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Abstract  In the conventional theory of the ground state of helium atom, any solution of the two-electron Schrödinger 
equation is wrong! That is caused by a strong imbalance of proportions of the attraction versus repulsion operators’ acting on 
a wave function, in the initial differential Schrödinger equation and in its integral algebraic form. In the differential equation, 
the attraction operators act on the radial part of wave function independently from one another obeying the true proportion: 
one attraction versus one repulsion per electron. But the resulting wave function turns out to satisfy the wrong integral 
proportion: two attraction energies versus one repulsion energy per electron. The underlying contradiction is un-coincidence 
of the additivity rules of energies and energy operators: whereas energies of the electrons may be summed the corresponding 
energy operators referred to different electrons may not. Consequences of this principal contradiction are d iscussed. 
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1. Introduction 
Helium atom is the simplest many-electron system. Its 

theory should be a benchmark o f correct approximate 
description of the electron-electron and electron-nucleus 
interactions. Agree to common viewpoint the physical 
grounds of the theory are known exactly and the only 
problem of interest is a high precision of calculations[1, 2]. 
Charles Schwartz writes[3]: “For thousands of years 
mathematicians have enjoyed competing with one another to 
compute ever more dig its of the number π. Among modern 
physicists, a close analogy is computation of the ground state 
energy of the Helium atom, begun 75 years ago by E. A. 
Hylleraas”. Up to date, the total energy is computed with up 
to 42 decimal dig its[4].  

In reality, the state of the art  of the helium atom problem is 
not so brilliant  at  all. In th is  relat ion it  is important  to 
underline that solution of a Schrödinger equation, first of all, 
must yield a correct wave function describing just the system 
under study. We found  that  the convent ional theory  of 
helium atom, invented in 20-30th of the last century contains 
a substantial contradiction which prevents obtaining the true 
solution. That contrad ict ion is contrad ict ion between the 
rules of summing energy operators and energy components. 
We can and may sum energies of particles. Those are just 
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numbers. But we may not sum attraction energy operators 
related to different particles. This principal contradiction 
leads to many other contradictions and pseudo quantum 
mechanical misconceptions of the theory. First of them is the 
next : while the init ial Schrödinger equation is formally 
correct any algebraic equation obtained from it by 
integration yields substantially wrong radial part of wave 
function.  

Section 2 is devoted to a brief description of the 
conventional theory. In Section 3, the conventional theory is 
revised. It is demonstrated that 1) integration of the 
two-electron Schröd inger equation strongly violates true 
initial proportion of attraction and repulsion operators per 
electron acting on wave function and 2) Schrödinger 
equation for one of electrons is free of such a fundamental 
shortcoming. Corresponding total and orbital energy 
calculation errors (so named correlat ion energies) are 
compared. Sect ion 4 shows an example of advantage of the 
proposed approach in treating relation between  atomic sizes 
and interatomic distances. 

2. Basic Features of the Conventional 
Non-relativistic Theory of 
Two-electron Atoms 

Traditionally, the ground-state wave function and energy 
of helium atom and its isoelectronic ions are obtained by 
solving the two-electron non-relativ istic stationary 
Schrödinger equation[5– 7]: 
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. (1) 

In Eq. (1), i are the position vectors of electrons, r1 and 
r2 stand for distances from the first and second electrons to 
the infin itely heavy nucleus of charge Z which is placed in 
the center of coordinates, r12 is d istance between the 
electrons. E is energy of the two electrons. Conventionally, 
this is so called total energy which is equal to the sum of the 
sequential ionization energies (or potentials IP) of the first 
and second electrons, E = E1 + E2 = – (IP1 + IP2) < 0. Sp in 
coordinates in wave function and corresponding interaction 
operators in Hamiltonian are excluded for the sake of 
simplicity. Here and further atomic units me = e = ћ = 1 are 
used.  

Since the Eq. (1) can not be solved analytically  
exactly[5–10] an approximate or numerically exact solution 
is sought as expansion in  a series under necessary condition 

of the total energy minimizat ion: 
.   (2) 

Thus the two-electron physical problem is reduced to 
mathematical prob lem of convergence of the series to 
produce the deepest energy min imum. Great efforts were 
done in developing the Hylleraas-type calculations[9–14] 
where Ψ depends on r12 exp licitly. The Hylleraas method 
provides the highest accuracy of energy computation 
considerably exceeding experimental one[1, 4, 14]. 
Alternative are configuration interaction method[15] or its 
combination with Hylleraas method[16], Hartry -Fock and 
perturbation theory methods[17–19]. These methods would 
be very efficient if the procedure of solving the equations (1) 
and (2) were correct. In the next section we shall show that 
the procedure contains a substantial and insoluble 
contradiction. 

3. The Contradiction between the Differential and Integral Forms of Eq. (1) 
3.1. General 

Let us take the wave function in a very general form (in spherical coord inates) Ψ = Ψ(r1, θ1, φ1, r2, θ2, φ2) and assume it be 
an exact parameter-free or a very accurate variat ion solution of Eq. (2). Then we have: 

, (3) 

where K, Pattr and Prep are positive kinetic, negative attraction and positive repulsion energies, respectively. The attraction 
energy is radial one, by definit ion. When compare Eq. (1) with  Eq. (3) it  is seen a substantial d ifference. First, in  the initial Eq. 
(1) the attraction energy operators Z/r1 and Z/r2 act on the radial part  of the wave function independently in agreement with 
the basic postulate of theory: electrons attract to nucleus independently from one another. In counteraction with the operators 
of kinetic and repulsion energ ies, the attraction operators create certain curvature of radial part of electronic wave function 
and, hence, certain mean (expectation) value of radial d istance for each of the electrons. They cannot assist one another in 
creating the curvature and the mean radial distance. Second, there is definite proportion between the attraction and repulsion 
energy operators. It is the next one: one attraction operator and one repulsion operator per electron. This is just so because the 
repulsion operator should act on wave function in the same fashion as repulsion does: it acts on both electrons at any instant of 
time. Just this rule is read in Eq. (1). There the attraction operators depend on distances r1 and r2 whereas the repulsion 
operator depends on distance r12, that is, on both r1 and r2. 

The Eq. (3) contradicts to these rules strongly. There the two identical attraction energies are summed with no reference to 
definite electron whereas repulsion energy remains ordinary. That proportion is substantially different from the in itial 
proportion of attraction/repulsion operators per electron and considerably increases the curvature of the radial part of sought 
wave function. As a consequence, to solve Eq. (1) by any method becomes senseless. For any wave function, the obtained 
minimum lies deeper of the sum of real energ ies of electrons. Below it will be demonstrated on the examples of exp licit 
functions.  

3.2. Kellner Function 

In order to expose the insoluble contradiction most clearly let us choose the simplest Kellner’s orthonormal variational 
radial wave function[8]:  

.                       (4) 
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Note that this type of function is correct in principle 
because a priori it is known that both electrons in a helium 
atom occupy the same spherically  symmetrical 1s state with 
opposite spins. It is important to note that the function 
depends not only on variable coordinates but on the variation 
parameter k  as well. Function (4) corresponds to the so 
named case of independent electrons. Shortcoming of the 
function is well known: under integration the expectation 
value of energy is obtained by summing interactions of all 
elementary volumes of space. Therefore, the function allows 
the electrons meeting each other at very s mall distances and 
even at the same point. Commenting on representation of a 
two-electron wave function in the form of a single 
anti-symmetric product of wave functions of the electrons 
Taylor and Parr[15] noticed that “such wave functions … 
allow the electrons to move independently of one another; 
hence, in general, the functions are not small, as they should 
be, when the electrons are close together. One says that the 
wave function does not correlate the motion of the electrons, 
and the difference between the correct ground-state energy 
of a system and that calculated with the best function of this 
type (the Hartree-Fock function) is called the correlation 
energy.” In fact, this function leads to too strong repulsion 
which in turn leads to insufficiently deep total energy 
minimum. On the other hand, the advantage of the function is 
that it reduces the two-electron problem to one-electron 
(hydrogen-atom) one and parameter k  has mean ing of 
screened nuclear charge Zeff and mean momentum p. 

For the present study, just first two properties are 
important, the independence of electronic functions ψ1 and 
ψ2 and the too strong repulsion. It  is important to see that in 
the Eq. (1) the attraction operator Z/r1 acts only on function 
ψ1 (r1, k) and operator Z/r2 acts only on function ψ2 (r2, k) of 
wave function (4). The operators create certain curvature of 
radial electronic wave functions ψ1 and ψ2 expressed by a 
value of the variation parameter k . Since the electrons are 
identical the value o f k  is the same for both electrons. We 
would like to underline that the attraction operators act 
independently on independent functions ψ1 and ψ2, 
respectively. Therefore, they create definite curvatures of 
these functions in agree with the proportion ‘one attraction 
versus one repulsion’. It would exclude any doubling of 
attraction under integration if it were not fatally un-avoiding. 
Below we shall show that it is not so.  

The value of the parameter k  is found from Eq. (2). For 
function (4), corresponding algebraic equation is the next : 

.            (5) 

It is seen that the Eq. (5) comprises sum of the two kinetic, 
two attraction and one repulsion, energies, like Eq. (3). Yet 
these are not just numbers until k  is calculated. These are 
integral operators acting direct ly on the value of the variation 
parameter. However, the proportion of the attraction/ 
repulsion operators per electron is already 2/1, instead of 1/1 
in Eq. (1). In the Eq. (5), the operators act on k  jointly or 
sequentially as if the second of the operators acts on the wave 

function which was already modified by first one. Resulting 
value kmin : 

          (6) 

of the variation parameter of wave function (4) in the total 
energy minimum: 

            (7) 

is too big. It characterizes each of the electrons as attracting 
to nucleus with double force and repelling the counter 
electron with ord inary force. This is absurd. Electrons cannot 
assist each other in attracting to nucleus. It is easy to 
understand that this absurd situation is caused by the 
integration operation. Integration wipes out coordinates of 
electrons and, hence, very important informat ion about the 
independent action of attraction operators on the independent 
radial functions of electrons.  

Thus the function (4) represents most striking example of 
incorrectness of obtaining the expectation value of energy 
from Eq. (1). It would be clear that a correct procedure is 
summing only operators referred to one electron like 
summing force vectors in classical mechanics. Therefore it is 
necessary to solve the stationary Schrödinger equation for 
one of interacting electrons: 

,(8) 

where E1 is orbital energy of each electron. Eq. (8) is free of 
the doubling effect of summing attraction energy operators. 
Respective algebraic equation is the next  one: 

.              (9) 

This equation satisfies the proportion “one attraction versus 
one repulsion” presumed in the init ial Eq. (1). It yields value 
of kmin : 

.               (10) 

One can readily find that the value obtained from Eq. (5) is 
arithmetic mean of this and of that of helium ion He+: (Z – 
5/16) =[(Z – 5/8) + Z]/2. From this it fo llows that the wave 
function (4) derived from Eq. (1) describes an artificial 
system intermediate between helium atom and helium ion. 
That abstractive kind of system does not have any interest for 
physics because it does not follow the true laws of physics. 

Then two important questions appear: 1) is it possible and 
sufficient to solve the Eq. (8) and 2) is not the function (4) 
appropriate to properly describe the stationary state 
including correlat ion of electrons? In this relation it  is 
important to note that the energy minimum: 

         (11) 

turns out to lie  deeper (!) than the experimental one (for 
helium, –0.9453 < – 0.9037) in contrast to the case of total 
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energy min imum: –2.8477 > –2.9037 (Table 1). In Table 1, 
the symbol of an element in the column headings is 
accompanied with the number of the equation, from which 
the corresponding values are obtained; <r> = 1.5/k  is the 
mean  radial distance from nucleus to every of the electrons. 
We would  underline that the deep E1

theor minimum appears in 
spite of the strongest repulsion got in the model of 
independent electrons! Therefore, correlation of electrons 
tending the electrons to be farther from one another is not a 
major effect ignored if use function (4). That unknown 
phenomenon has another nature. Further we shall show that 
it is the classical property of inertia  of electrons which is 
missed in the conventional theory. 

3.3. Eckart Function 

The described strong violation under integration of the 
initial t rue balance of attraction/repulsion operators leading 
to a too much high  value of k  is not specific feature of just the 
wave function (4). The same result is got if use Eckart -type 
function: 

.   (12) 
This function differs from the function (4) on ly by explicit 
symmetry relat ive to permutation or exchange of unobserved 
states characterized by parameters k1 and k2 which comprise 
the observable k  state. In this case, arithmet ic mean of k1 and 
k2 is also equal to (Z – 5/16). More important is to point out 
that the exchange does not favour lowering the system 
energy. It is easily seen from comparison of the energy 
values[(k1 + k2 )/2]2 and (k1

2 + k2
2)/2. For example, the values 

of the parameters in helium atom wave function equal to 1.19 
and 2.184, respectively. Then we have the inequality: 
–2.848 > – 3.093. Therefore, the exchange consumes energy, 
in complete agreement with the laws of classical mechanics. 

In relation to function (12) it is suitable to give physically 
mean ingful dynamical interpretation of the roots of Eq. (9).  
The equation has two different roots k1 ≠ k2 (Table 1). Agree 
to Vièta’s formulas, (k1 + k2)/2 = (Z–5/8) and k1k2/2 = –E1. 
Hence, the min imum of the left-hand side of (9) corresponds 
to arithmetic mean of the roots while the true energy value 
equals half of their p roduct. This contradiction is resolved if 
assume that the inter-electronic repulsion perturbation splits 
the stationary k-state into a couple of unobservable 
temporary states 1 and 2. The sought stationary k-state is 
formed by averaging in t ime the temporary states. The roots 
k1 and k2 have physical meaning of average momenta p1 and 
p2 and effective nuclear charges of the electrons in the 
corresponding temporary states 1 and 2. Furthermore, it is 
important that the arithmetic mean of the roots would 
represent a momentum p of the time-averaged stationary 
state of each of the electrons if they occupied their virtual 
states with equal probability or during equal time intervals. It 
is worth noting that the Eckart -type function (12) describes 
just that kind of situation. It implies that electron 1 occupies 
state 1 when electron 2  is  in  state 2 thus screening each other. 
But it is evident, that in state 1, each of the electrons has a 
smaller momentum and occupies a larger volume. Therefore, 

both the electrons spend more time in this state than in the 
state 2. This asymmetry results in a decrease of the mean 
kinetic energy of the stationary state which is characterized 
by parameters Zeff = p = k  = (k1k2)1/2 = (–2E1)1/2. The effect 
can be interpreted in terms  of classical physics, as inertia of 
the electron motion. Electronic interaction takes form of 
alternate “hydrogen-like” movements of the electrons from 
the centre (acceleration) to periphery (decelerat ion) and vice 
versa. 

3.4. Mean Radial Distance in Highly Precise 
Hylleraas-type Calculations 

To treat the Hylleraas-type functions is excessive because 
those explicit ly depend on inter-electronic distance r12 and 
evidently make sure that the electrons never occupy the same 
point in the space and tend to be far from one another. 
Therefore, this kind of function tends to make repulsion 
between the electrons weaker. Therefore, it tends to 
strengthen attraction. But the mistake found in the present 
study is just too much strong attraction owing to the 
physically  senseless summing (doubling) of the attraction 
operators, after integration! Then irrespective to the number 
of variation parameters and variables, any wave function 
produced by Eq. (1) describes an artificial system 
intermediate between proper helium atom and He+ ion. It 
does not describe the helium atom. 

Nonetheless, there is an interesting property of 
Hylleraas-type functions that would be advantageous in 
calculations. Lowering energy by means of enlarging the 
mean <r12> distance by those functions is followed by 
corresponding increase of mean rad ial distance <r> and, 
consequently, of volume of the atom. For example, 
expectation values of radial d istance in helium atom and 
negative hydrogen ion equal 0.929 and 2.710, 
respectively[1]. These values are larger than those calculated 
from Eq. (5): 0.880 and 2.065. That is, this kind of function 
increases the volume and lowers energy of the atom. 
However, these mean  distances are substantially  smaller than 
those calculated from Eq. (9): 1.1157 and 6.3667, 
respectively. The difference of the radii, in p icometers, is 
enormous, especially in view of the X-ray diffraction 
measurement precision (0.1-0.01 pm): 9.88 and 193.50, 
respectively. It makes impossible to compare interatomic 
distances in molecu les and condensed matter with atomic 
radii. In Sect ion 4, we shall demonstrate one of examples of 
strong advantage of the present radii. 

3.5. Inertial Nature of the Correlation Energy ΔE1 

The correlation energies, that is, calculation errors ΔE1 
and ΔE are defined here as differences between the 
experimental o r exact values of mean total o r o rbital energies 
and those theoretical: 

,        (13) 

)(),( 12212211
21

rkrkrkrk eeNrr −−−− +=Ψ

exacttheor

theorexact

EEE
EEE

−=∆

−=∆ 111



30 Viktor D. Ignatiev:  A Strong Contradiction in the Conventional Non-relativistic   
Theory of the Ground State Helium Atom and Helium-like Ions  

 

where E1
theor and Etheor are calculated in formulas (11) and (7), 

respectively. In  terms of the roots of Eq . (9) and Eq. (5) the 
correlation energies are equal ΔE1 = (k2 – k1)2/8 and ΔE = (k2 
– k1)2/4, respectively. It can be seen from Table 1. Precision 
of the exact total energy values retrieved from literature[1, 4, 
11] is restricted by five decimals (Table 2). In the paper[20], 
we noticed that the values of the correlation energies slightly 
vary in helium-like atoms. In the present study, we proceed 
exploring this phenomenon. In Figure 1, we have plotted the 
energy error ΔE1 against inverse nuclear charge (1/Z), Z = 
1–12. For the set of ions from Mg10+ to B3+, this dependence 
is approximated by a straight line: 

,     (14) 

with a high precision. Linear dependence (14) is certain ly 
true because relative strength of the repulsion perturbation is 
inversely proportional to nuclear charge. The dependence 
has correct extrapolat ion behaviour at Z → ∞ that is at the 
hydrogen-like atom limit where the perturbation is absent. In 
contrast to the considered dependence the total energy error: 

      (15)  
has an untrustworthy behaviour. This error increases with Z 
increasing. It contradicts to relative weakening of repulsion 
perturbation in ions with high nuclear charge and thus serves 
as an additional confirmation of correctness of the 
orbital-energy consideration of the helium atom problem.  

From Figure 1 it is seen that the correlation energy ΔE1 is 
positive for all the elements under study. As mentioned in 
Section 3.2, this means that in spite of overestimat ion of the 
repulsion energy with function (4), the Prep/Pattr ratio is not a 
major source of correlation energy. To shift the orbital 
energy min imum h igher it is necessary to decrease Zeff that is 
to expand atom. That is accompanied by decreasing mean 
kinetic energy and lift ing up potential energy. Since K 
depends on Zeff stronger than Pattr (Eq. (9)) then just this 
energy should be considered as a main source of the orbital 
energy error though the virial relation holds, of course. Since 
Eq. (8) (with function (4)) is radial then the only physical 
cause of decreasing kinetic energy is inertia  of radial 
component of electron motion, namely  the process of 
accelerating of electrons from a turning point at periphery to 
the centre. In this relation it is worth noting that the constant 
in Eq. (14) would really represent inertial part of 
hydrogen-like atom’s energy. Electron in a hydrogen atom 
also obeys the law of inertia. Neither Eq. (1) nor Eq. (8) 
account for the phenomenon of inertia  because they are 
stationary and deal only with probability of electrons to be at 
some points. Inertia is property of classical particles and 
requires time-resolved consideration of quantum electron 
motion. Feynman’s formulation of quantum mechanics 
seems to be most suitable tool to solve this problem because 
the peaks of electron wave packets are known to move 
classically. Th is kind of problem is a challenge fo r theorists. 
Note that the hydrogen-atom problem does not require 
special time-dependent treatment because exactly known 
charge of the nucleus provides exact determination of 
potential and, hence, kinetic energies. As for helium atom, 

the author is aware of the only  one study treating the problem 
in terms of Feynman path integrals[21]. However, there the 
traditional total energy calcu lations are done.    

Now it is necessary to determine contribution of the 
repulsion energy error to correlation energy ΔE1. For that 
purpose, let us return to Figure 1. For lighter elements, ΔE1 
values are smaller than Eq. (14) pred icts, with the largest 
deviation: 

             (16) 
in negative hydrogen ion. Just this deviation reveals the error 
of calculation, with use of the function (4), of the mean 
electron repulsion energy or the ratio Prep/Pattr = 5/8. A 
correct minimum of orb ital energy satisfying Eq. (14) is the 
next one: 

.         (17) 

The values of x: 

   (18) 

are presented in Table 2. It is important that the increment Δ1 
is positive. It means that taking into account the repulsion 
energy error leads to an increase of that of orbital energy. It  is 
caused by opposite acting of inertia and the observed 
variation of x = <r12

–1>/<r–1> ratio on the size of atom: the 
former tends to expand atom and the latter tends to compress 
it. 

On the other hand, the variation of x  rat io obeys the 
following rules. First, while h ighly charged positive ions 
have it precisely equal to 0.625, in the sequence Be2+, Li+, He 
and H– it lowers down to 0.616. Thus, 0.625 is the uppermost 
limit  of the ratio. That is evident because repulsion is 
strongest in the independent electron model presented by 
function (4). Second, the range of its variation is narrow and 
its values are close to 0.625. Th is law would be expected 
when an isoelectronic series is considered. Moreover, it 
would be considered as a substantial quantum mechanical 
property of two-electron atoms. Even in very  large negative 
hydrogen ion the ratio is far from the value 0.5, in the case of 
classical circle orbit, where <r12

–1>/<r–1> = <r>/<r12>. These 
values should be compared with those obtained in 
Hylleraas-type high precision calculations. Agree to the data 
in Tab le 11.6 of handbook[1] the rat io equals 0.5941, 0.5832, 
0.5602 и 0.4552, within the mentioned sequence. The latter 
number is smaller than the classical limit ! Third, the ratio 
notably varies only in relat ively large atoms (ions). It points 
out on volume VA = 4.5π (–2E1)–3/2 as the most relevant 
atomic property that direct ly relates to the probability o f the 
electrons to meet one another and would govern the 
<r12

–1>/<r–1> or <r>/<r12> ratios. The second one is mean 
kinetic energy K. Both properties are determined by 
curvature of wave function of the atom and, in  turn, by its 
effective nuclear charge. If consider atomic electrons as 
some localized objects, corpuscles or wave packets, then it is 
clear that probability Pc of the electrons to occur to be close 
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to one another is inversely proportional to the atomic volume 
(Table 2). The dependence Pc ~ 1/ VA is not known. The 
author would only suppose that it has a dynamic origin. The 
probability of the electron-pro jectile  and electron-target to 
avoid a collision depends on their momenta because the 
electrons can not change those in an instant of time. Thus the 
cause is inertia again. The rule reads: the higher velocity of 
electrons the higher probability Pc. In large negative 
hydrogen ion, VA is very  big and K  is very s mall. It leads to 
much lesser Pc and corresponding larger repulsion energy 
error than in small helium atom and positive ions (Table 2, 
Figure 1). In H– ion, the repulsion energy error comprises 
one eighth of the electron energy whereas the inertial one is 

twice the energy itself.  
Concluding this Section, it should be underlined that the 

proposed inertial nature of correlation energy implies a 
time-resolved consideration of the helium atom problem. It 
means that electrons tend to move on defin ite trajectories and 
be at the same point in space at different instants of time. 
Square of function (4) represents time-averaged distribution 
of electron density and all interactions are expressed by 
value of the parameter of exponents of the function. As such, 
the function (4) is sufficient to correctly describe the 
stationary ground state of helium atom. The problem is how 
to determine the true value of the parameter. 

Table 1.  The screened charges, energies and mean radii of the helium atom and some isoelectronic ions 

Parameter H– (5) H– (9) He (5) He (9) 
k1 0.6875–i0.2347 0.0826 1.6875–i0.2368 1.0860 
k2 0.6875+i0.2347 0.6674 1.6875+i0.2368 1.6640 

(k1 + k2)/2 
E, E1 

0.6875 
–0.4727 

0.3750 
–0.0703 

1.6875 
–2.8477 

1.3750 
–0.9453 

(k1k2)1/2 

E, E1 
0.7265 

–0.5277 
0.2356 

–0.0277 
1.7040 

–2.9037 
1.3444 

–0.9037 

< r> 2.0647 6.3667 0.8803 1.1157 
     
 Li+ (5) Li+ (9) Be2+ (5) Be2+ (9) 

k1 2.6875–i0.2393 2.0900 3.6875–i0.2406 3.0932 
k2 2.6875+i0.2393 2.6600 3.6875+i0.2406 3.6568 

(k1 + k2)/2 
E, E1 

2.6875 
–7.2227 

2.3750 
–2.8203 

3.6875 
–13.5977 

3.3750 
–5.6953 

(k1k2)1/2 

E, E1 
2.6981 

–7.2799 
2.3579 

–2.7799 
3.6953 

–13.6556 
3.3632 

–5.6556 

< r> 0.5559 0.6361 0.4059 0.4460 

Table 2.  Variation of the <r12
–1>/<r–1> ratio in helium-like atoms 

Atom –E <r12
–1>/<r–1> 1/VA 

H– 0.52775 0.615883 0.00387 

He 2.90372 0.624814 0.71998 

Li+ 7.27991 0.624977 3.88434 

Be2+ 13.65557 0.624994 11.27161 

B3+ 22.03097 0.625 24.65908 

C4+ 32.40625 0.624999 45.82449 

N5+ 44.78145 0.624999 76.54545 

O6+ 59.15660 0.624999 118.59983 

F7+ 75.53171 0.625 173.76537 

Ne8+ 93.90681 0.624999 243.81976 

Na9+ 114.28188 0.625 330.54088 

Mg10+ 136.65694 0.625 435.70640 
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Figure 1.  Dependence of the correlation energy ΔE1 on the inverse nuclear charge, for the helium isoelectronic series. The linear trend refers to the 
correlation energy ΔE1

lin accounting for the repulsion energy error, filled quadrangles – to ΔE1 

4. Problem of Relation between Atomic 
Radii, Interatomic Distances and 
Bond Energies: Homonuclear 
Diatomic Molecules of the Elements 
from H through Ne 

The necessity of a time-resolved description of electrons’ 
movement in a two-electron atom strongly supports an 
assumption of the present author on necessity of a 
time-resolved consideration of covalent bonding in 
homonuclear molecules. The idea is that electrons tend to 
visit the area between nuclei namely the overlap area at 
different time intervals[22]. Then the covalent interaction 
can be represented by simple overlap of spherical atoms 
preserving radii of isolated atoms (RA), and dissociation 
energy D0 of a homonuclear molecule is proportional to the 
depth of overlapping of atoms dR (dR = 2 RA – R, R is the 
inter-nuclear d istance). Both D0 and R are known from 
experimental table data. A beautiful curve of the dependence 
D0 (dR): 

.            (19) 

was obtained for elements of six periods of the Mendeleev 
Table, with a very slight scatter of points. It is presented on 
Figure 2. On the curve, there are two regions, those of 
covalent (dR > 0) and Van der Waals interaction (dR < 0). 
Corresponding atomic radii are proportional to ionization 
potentials of atoms and decrease slowly in the direction from 
the left to the right in groups of the Mendeleev Table. For 
example, RLi/RNe = 161/100 = 1.61. Such a behaviour is in 
agreement with a good sense because electronic repulsion 
would strongly resist to contraction of electron shells of 
atoms. The obtained empirical rad ii are comparab le with the 
radii calcu lated in trad itional way and confined by a defin ite 
level of electron density, except for alkali earth metals, 
especially for beryllium. 

However, it  is well known that most rigorous quantum 
mechanical value of atomic radius is expectation value of 

radial distance of respective electron shell. Fo llowing this 
rule we were to revise the theory of the simplest two-electron 
atom system in a way like that reported above. We managed 
to find strong arguments in favour of the orbital approach 
and calculate radii of the elements of first and second periods. 
Radius of hydrogen atom is known exactly, radius of helium 
atom is calcu lated with a high precision. Radii of other 
elements at hand are calculated roughly because the state of 
the art of the theory does not allow achieving accurate values. 
As discussed above on the example of helium atom it  is not 
clear how to minimize energy of the electrons in an  atom. A ll 
what we know about wave function of outer electron in a 
many-electron atom is that for atoms with  Z>2 a g round state 
function must be of type intermediate between  hydrogen-like 
1s and nl-functions.  

We proceeded in a following way. A solution of the 
hydrogenic equation: 

  
(20) 

sought in the form of Slater-type radial function: 

.            (21)  

The next relat ions were obtained: 
orbital energy  

,     (22) 

mean radius 
.              (23) 

Then the values of quantum numbers n and l were taken as 
arithmetic means: n  = 1.5 (1 < n  < 2), l = 0.5 (0 < l  < 1), for all 
elements of the second period. The value of parameter k was 
calculated for given experimental E1. Resulting values of 
mean atomic radii are such that the difference between the 
mean rad ii of lithium and neon atoms is considerably smaller 
than in the conventional calculations: RLi/RNe ≈ 2 versus 4. 
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Figure 2.  Empirical dependences D0 (dR) and D0 (R) for covalent and van der Waals homonuclear diatomic molecules[22] 

 
Figure 3.  Theoretical dependences D0 (dR) for diatomic molecules of the elements from hydrogen to neon[20]. Open circles refer to the author’s 
calculations, filled quadrangles (BBB) – to the data of Bunge et al.[23] 
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Due to this reduction of the difference, a dependence of 
dissociation energies of diatomic molecules on the degree of 
overlapping of atomic orbitals becomes apparent. On Fig. 3, 
two dependences D0 (dR) (dR  = 2<r> – R) are presented, 
those with use of conventional and of new radii. One can 
easily see a considerable difference in the scatter of 
corresponding points. The “new” dependence is described by 
the curve: 

,          (24) 

with the parameters close to those in (19). It is important to 
note that a scatter of points in this type of dependence is 
entirely owing to the rate of mentioned above decrease of 
atomic rad ii from Li to Ne. Even more important is that this 
law is dictated by the experimental interatomic d istances. 
Therefore, there are grounds to expect that real atomic rad ii 
decrease slower. In turn it means that the used procedure of 
calculation of atomic radii (equations 20-23) does not 
account for increasing repulsion or inert ia of electrons in 
atoms of elements from Li to Ne. 

5. Conclusions 
On the basis of above considerations we come to 

conclusion that there certainly exists an insoluble 
contradiction in the conventional theory of the ground state 
of helium atom and helium-like ions. The contradiction is 
that between the rules of summing of energy operators and 
energy values of different particles. The theory allows 
precise calculating the value of total energy. But each of the 
electrons in a helium atom does not possess a half of the total 
energy. Their energies are equal to ionizat ion energy. The 
remain ing energy is that of relaxation to the helium ion state 
which is characterized by much deeper energy min imum and 
lesser volume.  

More important is the wave function of the system. It  
should accurately correspond to true physical laws of motion 
of the electrons. The conventional theory ignores some of 
them. The central deficiency of the theory is a substantial 
overestimation of attraction of electrons to nucleus caused by 
incorrect summing the attraction operators. It is correct to 
sum energies of the electrons. Those are just numbers. But it 
is incorrect to sum the attraction energy  operators related to 
different electrons. The Eq. (1) requires wave function 
satisfy to the proportion ‘one attraction versus one repulsion’ 
whereas the integrated one with any trial wave function 
requires it satisfy the proportion ‘two attractions versus one 
repulsion’. Owing to the incorrectness any solution of the Eq. 
(1) has an exceeding curvature. Moreover, it does not 
describe real mot ion of the electrons in a two-electron atom. 
In fact, calculat ing total energy is a cunning trick aiming to 
get solution of the two-electron atom problem through the 
only one stationary Schrödinger equation and entirely in 
terms of probability density, like the hydrogen atom problem. 
Unfortunately, the two-electron problem cannot be solved in 
such a way. It  requires a time-resolved treating because 

electrons can visit the same point in space at different 
instants of time. Therefore, trajectories of the electrons 
should be explored. This is not surprising for the particles 
possessing the rest mass. Hence, it  is necessary to use 
Newton or Feynman mechanics. In  both cases the problem of 
correlation, in its present form, disappears because the 
electrons turn out to visit the same point at d ifferent instants 
of time. Then the function (4) becomes very suitable 
stationary function describing an averaged in time 
distribution of electron density and all interactions. 

The reported contradiction is met not only in the theory of 
two-electron atoms. It is principal one also in theory of many 
electron atoms and molecules. Therefore, to get a correct 
benchmark solution of the two-electron problem is very 
important. 

In conclusion, we find reasonable to distinguish three 
entities that govern the ground state of a two-electron atom: 1) 
volume independent probability represented in the stationary 
Schrödinger equation by the wave function (4); 2) volume 
dependent probability to find electrons close to one another; 
it is supposed to be steered by 3) classical dynamics of 
electron wave packets caused by their inertial propert ies.  
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