂1
2〉〈𝑂𝑂2

2〉 = �𝜓𝜓, 𝑂𝑂1
†𝑂𝑂1𝜓𝜓��𝜓𝜓, 𝑂𝑂2

†𝑂𝑂2𝜓𝜓� 
                  = (𝑂𝑂1𝜓𝜓, 𝑂𝑂1𝜓𝜓)(𝑂𝑂2𝜓𝜓, 𝑂𝑂2𝜓𝜓) 

                  ≥ |(𝑂𝑂1𝜓𝜓, 𝑂𝑂2𝜓𝜓)|2  
  = �(𝜓𝜓, 𝑂𝑂1

†𝑂𝑂2𝜓𝜓)�
2

= |(𝜓𝜓,𝑂𝑂1𝑂𝑂2𝜓𝜓)|2       (24) 
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Letting  

𝑀𝑀 =
1
2

[𝑂𝑂1,𝑂𝑂2 ] =
1
2

(𝑂𝑂1𝑂𝑂2 − 𝑂𝑂2𝑂𝑂1) 

𝑁𝑁 =
1
2

(𝑂𝑂1𝑂𝑂2 + 𝑂𝑂2𝑂𝑂1) 

One sees that 𝑀𝑀† = −𝑀𝑀 and 𝑁𝑁† = 𝑁𝑁 so that 
〈𝑂𝑂1

2〉〈𝑂𝑂2
2〉 ≥ |(𝜓𝜓, 𝑂𝑂1𝑂𝑂2𝜓𝜓)|2 = |(𝜓𝜓, (𝑀𝑀 + 𝑁𝑁)𝜓𝜓)|2  

= |(𝜓𝜓,𝑀𝑀𝑀𝑀) + (𝜓𝜓, 𝑁𝑁𝑁𝑁)|2 
= |(𝜓𝜓 ,𝑀𝑀𝑀𝑀)|2 + |(𝜓𝜓, 𝑁𝑁𝑁𝑁)|2 + (𝜓𝜓,𝑀𝑀𝑀𝑀) (𝜓𝜓, 𝑁𝑁𝑁𝑁)���������� 

    +(𝜓𝜓,𝑀𝑀𝑀𝑀)�����������(𝜓𝜓, 𝑁𝑁𝑁𝑁)              (25) 
The third and fourth terms in the last inequality (25) cancel 

each other. The first and second terms being nonnegative, 
one finds that 

〈𝑂𝑂1
2〉〈𝑂𝑂2

2〉 ≥ |(𝜓𝜓,𝑀𝑀𝑀𝑀)|2 =
1
4

|〈[𝑂𝑂1,𝑂𝑂2]〉|2  

End of proof. 
Let us now apply the lemma to the case where 
𝑂𝑂1 = 𝑋𝑋 − 〈𝑋𝑋〉 = Δ𝑋𝑋 and 𝑂𝑂2 = 𝑃𝑃 − 〈𝑃𝑃〉 = Δ𝑃𝑃 . One has 

[𝑂𝑂1, 𝑂𝑂2] = 𝑖𝑖ℎ�𝐼𝐼,   〈𝑂𝑂1
2〉 = (Δ𝑋𝑋) 2 ,   〈𝑂𝑂2

2〉 = (Δ𝑃𝑃)2  
Thus one gets 

(Δ𝑋𝑋) 2(Δ𝑃𝑃)2 ≥
1
4
�〈𝜓𝜓, 𝑖𝑖ℎ�𝐼𝐼𝐼𝐼〉�

2
=
ℎ�2

4
 

From which Heisenberg’s inequality immediately  fo llows. 

 
Figure 2.  Operators cannot be cascaded 

The proof essentially computes the product of two 
variances using Schwartz inequality. The crucial step is 
expression (24) which is derived from Schwartz inequality. 
To understand why (24) happened we have to understand 
inner steps of Schwartz inequality, which  we discuss in 
another section. 

Hopefully the reader noticed that the proof is completely  
mathematical in  description and does not have any 
connections with physics or quantum mechanical part icles or 
nature. So, essentially this proof claims that whatever 
happens in mathematics, will happen in nature also. Is that 
how we really think? How did we get so much confidence on 
our manmade mathematics? What were we thinking about all 
the assumptions behind our mathematics? 

It cannot be said that this derivation is a consequence of 
any experimental observation. On the contrary, it has so 
many assumptions that it can never be tested by any 
engineering experiment. As mentioned, the proof assumes: 
linearity, infinity, and isolated environment. It will never be 
possible to setup an environment that will satisfy all the 
assumptions; because nature does not and cannot allow such 
assumptions. As we have mentioned operators, Hilbert 
spaces, Schwartz inequality, inner product, all vio late the 
boundedness, finite time, and simultaneity laws. Thus 
operator theory does not recognize the complexity o f nature. 

From (23) we see that if the operators commute then there 
will be no uncertainty. But operators will never commute, 
because the second operator is not working on the system. 
Repeating operators, like 𝑂𝑂1𝑂𝑂2  in (24), is a vio lation of 
engineering practice. It is an assumption. 

Figure 2 dictates the block diagram for testing the 
uncertainty principle based on the operator theoretic proof. 
In Figure 2, the device under test (DUT) is the system which 
is generating the state vectors or wave functions. All 
operators are like experiments or like test equipments that 
are used to test the DUT. Operators are designed to work 
only on DUT. In the figure operator A is denoted by an 
experiment or test equipment1 that tests the output signals 
from DUT. Input to operator A is the wave function from the 
DUT and its output is a measurement function. We can see 
that cascading means operator B is not working on the DUT 
or the wave function, but on the measurement function. 
Measurement function is not same as the wave function. 
Measurement function is not generated by the DUT;  it  is 
generated by the test equipment1. 

The two input signals are different, they come from 
different environments, and they cannot be comparable. The 
cascading theory violates the simultaneity law. Once an 
operator is used on a wave function its output cannot be a 
wave function again. Wave function does not remain a wave 
function when it is processed and taken out of its 
environment. In the absence of the simultaneity environment, 
a wave function loses its characteristics. Nature is 
immensely complex, anything taken out of environment, 
behaves completely  differently. Thus cascading is equivalent 
to the assumption of isolated environment, as in  Newton’s 
first law, which we know cannot work. 

The characteristics of an object significantly change when 
it is taken out of its environment. When I am outside my 
home, I am a completely d ifferent person. Earth taken out of 
its orbit will not remain as earth. Same is true for the operator 
outputs. Thus the concept of commutation is not meaningful 
in engineering. Cascading operators is an assumption; it  is 
not meaningfu l for engineering test of a  theory. Figure 2 
becomes an invalid  test setup for testing uncertainty 
principle. Figure 2 shows that the operator theoretic proof is 
inconsistent with nature. 

The proof is also invalid for many other assumptions we 
have mentioned, like infinite space time assumptions. We 
have discussed them in  other places. In this section we 
elaborated the cascading requirement only, which vio lates 
the simultaneity law. Thus the operator theory cannot be 
tested, and according to our defin ition of invalid ity, the 
operator theory cannot work. 

5. Schwartz Inequality 
The Schwartz inequality is a very simple concept of 

mathematics. Here we present the definition, theorem, and 
its proof from a standard textbook like Eideman10. We need 
the details to see that the root cause of the uncertainty 
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principle is hidden behind this theorem. If we take two 
2-dimensional vectors, a and b, then we know that their dot 
product or inner product is given by 

|(𝑎𝑎,𝑏𝑏)| = |𝑎𝑎||𝑏𝑏| cos 𝜃𝜃              (26) 
where 𝜃𝜃 is the angle between the two vectors; |𝑎𝑎| means 
the magnitude or the length of the vector. Since cos  𝜃𝜃 is 
always less than or equal to 1, we can write the Schwartz 
inequality as in  

|(𝑎𝑎,𝑏𝑏)| ≤ |𝑎𝑎||𝑏𝑏|                 (27) 
We see that the above is a trivial relat ion. Take a = 4, and 

b=2, the relation  will hold. It  will be always true, like 2 < 4 or 
a < (a+1). Thus we must be careful then how we use them. 
We should not assign any function to a and any other 
function to b and compare those using (27). It will not be 
mean ingful, for example, to assign voltage to a, and price of 
apples to b in (27). 

If we define the inner product and magnitude in the 
following way 

(𝑎𝑎, 𝑏𝑏) = 𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2   ,   |𝑎𝑎| = �𝑎𝑎1
2 + 𝑎𝑎2

2  

Then we can see the Schwartz inequality of real numbers as 
|𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2|2 ≤ |𝑎𝑎1

2 + 𝑎𝑎2
2 ||𝑏𝑏1

2 + 𝑏𝑏2
2| 

It is clear that the above is valid for n-dimensional vectors. 
In case of n-dimensional vectors, cos 𝜃𝜃 can be defined as 

cos 𝜃𝜃 =
|(𝑎𝑎,𝑏𝑏)|
|𝑎𝑎||𝑏𝑏|  , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒             (28) 

|𝑎𝑎| = �(𝑎𝑎, 𝑎𝑎) = �𝑎𝑎1
2 + 𝑎𝑎2

2 + ⋯+ 𝑎𝑎𝑛𝑛2  

Along the same natural way, we can extend the sum to 
integral to write the Schwartz inequality for integrals as 

� 𝑓𝑓1 (𝑥𝑥)𝑓𝑓2 (𝑥𝑥)
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑑𝑑 ≤ �� 𝑓𝑓12 (𝑥𝑥)

𝑏𝑏

𝑎𝑎
𝑑𝑑𝑑𝑑�

1/2

�� 𝑓𝑓22 (𝑥𝑥)
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑑𝑑�

1/2

 

Clearly the integral Schwartz inequality will still remain  
valid for infinite limits for the integrals in the last expression 
under the assumption of appropriate integrability conditions. 

Theorem: Let u and v be arbitrary members of an inner 
product space V. Then the Schwartz inequality is given by 

|(𝑢𝑢, 𝑣𝑣)| ≤ �(𝑢𝑢 , 𝑢𝑢)(𝑣𝑣, 𝑣𝑣) 
Proof: If v=0 then clearly theorem is satisfied. Assume 

then that v≠0. For an arbitrary scalar 𝛼𝛼, 
0 ≤ (𝑢𝑢 −𝛼𝛼𝛼𝛼, 𝑢𝑢 − 𝛼𝛼𝛼𝛼) 

    = (𝑢𝑢, 𝑢𝑢) − 𝛼𝛼(𝑣𝑣, 𝑢𝑢) − 𝛼𝛼�(𝑢𝑢, 𝑣𝑣) + 𝛼𝛼𝛼𝛼�(𝑣𝑣, 𝑣𝑣) 
Take 𝛼𝛼 = (𝑣𝑣, 𝑢𝑢)�������/(𝑣𝑣, 𝑣𝑣) Then 𝛼𝛼� = (𝑢𝑢 , 𝑣𝑣)�������/(𝑣𝑣, 𝑣𝑣) and 

(𝑢𝑢, 𝑢𝑢) −
|(𝑣𝑣, 𝑢𝑢)|2

(𝑣𝑣, 𝑣𝑣)
−

|(𝑢𝑢, 𝑣𝑣)|2

(𝑣𝑣, 𝑣𝑣)
+

|(𝑢𝑢, 𝑣𝑣)|2

(𝑣𝑣, 𝑣𝑣)
≥ 0 

Or 
(𝑢𝑢, 𝑢𝑢) (𝑣𝑣, 𝑣𝑣) − |(𝑢𝑢, 𝑣𝑣)|2  ≥ 0 

From which  the assertion follows. Note that 𝛼𝛼 is same as 
cos 𝜃𝜃 as defined by (28). A pictorial view of (26) will show 
why the expression is correct. 

From figure 3 we can see the real meaning of the Schwartz 
inequality. Clearly  the product of the magnitude or the length 
of the two vectors a and b is bigger than the product of b and 
c. The product of b  and c is |𝑎𝑎||𝑏𝑏| cos𝜃𝜃 whereas the product 
of a and b is simply |𝑎𝑎||𝑏𝑏|. This is a purely mathemat ical 
property; it requires complete isolation from any other 
physical requirements. It is a manmade theory lives in 

isolation from nature. A manmade theory cannot be a law of 
nature. All laws of nature must be experimentally observed 
by using engineering experiments. 

 
Figure 3.  Schwartz inequality for vectors 

Application of this dot product to any two vectors is 
mean ingful only when the vectors belong to same class of 
objects. If vector a represents apples and vector b represents 
oranges, then clearly the dot product will not be mean ingful; 
the angle θ will also not be meaningful. Since every operator 
produces a function which is d ifferent from the one produced 
by another operator, these two output functions of operators 
cannot be compared, they belong to two different object 
classes. Two measurements, like 𝑂𝑂1𝜓𝜓 and 𝑂𝑂2𝜓𝜓, taken by 
two different operators on the same vector 𝜓𝜓  are two 
different objects, like apples and oranges. Therefore 
applying dot products on them are not mean ingful. As 
mentioned, an operator represents an experiment on objects 
of nature. Two operators represent two different experiments. 
Their use in (24) or in Figure 3 is inconsistent with 
engineering concepts of an experiment. 

To illustrate the incompatibility of the operator outputs, 
the following example may be better. Suppose we take a cat 
described by four different properties and represent it using a 
vector [c1, c2, c3, c4], similarly we a take a dog described by 
another five different properties represented by[d1, d2, d3, d4, 
d5]. These two vectors represent simultaneous environments 
of cats and dogs respectively. Let  us now use an operator C 
that converts the cat vector in to a two dimensional vector of 
numbers, and similarly we take another operator D and 
convert the dog vector to another two dimensional vector. 
(Note that C and D are not entirely mean ingless. We use 
them in our manmade society. In economics, we convert 
every human being to a money value.) Even though the 
resulting vectors are of same dimensions we cannot still take 
their inner products, because by the equivalence principle as 
described later, they are different objects. The properties of 
cats and dogs are embedded in the two vectors, making them 
in elig ible for dot products. Thus the application of Swartz 
inequality to derive uncertainty principle is not meaningfu l. 

Algebra makes a very fundamental assumption: all 
variables belong to the same class, like real numbers. In 
nature, things are never same. We always have apples and 
oranges. Even two apples are d ifferent. Just like we cannot 
add two apples and three oranges to give five apples or five 
oranges, in the same way we cannot add five apples also, 
because all five apples are d ifferent. In reality, even algebra 
has very limited applications in nature. We must remain 
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vigilant about the applications and the assumptions of 
mathematics. 

No variab le in nature is isolated; they are all connected by 
simultaneity law with many other things in its environment. 
Thus each variable is unique. No two variables can be 
compared. The core assumption in  algebra is isolation of 
variables, which  is invalid in nature. Nature obeys the 
simultaneity law. We can only compare output of same 
operators but not two different operators. We cannot 
compare apples and oranges. The two functions 𝜙𝜙1 = 𝑂𝑂1𝜓𝜓 
and 𝜙𝜙2 = 𝑂𝑂2𝜓𝜓  used in (24) are like apples and oranges, 
when 𝑂𝑂1, 𝑂𝑂2 , 𝜓𝜓 are all objects of nature. They are not merely 
mathematical entit ies. 

6. Time Bandwidth Product 
In this section we give another proof of uncertainty 

principle. We first show that the well known d imensionality 
theorem is same as uncertainty principle. Th is proof will 
show that the uncertainty principle vio lates a fundamental 
property of mathematics – all continuous functions over 
fin ite interval are in fin ite dimensional. Eventually this 
analysis will then show how we can eliminate the uncertainty. 
According to Heisenberg6 - “If there existed experiments 
which allowed simultaneously a sharper determination of p 
and q than equation (1) [Uncertainty relation] permits, then 
quantum mechanics would be impossible”. However, it  is 
believed that QM is not about the theories; it is about the 
experimental evidences and accumulated knowledge on the 
results we have on the subject. No theories of any subject can 
be correct, because of the baggage of assumptions they carry, 
since we know nature does not and cannot make any 
assumptions. 

6.1. Fourier Transform 

The Fourier Transform (FT) has become a fundamental 
tool for many branches of science and engineering; quantum 
mechanics, as we have just seen, is no exception. The FT pair 
is defined as: 

𝑋𝑋(𝑤𝑤) = ∫ 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑
∞
−∞           (29) 

𝑥𝑥(𝑡𝑡) = 1
2𝜋𝜋
∫ 𝑋𝑋(𝑤𝑤)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑
∞
−∞          (30) 

Equation (29) g ives the FT, X(w), of the time function, 
x (𝑡𝑡) . Expression (30) gives the Inverse FT from the 
spectrum function, X(𝑤𝑤), and produces the time function, 
x(t). In a previous section we have given two proofs that 
show that uncertainty principle is derived from the FT theory. 
In this section we analyse the FT in more details to find the 
root cause of this uncertainty. 

Observe that both integrals have infinity as limits. One 
way to examine this infinity  requirement of FT is to visualize 
the example of the delta function. Its FT is 1 for all w. That 
means all cosine functions that create the delta function have 
unit amplitude and zero phase. If you draw some of these 
cosine functions, see Priemer11 in pages 178-179, you will 
find that the functions are adding up to create the pulse and 
becoming zero at all other places. This example shows that 

all cosine functions must be defined over all t ime, and the 
same must be true for the delta function also. That is, the 
delta function must exist as zero  for the entire real line except 
the place where it is non-zero. 

Consider the time function shown in Figure 4 and the 
corresponding Fourier transformed spectrum function shown 
in Figure 5. The graph in Figure 5 was obtained using 
expression (29). Both functions must be defined and must 
exist for the entire x-axis as required by the FT theory. The 
width of the distribution in spectrum Δw is 4π/ΔT and the 
width Δt = ΔT of the distribution in time function can be 
regarded as uncertainties. The product of these two 
uncertainties show that 

∆𝑤𝑤 ∆𝑡𝑡 = 4𝜋𝜋                (31) 
The quantum mechanics textbook by Ohanian8 page 35, 

says (31) “is an instance of Heisenberg’s uncertainty 
relation”. The same idea is described in the engineering book, 
Soliman12 pages 214-216, and has the section heading “The 
Uncertainty Princip le”.  

The expression (31) is known as Time-Bandwidth product, 
and also as Dimensionality theorem in the field of d igital 
communicat ion engineering, see Couch13 page 93. Clearly 
(31) is a characteristics of Fourier transform pair as we have 
seen in the two proofs given above. Since the spectrum 
function is derived from the time function, the two functions 
are related, and  (31) represents one such relation. More 
details of such relationship are described in a later section. 

All continuous functions can be considered as infin ite 
dimensional vectors. This fact is quite well known in 
quantum mechanics community; see for example Chapter 4 
of Miller14. However, for completeness we present the 
following theorem, without proof, from Das15, over fin ite 
duration intervals. 

Let  f(t ) be a continuous time function defined over L2[a,b], 
the space of square integrable continuous functions over[a,b]. 
For engineering we do not need measurability and Lebesgue 
integrability. Assume that we d ivide the fin ite time 
interval[a,b ] into n ≥ 1 equal parts using equally spaced 
points {𝑡𝑡1, 𝑡𝑡2, … 𝑡𝑡𝑛𝑛 , 𝑡𝑡𝑛𝑛+1}  . Where 𝑡𝑡1 = 𝑎𝑎  and 𝑡𝑡𝑛𝑛+1 = 𝑏𝑏 . 
Use the following notations to represent the t-subintervals  

∆𝑡𝑡𝑖𝑖 = [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1), 𝑖𝑖 = 1 …𝑛𝑛 − 1   𝑎𝑎𝑎𝑎𝑎𝑎   ∆𝑡𝑡𝑛𝑛 = [𝑡𝑡𝑛𝑛 , 𝑡𝑡𝑛𝑛+1] 
then define the characteristic functions: 

𝑋𝑋𝑖𝑖 (𝑡𝑡) = �1
0
�  𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑡𝑡 ∈ ∆𝑡𝑡𝑖𝑖
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1 …𝑛𝑛 

and the simple functions: 

𝑓𝑓𝑛𝑛 (𝑡𝑡) = �𝑓𝑓(𝑡𝑡𝑖𝑖)𝑋𝑋𝑖𝑖 (𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

  ∀𝑡𝑡 ∈ [𝑎𝑎, 𝑏𝑏] 

Theorem 1  
𝑓𝑓𝑛𝑛 (𝑡𝑡) → 𝑓𝑓(𝑡𝑡)  𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 [𝑎𝑎, 𝑏𝑏] 𝑖𝑖𝑖𝑖 𝐿𝐿2[𝑎𝑎,𝑏𝑏] 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 
The above theorem, Das15, essentially says that the 

sequence of step functions, with step height defined by the 
sample values, converges to the original function. These 
samples, collected as a column vector represent the infinite 
dimensional vector for the function. Thus given any 
accuracy limit , a  step function can be generated that will 
represent the function with that accuracy. The theorem says 
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that this conclusion is valid for any finite interval. 

 
Figure 4.  T ime function 

 
Figure 5.  Spectrum function 

6.2. Dimensionality Theorem 

The dimensionality theorem is stated in Couch13 page 93, 
as: “When BT is large, a real waveform may be completely 
specified by N=2BT independent pieces of information that 
will describe the waveform over a T interval. N is said to be 
the number of dimensions required to specify the waveform, 
and B is the absolute bandwidth of the waveform”.  

Comparing with equation (31) we can see that Δt = T and 
Δw = 2B. Thus the dimensionality theorem is same as 
uncertainty principle. We show that the dimensionality 
theorem is derived from FT and requires infinity assumption. 
Thus we can say, dimensionality theorem = time bandwidth 
product = uncertainty principle. They are all equivalent to FT 
and are derived from it, in  different branches of science and 
engineering by different people. 

Clearly this dimensionality theorem vio lates the property 
described by Theorem 1, that a function is infin ite 
dimensional, even over finite interval. For thedimensionality 
theorem says that N is a finite number, and N number of 
samples completely  specifies a function. Th is happens 
because the dimensionality theorem assumes that T and B 
both represent fin ite intervals, which goes against the 
requirements of the FT pair described by (29) and (30).  

In order to prove the dimensionality theorem we need to 
use the Nyquist Sampling Theorem. Th is is a very well know 
theorem in the dig ital signal processing field but may not be 
known to quantum mechanics community. This theorem is 
stated in the following way, Couch13 page 89, we skip its 

proof. 

6.3. Nyquist Sampling Theorem 

“The min imum sample rate allowed to reconstruct a band 
limited waveform without error is given by fs = 2B”. Here B 
is bandwidth and fs is the sampling rate also known as the 
Nyquist rate. 

The following proof of dimensionality theorem is based 
on Shannon16. In case of a band limited waveform, that is, a 
waveform whose spectrum is zero outside a fin ite 
bandwidth[-B,+B], the expression for inverse Fourier 
transform (30) can be rewritten as 

𝑥𝑥(𝑡𝑡) = 1
2𝜋𝜋
∫ 𝑋𝑋(𝑤𝑤)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑

2𝜋𝜋𝜋𝜋
−2𝜋𝜋𝜋𝜋        (32) 

In (32) t goes from -∞ to +∞ , because x(t) comes from 
(29), the FT. Rep lacing time t by Nyquist sampling interval 
we get 

𝑥𝑥 � 𝑛𝑛
2𝐵𝐵
� = 1

2𝜋𝜋
∫ 𝑋𝑋(𝑤𝑤)𝑒𝑒𝑖𝑖𝑖𝑖 ( 𝑛𝑛2𝐵𝐵)𝑑𝑑𝑑𝑑

2𝜋𝜋𝜋𝜋
−2𝜋𝜋𝜋𝜋       (33) 

Recognize that the left hand side of (33) is the Fourier 
series expansion coefficients for X(w). In (32) t  goes from 
-∞ to +∞ and therefore it is same for n in (33). Thus the 
function x(t) can be “completely specified”, as stated in the 
dimensionality theorem, once we get all the coefficients 
from (33), construct the X(w) from them using the Fourier 
series, and then use that known X(w) to reconstruct x(t) 
using (32). Observe that this process requires infinite number 
of samples using all values of n in (33). Thus function x(t) 
must be defined for all t to make the process work. A Fourier 
series requires infinite number of coefficients. 

Thus the total number of samples required to recover the 
signal x(t) for very large value of T is given by 

𝑁𝑁 = 𝑇𝑇
𝑓𝑓𝑠𝑠

=  𝑇𝑇
1/2𝐵𝐵

= 2𝐵𝐵𝐵𝐵              (34) 

We see that the dimensionality theorem (34) is derived 
from FT, and requires infinite duration assumption for x(t).  

However (34) cannot be correct, because it violates our 
Theorem 1, which says that a function is infinite dimensional 
even over a finite interval. Thus if we use formula (34) we 
will always get an error with a lower bound in representing 
the time function x(t). That is, any accuracy we want cannot 
be achieved using N samples. The expression (34) is same as 
the uncertainty principle of quantum mechanics as described 
in (31). Here we see that uncertainty principle vio lates the 
infinite dimensionality property of finite duration signals. 
Real problem here is that we are try ing to find properties of 
fin ite duration signals using properties of infinite time theory. 
In reality all functions, finite  or in fin ite durations, are infin ite 
dimensional. Uncertainty princip le contradicts that theory.  

This leads to the idea of infinite limit assumption of the 
FT theory. According to the finite time law, infinity is 
invalid in nature. Therefore anything that considers infinity, 
like FT theory, will also be invalid. The use of such results 
will cause inconsistency and contradiction. In the next 
section we replace infinite limits in the FT definit ion by 
fin ite limits and show that we can remove uncertainty.  
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Figure 6.  Different spectrums for same pulse 

7. Finite Fourier Transform 
We now show that if we eliminate the infinity assumptions 

from Fourier transform expressions in (29) and (30) then we 
can overcome this lower bound error limit from the 
uncertainty principle. 

We use the principles behind the numerical inversion of 
Laplace transform method as described in  Bellman17. Let 
X(w) be the unknown band limited Fourier transform, 
defined over[-B,+B]. Let the measurement window for the 
function x(t) be[0,T], where T is fin ite and not necessarily  a 
large number. Divide the frequency interval 2B into K 
smaller equal sub-intervals of width ∆w with equally spaced 
points {wj} and assume that {X(wj)} is constant but 
unknown over that j-th interval. Then we can express the 
integration in (32) approximately as: 

𝑥𝑥(𝑡𝑡) ≈ 1
2𝜋𝜋

(∆𝑤𝑤) ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑤𝑤𝑗𝑗 𝑋𝑋�𝑤𝑤𝑗𝑗 �𝐾𝐾
𝑗𝑗 =1       (35) 

The right hand side of (35) is a linear equation in {X(wj)}, 
which are unknown. Now we can also divide the interval[0,T] 
into K equal parts with equally spaced points {tj} and let the 
corresponding known sample values be {x(tj)}. Then if we 
repeat the expression (35) for each sample point  tj we get K 
simultaneous equations in the K unknown variab les {X(wj)} 
as given by the equivalent expression (36). 

𝑥𝑥 = ∆𝑤𝑤
2𝜋𝜋

 𝐸𝐸(𝑡𝑡, 𝑤𝑤) 𝑋𝑋, 𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒              (36) 
𝐸𝐸 = {𝐸𝐸𝑚𝑚𝑚𝑚 } = 𝑒𝑒𝑖𝑖𝑡𝑡𝑚𝑚 𝑤𝑤𝑛𝑛 , 𝑚𝑚, 𝑛𝑛 = 1, …𝐾𝐾 

The equations in the matrix vector expression (36) are 
independent because exponential functions in (36) are 
independent. Therefore we can solve (36) for {X(wj)}. 
Theorem 1 ensures that the sets {X(wj)} and {x(tj)} can be 
selected to achieve any level of accuracy requirements in (32) 
for either x(t) or X(w). For convenience we assume that the 
number of terms K in (36) is equal to K = Tkfs =2kBT. Here 
fs is the Nyquist sample rate and k > 1. We state the following 
theorem from Das15, which  essentially is a  modification of 
the Nyquist’s sampling theorem. 

Theorem 2  
Let x(t) be a band limited function with bandwidth 

restricted to[-B,+B] and available over the fin ite 
measurement window[0,T]. Then given any accuracy 
estimate ε there exists k>1 such that 2kBT equally spaced 
samples of x(t) over[0,T] along with their sinc functions, will 

completely specify the function x(t) for all t in[0,T] at the 
given accuracy ε. 

Theorem 2 says that by increasing the sample rate we can 
achieve any accuracy in describ ing the spectrum function 
and the time function. The sampling factor k is a mult iple of 
the Nyquist rate. In industry it is quite common to use 4 or 5 
times the Nyquist rate to get correct results. In Das15 a 
numerical example is given to show how k affects the 
accuracy in recovering the time functions. Thus this result is 
quite well known in the industry, we have just added a 
theoretical proof of this common practice. 

In Figure 6 we show, using a numerical example, how the 
unit pulse of Figure 3 with ΔT=2 can be reconstructed using 
(36) for various values of bandwidth. The red graph is 
derived for a bandwidth of π, and K = 20 as number of 
samples. The black g raph represents the classical FT of the 
pulse in Figure 3. Figure 6 shows how a narrow bandwidth 
red spectrum can generate the same time function when we 
eliminate infinity assumption. A larger bandwidth spectrum 
could have been used also, but with a different sample rate to 
create the same pulse. We call method (36) as numerical 
inverse finite Fourier transform, NIFFT. 

It is clear from Figure 6 that the uncertainty relation (31) 
does not hold if we use (36). Expression (36) gives many 
solutions for spectrum for the same time function and 
depends on values of K and bandwidth. By eliminating 
infinity, the formula (36) brings two additional degrees of 
freedom, a choice of band width and a sample rate. These 
two degrees of freedom make (36) an independent method of 
constructing waveforms. The rectangular pulse generated 
from the red spectrum is same as shown in Figure 4. The 
Mathematica software tool was used for the numerical 
inversion algorithm (36).  

8. Discussions 
In this section we point out certain views that may indicate 

how the idea of uncertainty princip le may have originated. 

8.1. The Origin 

The orig in of the uncertainty principle seems to have 
emerged from the Heisenberg’s 1927 paper. We quote a 
portion of a paragraph from that paper, Heisenberg6 pages 
64-65, which is still mentioned in present textbooks, and 
taught in class room lectures on YouTube videos. This is also 
another proof of uncertainty principle. 

“However, in princip le one can  build, say, a  γ-ray 
microscope and with it carry out the determination of 
position with as much accuracy as one wants. In this 
measurement there is an important feature, the Compton 
effect. Every observation of scattered light coming from the 
electron presupposes a photoelectric effect (in the eye, on the 
photographic plate, in the photocell) and can therefore also 
be so interpreted that a light quantum hits the electron, is 
reflected or scattered, and then, once again bent by the lens 
of the microscope, produces the photo effect. At the instant 
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when position is determined-therefore, at the moment when 
the photon is scattered by the electron-the electron undergoes 
a discontinuous change in momentum. This change is greater 
the smaller the wavelength of the light employed-that is, 
more exact the determination of the position. At the instant at 
which the position of the electron is known, its momentum 
can therefore be known up  to magnitudes which correspond 
to that discontinuous change. Thus more precisely the 
position is determined, the less precisely the momentum is 
known, and conversely. In  this circumstance we see a d irect 
physical interpretation of the equation 

𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑞𝑞 = −𝑖𝑖ℎ�. 
Let  q1 be the precision with which  the value q  is known (q1 

is, say the mean error of q), therefore here the wave length of 
the light. Let p1 be the precision with which the value of p is 
determinable; that is, here, the d iscontinuous change of p in 
the Compton effect. Then according to the elementary laws 
of the Compton effect p1 and q1 stand in relation p1 q1 ~ h.” 

It is not known, how much of engineering technology 
existed in 1927 and how much familiarity a theoretical 
physicist like Heisenberg had about that engineering. Clearly 
in modern times this will not be the design of an experiment 
by any stretch of mind of any system engineer. Two 
unknowns cannot be found out by one measurement; this 
will produce one equation in two unknowns. At least two 
equations will be necessary to solve for both p and q 
variables. Heisenberg seems to believe that only one 
measurement will give values for both p and q. This is an 
assumption he used unconsciously. In reality, a  significantly 
large volume of dynamic data should be collected, for a long 
period, both before and after hitting the electron, all 
simultaneously, and then eliminate all unknowns by least 
square curve fitting algorithm of dynamical systems, 
something like Kalman Filtering.  

It is almost unbelievable that how much accuracy we can 
achieve using modern technology and with such 
simultaneous measurements. Simultaneity is a law of nature, 
more we encompass it better results we get. GPS satellites 
are about 20,000 km above earth. Yet we can measure 
distances on the surface of earth at the accuracy of 
sub-millimeter level, see Hughes18, in geodetic survey, by 
measuring the satellite distances. In one sense then we can 
measure a distance of 20,000 km at the accuracy of 
sub-millimeter. This approach uses only non-military GPS 
signals. So we can think, how accurate the results can be, 
with the exact military signals from new generation of GPS 
satellites and receivers. Thus at this modern time, in 
retrospect, it is difficult to  understand why Heisenberg 
thought about such an experiment involving one 
measurement to identify two variables. 

8.2. Equivalence Principle 

It is very fundamental to recognize that a  function can  be 
represented in many equivalent ways. For example (a) It can 
be described by providing a table of values of x coordinates 

at fixed intervals and corresponding values of y coordinates, 
as numerical data; (b) The above table of data can be 
interpolated and then represented by a smooth graph in the 
x-y  plane; (c) It is also possible to represent the same graph 
using an algebraic equation of y as a function of x; like y= 
3x+x2; (d) It can be represented by a combination of 
sinusoidal or exponential functions, like Fourier or Taylor 
series; (e) derivatives can be taken on this algebraic function, 
and a differential equation, like Schrodinger equation, can be 
produced to represent the same data; (f) we can perform an 
integral transform of the algebraic expression to create 
something like Fourier transform to represent the graph; (g) 
It is also possible to describe the data as a function in inner 
product space with operators, like integral or d ifferential 
operators, or even abstract operators like Hermitian infin ite 
matrices to describe the data. 

It is clear that all of the above representations of the 
numeric data in (a), are equivalent. This various 
representation methods may be called equivalence principle. 
In fact Ohanian8 on page 33 admits that – “The free-particle 
Schrodinger equation does not produce any solutions except 
those that can be directly constructed by superposition – the 
equation gives us nothing new”. Any informat ion derived 
from any one of the above items can  be derived from all other 
representations. They only enhance the conveniences.  

A better and sophisticated look at the numerical data in (a) 
will definitely allow us to visualize the graph. Similarly we 
may  be able to v isualize the spectrum from the graphical 
representation (b) of the numeric data. The information 
content of the time function and its spectrum is same, 
because one can be derived from the other. Thus Fourier 
Transform cannot give any new informat ion that is not 
present in the numeric data in (a) o r the graphical content in 
(b). An experienced eye will be able to observe the harmonic 
contents of FT in the graph, although not numerical values. It 
will be possible to get the fine characteristics of the data from 
any one of the above equivalent representations. 

Thus there is no reason to believe, as is done in quantum 
mechanics, see Ohanian8 pages 32-36, that if the time 
function represents the position of the particle then the 
corresponding spectrum function will represent the 
momentum. Position and momentum are two independent 
variables of a dynamical system. It was very unfortunate that 
Heisenberg linked them via the FT pair (14-15). FT pair 
cannot give any new informat ion as explained in above. As a 
consequence of this FT property, Heisenberg has to 
introduce uncertainty principle causing more confusion. This 
position-momentum relat ionship via FT does not satisfy 
engineering or physical intuitions. Both time and spectrum 
functions are different representations of same thing; on the 
other hand both position and momentum are independent 
properties of a particle. The uncertainty principle (31) is thus 
a mathemat ical consequence of equivalence principle. 

9. Conclusions 
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We have shown that the uncertainty principle is a property 
of the Fourier t ransform theory. In  addition, the Fourier 
transform uses infinity as its assumption; and elimination of 
infinity assumption removes this uncertainty. The paper also 
derived that uncertainty principle violates a fundamental 
property of mathematics – all continuous functions over 
fin ite interval are infinite d imensional. We have pointed out 
many laws of nature that engineering implements, but math 
and science ignores them. These laws cannot allow 
cascading of Hermit ian operators, and use of Schwartz 
inequality to physical variables. It is a  fact that nature and 
engineering cannot and do not make any assumption, but 
math and science do. Therefore, no math and science 
theories can be tested by any engineering experiment, 
because experiments cannot implement the assumptions 
required by all theories. 
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