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Abstract  Electromagnetic-wave propagation through equilibrium p lasmas can lead to medium instabilities whose 
formation and growth conditions are of importance to study. Raman forward scattering (RFS) instability in low-density 
plasmas is investigated through particle-in-cell (PIC) simulation, which is employed due to plasmas’ high complexity, costly 
experiment process, and nonlinear behavior in physical terms. A 2D electromagnetic PIC code is used to model RFS 
instability. Doing so, a plasma medium containing ions and electrons is PIC simulated and ions are assumed to form a 
constant background because of high inertia . The results indicate that as a plane electromagnetic wave enters the plasma 
medium, large-amplitude longitudinal waves, whose growth rate is well consistent with the theoretical results, begin to grow, 
suggesting the appearance of RFS instability. 
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1. Introduction 
Various parameters such as instabilities are significant to 

describe equilibrium plasmas. A system is in instable 
equilibrium whenever there is a growing perturbation 
affecting the system’s total configuration or macroscopic 
quantities. In a simple classificat ion, the instabilities are 
divided into two main categories of position-space 
instabilities (macroscopic) and velocity-space instabilities 
(microscopic), which include electrostatic and 
electromagnetic instabilities. A plas ma current creates a 
magnetic field shrinking plasma and increasing current 
density, which causes electromagnetic instability. In this 
instance, 0E∇× ≠

 

 and the set of Maxwell equations 
must be completely solved[1]. 

Here, we dep loy  computer simulat ion  to  invest igate 
p las ma ins tab ilit ies . Th is  method  is  class ified  as  a 
computat ional s cience in  which  the start  po int  is  to 
s cient ifical ly  s tudy  the mathemat ical model o f the 
phenomenon. The equations of the mathematical model must 
become algebraically discrete in order to be understandable 
in terms of numerical solution. When the discrete equations 
are expressed as a series o f computer commands, they 
describe the simulat ion model as a computer s imulat ion 
program. A mass of data is produced even by the simplest  
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simulation calculations. Hence, most research efforts in this 
field have been focused to obtain appropriate simulation 
methods for physical systems that can be investigated using 
available computer resources. The main difference between 
a simulated plasma and a real plasma is in the number of 
charges, fields, and spatial/temporal criteria. A real plas ma is 
composed of a multitude of positive electrons and ions. In  a 
simulation process, a charged particle is essentially a 
homogeneous ensemble of numerous charged particles 
existing in a real plas ma. Therefore, its charge and mass is 
several times larger than real particles’. However, the 
simulated particles’ charge/mass ratio is the same as that of 
real part icles; consequently, we can substitute a lower 
number of charges in simulation and simulate physical 
phenomena by a limited number of particles. One of the main 
advantages of simulation is the low volume of arrays and 
calculations. The application of the word “particle” in 
computer memory represents the concept of charged 
particles occupying the real space. 

Note that, many theoretical investigations regarding 
Raman instability have been well carried out and this paper 
aims to reconcile the PIC simulation results with the 
theoretical results. 

2. RFS Instability and the Used 
Equations 

In Raman instability, an input large-amplitude light wave 
is transformed  into a scattered light wave and a plas ma 
electron wave. The phase velocity in direct forward 
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scattering is close to the speed of light and there are a tiny 
number of particles in the plasma background, absorbing 
energy required to be captured by these waves and 
accelerated consequently. If the input wave is propagated 
through a low-density plasma in a relat ively long distance, a 
large-amplitude plas ma electron wave will be created that 
can produce high-energy electrons[2]. 

An input wave ( 0 0,kω ) in the form of 

0 0 0cos( )E E k tω= −
 

 is transformed into a scattered 

wave ( ,s skω ) and a plasma electron wave ( ,ek pkω ) that 
follow the equations below[3]: 

2 2 2 2 2 2 2 2, 3s p s ek p p ek c k vω ω ω ω= + = +     (1) 

where /e B ev k T m=  is the thermal velocity of the 

plasma electrons, Bk  is the Boltzmann constant, and em  
denotes the electron mass. The frequency and wavenumber 
matching (phase matching) conditions are defined as: 

0 0,s ek s pk k kω ω ω= + = +
  

        (2) 

where 0ω  ( sω ) and 0k


 ( sk


) respectively represent the 
frequency and wavenumber of the incident (scattered) light 

wave, and ekω  ( pk


) denotes the frequency (wavenumber) 
of the plasma electron wave. 

The maximum growth rate of stimulated Raman backward  
and forward scattering (SRS) in homogeneous plasma is 
obtained from[4]: 

( )

1
2 2

04
p os pe

ek ek

k v ω
γ

ω ω ω
 

=  
−  

           (3) 

A wave must penetrate into the plasma in order to create 
Raman instability. Since the min imum frequency of a light 
wave in p lasma is peω  (plasma electron frequency), it is 

obvious that 0 2 peω ω≥ , based on the matching conditions. 

It means / 4crn n≤ , where n  denotes plasma density and 

crn  represents critical p lasma density[5]. Considering the 
plasma dispersion relation  and frequency, we obtain 

2 2
0 / 4crn m eω π= . It is called low-density plasma if 

/ 4crn n≤ . 

3. PIC Simulation Method 
PIC simulat ion is employed to trace the trajectory of 

charged particles, which are calculated on constant-lattice 
points, in a self-consistent electromagnetic field. The 
simulation outline is based on the concept that fields are 
self-consistent. If the distribution of particles at each time 
step and the values of the fields at the previous time step are 
known, the values of the field at the new t ime step can be 

determined using the equations governing the field 
(ampere-faraday). Such a field affects the motion of particles 
and rearranges them. This effect can be determined using the 
Lorentz force solution. Accordingly, these electromagnetic 
fields and the distribution of part icles affect each other. It  is 
the self-consistency of electromagnetic fields. The general 
algorithm of the written 2D electromagnetic PIC code is 
defined as follows: 

1) First, the program of the in itial conditions is written by 
determining the part icles’ position and velocity. Then, 
various parameters such as charge density and current 
density can be obtained in each time interval and on each 
lattice point through interpolation. By obtaining charge 
density and current density, the electromagnetic fields on the 
lattice points can be calculated by the field equations. 

2) The position of the phase points in the phase space is 
determined through the Newton–Lorentz equations. 
However, to do such calculations, we need to have the values 
of the fields on the phase points, which are obtained by 
extrapolating the values of the fields on the lattice points[6]. 
The values obtained for the position and velocity of the phase 
points are used as the initial conditions of the next time step, 
and all the program steps will fo llow the same procedure. All 
the above stages are written in a C++ code. 

There are some criteria to ensure that the code is properly 
implemented in terms  of the number of particles, temporal 
interval, and spatial interval. The number of part icles should 
be much h igher than that of lattice points, which ensures the 
fact that all the latt ice squares constantly averagely contain 
several particles during the simulation process. The spatial 
interval should not exceed the Debye length ( Dλ ) in order 
for the distribution of potential to be computable by charge 
separation. The temporal interval should be lesser than the 
inverse plasma electron frequency ( 1

peω− ) in order to produce 
plasma oscillations[7]. 

The first step to calculate a system of equations is to make 
them dimensionless to avoid the errors due to very large or 
small coefficients. The nondimensionalization of the 2D 
code with respect to the input wave’s properties is defined as: 

( ) ( )

0 0

2
0 0

, , ,

4,

vt t k x x v
c

q qE B E B J J
mc mc

ω

π
ω ω

→ → →

→ →
   (4) 

where  and  respectively denote the frequency and 
wavenumber of the input electromagnetic plane wave,  
and  are the mass and electric charge of particles 

respectively,  is the electric field,  is the magnetic 
field,  is the speed of light in vacuum,  is the current 
density,  is the velocity of particles,  is the position of 
particles, and  represents time. 

The interaction between an electromagnetic plane wave 
and a plasma lobe can be simulated through the Maxwell 
equations, which are defined in the Gaussian system as: 

0ω 0k
m

q
E B

c J
v x

t
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1 4 1, ,

. 4 , . 0

E J BB E
c t c c t

E B

π

πρ

∂ ∂
∇× = + ∇× = −

∂ ∂
∇ = ∇ =

 


   

   

 (5) 

Solving these equations in three dimensions leads to a 
quite complex ensemble of arrays and calculat ions. Hence, 
we try  to simplify  the calculat ions through reducing the 
problem’s dimensions. Here, we study the evolution of an 
electromagnetic plane wave with linear polarization 
propagated along the x-axis in an interaction with plasma. 
Accordingly, the vector potential components become 

(0, ,0)yA A=


; given that /E A tϕ= −∇ − ∂ ∂
  

 and 

B A= ∇×
  

, the electromagnetic-field components are 
defined as xE , yE , and zB . 

While a plane wave with such properties is passing, if the 
electrons do not have any initial velocity  along the z-axis, the 
motion of the particles will remain in the xy-plane and there 
will not be any evolution along the z-axis (Appendix A). 

4. Initial Conditions and the Simulation 
Model 

The init ial conditions and dimensionless data we used in 
the 2D electromagnetic code are as follows: 

The length of the simulation box along the x-axis and 
y-axis is chosen 50, the spatial distance between the lattice 
points along the x-axis and y-axis is 0.1, there is one particle 
in each cell, the total number of particles is 52 10× , the 
number of lattice points along the x-axis and y-axis is 501, 
the amplitude of the incident electric wave is 0.05, the 
wavelength of the incident wave is 6, the incident-wave 
wavenumber is 100/3, the frequency of the dimensional 
incident wave is 12 110 (sec )− , the initial density of the 
dimensional plas ma is 10 11.23 10 (cm )−× , and the 
dimensional-plas ma electron frequency is 9 16.1 10 (sec )−× . 

Considering the periodic conditions along the y-axis, the 
particles are assumed to be immobile electrons and placed 
within 5 45x< < . The spatial distribution of electrons is 
homogeneous. The plasma medium containing electrons and 
ions is simulated by the PIC method, and ions are assumed to 
form a constant background, owing to high inertia. However, 
the dynamics of the electrons is obtained through 
Newton–Lorentz equations. After calculation, we obtain 

101.23 10n = ×  and 133.1 10crn = × . Given /4crn n≤ , 
instability is expected to appear in the code results. The time 
steps are determined through C++. The program operation 
period is calculated by the number o f iteration. 

Given an  input electromagnetic plane wave with 

0
ˆsin( )E E t kx jω= −



 entering the right-handed boundary 

( 0x = ) of the simulat ion box, and applying 

0
ˆsin( )B E t kx kω= −



 to the same boundary according to 

the Maxwell equations, we investigate longitudinal-wave 
growth or RFS instability. Note that the theoretical 
investigations in this field  have been previously performed 
and this paper aims to compare those results with the results 
obtained from the PIC simulation. 

5. Results and Discussion 
The simulation box should be initially empty of plas ma to 

compare the transmission of the plane wave through plasma 
and vacuum. It can be shown that the propagation of an 
electromagnetic plane wave through the vacuum is in 
compliance with the theoretical results and there is not any 
longitudinal electric  wave. These numerical results suggest 
this code’s proper performance[8]. 

Now, regarding RFS instability, considering the init ial 
conditions and the simulat ion model, the electromagnetic 
plane wave first enters the vacuum boundary, and then enters 
the low-density plasma slab. This wave returns the vacuum 
region after passing this slab. 

Here we consider a thin p lasma slab and investigate the 
propagation of electromagnetic waves through it. Given an 

input plane wave ( 0
ˆsin( )E E t kx jω= −



) applying to the 

right-handed boundary ( 0x = ) of the simulat ion box, we 
study RFS instability or longitudinal-wave growth through 
plasma. 

 
Figure 1.  Longitudinal electric waves due to input-wave propagation 
through plasma 

Figure 1 shows how the longitudinal electric field grows 
due to the propagation of the input wave through plasma (the 
number of iteration is 5000). As evident, opposed to the 
vacuum state, the longitudinal electric field starts to grow 
and reaches the maximum of 45 10−× , which is 
considerable in comparison to the input-wave amplitude. 
The maximum longitudinal-wave amplitude is grown 
approximately one hundredth of the input-wave amplitude. 

Given that /4crn n≤  in this code, the plasma is 
expected to be transparent and the input wave easily passes 
through it. The correctness of this case has been already 
proved. 

Note that the growth of the longitudinal-wave amplitude is 
limited by turbulence resulting from holes in plasma. This 
issue implies the plasma nonlinear effects[9-11]. In  this state, 
the particles captured by the wave continuously exchange 
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energy with the wave. As can be seen in Figure 1, the 
longitudinal wave deteriorates as it progresses. 

However, since the density of the plasma particles is still 
much lesser than the critical density, the plasma is 
transparent and the propagation of the input wave through 
plasma is the same as what Figure 2 shows. 

 
Figure 2.  Transverse electric waves due to input-wave propagation 
through plasma 

The growth rate of instability is the most important 
parameter that should be measured. Figure 3 indicates the 
logarithmic diagram of the longitudinal electric field versus 
time. As can be observed, although it fluctuates, the field 
amplitude is substantial and shows a gentle trend for 25t > . 
The slope of the diagram at this reg ion can be considered as 
the field growth rate. Linear least-square fitting is the best 
technique to calculate the slope of this diagram. The slope of 
this diagram or the instability growth rate is obtained 

31.0127 10−× , showing a 12.52% deviation from the 
theoretical result ( 30.9 10−× ) obtained from Eq . (3). 

 
Figure 3.  The logarithmic diagram of Longitudinal electric field vs. t ime 

 
Figure 4.  Velocity along x-axis and y-axis vs. t ime 

Regarding the phase space, Figure 4 shows the maximum 
velocity along the x-axis and y-axis in each temporal interval 
for a 50-length simulation box and 5000 iterat ion steps. As 
evident, the velocity rises along both x-axis and y-axis, and 
declines for the next temporal intervals. 

6. Conclusions 
In this paper, RFS instability was simulated by a 2D 

electromagnetic PIC code written by C++. First, because we 
were sure about this code’s proper performance, the 
propagation of electromagnetic waves through vacuum and 
low-density plasma was investigated. We found that if the 
medium is a low-density plasma, there will not be a 
difference in the propagation of electromagnetic waves 
through plasma and vacuum. It means that a low-density 
plasma acts as a transparent medium against electromagnetic 
waves. Also, it  was observed that large-amplitude 
longitudinal waves are produced and grown when a plane 
wave passes through a low-density plasma. This case 
indicates instability in the propagation of electromagnetic 
waves through low-density plasmas. The slight difference 
between the calculated growth rate and the theoretical 
growth rate suggests this code’s proper performance. 

Appendix 
A. Simulation of field equations 

The Maxwell equations govern fields and electromagnetic 
waves, whereby we can study the evolution of 
electromagnetic fields in  time and position. Given the 
spatial-temporal dependence of electromagnetic fields 
(Faraday’s law and Ampère–Maxwell law), the 
discretizat ion of these dimensionless equations 
( /B t E∂ ∂ = −∇×
  

 and /E t B J∂ ∂ = ∇× −
  



) is 
defined as the following procedure. 

Considering the above equations (the temporal derivation 

of E


 and B


 at the left-handed side and their existence in 
the right-handed side), the temporal derivation has been 
performed using the leap-frog scheme in integer temporal 
intervals and temporal and spatial semi-integer intervals[11]. 

It is the time centering method and the accuracy of the 
temporal derivatives is of the second order. In the 2D space, 
fields are divided into transverse electric (TE) and transverse 
magnetic (TM) fields. All the spatial variab les, including 

K


, are on the xy-plane. Assuming . 0k B =
 

 for the TM 

fields, we have xE , yE , and zB . Assuming . 0k E =
 

 for 

the TE fields, we have xB , yB , and zE . The value of TE 
fields should not necessarily be calculated and saved since 
the TE fields remain zero in some applications[12]. 

Now, employing the Morse–Nielson discretization 
method, the temporal derivative of the Maxwell equations 
can be written as: 



 International Journal of Theoretical and Mathematical Physics 2012, 2(6): 215-220 219 
 

 

( )
( ) ( )1

1 11 , ,
2 22

1,
2

n n
x xj k j kn

t x j k

E E
E

t

+

+ ++

+

−
∂ =

∆
    (A.1) 

such that 

( ) 1,
2

1 , ,
2

n
x xj k

E E j x k y n t
+

  = + ∆ ∆ ∆    
 (A.2) 

where (1/2),( )n
x j kE +  denotes the x-component of the electric 

field at n t∆ , (1/ 2)j x+ ∆ , and k y∆ . Consequently, the 
Maxwell equations of the TM fields are defined as 
follows[12]: 

( ) ( )1 1 1 1, ,2 2 2 2

nn
t z x y y xj k j k
B E E

+ + + +
∂ = − ∂ − ∂    (A.3) 

( ) ( )
1 1
2 2
1 1, ,
2 2

n n

t x y z xj k j k
E B J

+ +

+ +
∂ = ∂ −         (A.4) 

( ) ( )
1 1
2 2

1 1, ,
2 2

n n

t y x z yj k j k
E B J

+ +

+ +
∂ = −∂ −        (A.5) 

For example, the extension of (A.3) is obtained as: 

( ) ( )

( ) ( ) ( ) ( )

1 1
2 2
1 1 1 1, ,
2 2 2 2

1 1 1 11, , , 1 ,
2 2 2 2

n n
z z

j k j k

n nn n
x xy yj k j k j k j k

B B

t
E EE E

x y

+ −

+ + + +

+ + + + + +

−

   
∆

−−
= − +

∆ ∆

(A.6) 

Assuming that  and  are known in  (A.6), 

 is obtained. Accordingly, we can determine the 
electric-field  components at the next  temporal interval 
( , ), and obtain the components of the electric 
and magnetic fields at all the time steps. 

The plasma particles do not have any initial velocity at the 
first step. Such that a laser beam radiates into a solid and 
makes it plasma. To calculate the magnetic field in the first 
temporal semi-interval, we use the equation below: 

          (A.7) 

As the equations indicate, the electric and magnetic fields 
are calculated at different time steps. The magnetic fields are 

calculated in the temporal semi-integer intervals ( ). 
The electric fields are calcu lated at the ends of the temporal 
integer intervals ( , , , and ). Since the 
fields should be necessarily the same in the motion of 

particles, we average  as[12]: 

 (A.8) 

Now, the values of current density and charge density 
should be obtained considering the Maxwell equations. To 
do so, a weight function is applied  to the latt ice points as[12]: 

Assuming that the th charged particle is placed on  

and , using the particles’ current density and charge 

density, a spatial lattice in which  and 

 is considered to obtain the fields. This lattice’s 

size, which is obtained from , should be small enough to 
avoid numerical errors. To calculate each particle’s current 
and charge density, we consider a surface weight function. 
These weights are given by: 

( )( ) ( )
, 1,, ,j k c j k c

x x y y x y y
x y x y

ρ ρ ρ ρ+
∆ − ∆ − ∆ −

= =
∆ ∆ ∆ ∆

 

 (A.9) 

where  is one cell’s charge density. The 
Boris method to calculate the current density is defined as: 

( ) ( )11 1
2 2

2

n n
n n j i j i
j i

i

S X x S X x
J v

+
+ + − + −

= ∑  (A.10) 

whereby the average weight function of the surface S  at the 

positions nx  and 1nx +  is multiplied by (1/2)nv +  and the 
current density (1/2)nJ +  is obtained, consequently. The four 
nearest points surrounding each particle are used to calculate 
that particle’s current density[12]. 

B. Simulation of single-particle 2D motion 

The following Newton–Lorentz equation is employed to 
study the motion of particles. 

( )dvm q E v B
dt

= + ×


 



          (B.1) 

which can be solved by three simultaneous scalar equations. 
However, the Boris method is simpler and o f the second 
order in  which the Newton–Lorentz equation is discretized 
as: 

1 1
2 2

1 1
2 2

2

n nn n
n nv v q v vE B

t m

+ +− − 
− + = + × ∆

  

   

 

 (B.2) 

where m  denotes the particle rest mass (electron or ion). In 
this method, because the electric and magnetic fields are 
investigated separately, there are two virtual velocit ies v+  

and v−  defined as: 

(1/2)n
zB −

,
n
x yE

(1/2)n
zB +

1n
xE + 1n

yE +

1
2

2
n n c tB B E

− ∆
= − ∇×

   

(1/2)n
zB ±

n
xE 1n

xE + n
yE 1n

yE +

n
zB

( )
( ) ( )

1 1
2 2
1 1 1 1, ,
2 2 2 2

1 1,
2 2 2

n n

z zj k j kn
z j k

B B
B

+ −

+ + + +

+ +

+
=

i jx

ky

jx j x= ∆

ky k y= ∆
x∆

( )
1, 1 , 1,j k c j k c

x x yxy
x y x y

ρ ρ ρ ρ+ + +

∆ −
= =

∆ ∆ ∆ ∆
/ Areac qρ =
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1
2

1
2 ,

2 2

n
n n

n qE t qE tv v v v
m m

+− − +∆ ∆
= − = +

 

   

 (B.3) 

Inserting (B.3) into (B.2), we obtain: 

 ( )2
nv v q v v B

t m

+ −
+ −−

= + ×
∆

 



 

     (B.4) 

which suggests that the vector ( )v v+ −+
 

 is perpendicular 

to the vector ( )v v+ −−
 

, and | | | |v v− +=
 

. The 

transformation v v− +→
 

 is a  θ -angle rotation, which is 
defined as: 

tan
2 2 2c

v v qB t t
v v m

θ ω
+ −
⊥ ⊥
+ −
⊥ ⊥

− ∆ ∆
= = =

+
   (B.5) 

where /c qB mω =  represents the cyclotron frequency 
[12]. To perform this rotation, we define two auxiliary 
vectors t  and s  as follows: 

2
2,

2 1
qB t tt s
m t

∆
= − =

+









       (B.6) 

Employing (B.6), we have: 
,v v v t v v v s− − + −′ ′= + × = + ×


      

  (B.7) 
where v′  is a  vector perpendicular to the vectors 

( )v v+ −−
 

 and B


. Therefore, the Boris method is 
composed of three steps[12]: 

1) The electric field affects (1/2)nv −  in the temporal 

semi-interval, and v −  is obtained. 

2) The magnetic field affects v − , and v +  is obtained 
through rotation. 

3) The electric field affects v + , and (1/2)nv +  is obtained. 
Accordingly, velocity  at the moment (1/ 2)n +  can be 

obtained by knowing the fields at n  and velocity at 
(1/ 2)n − . 
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