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Abstract  Cosmic strings can be formed  in  symmetry-breaking phase transition in the early  stage of the universe. They 
are topological defects, analogous to flux tubes in type-II superconductors, or to vortex filaments in superfluid helium. 
Cosmic strings consist of trapped regions of false vacuum in  U(1) gauge theories with spontaneous symmetry  breaking. 
Density perturbations that would be produced by these strings of GUT scale, Gμ= η2/Mpl

2 = 10-6, where G=1/Mpl
2is 

Newton's constant, Mpl the Planck mass, μ the mass per unit length of the string and η the symmetry breaking scale, could 
have served as seeds for the formation of galaxies and clusters. However, recent observation of the cosmic microwave 
back-ground (CMB) radiat ion disfavored this scenario. The WAMP-data prove that cosmic strings can't contribute more 
than an insignificant proportion of the primordial density perturbation,Gμ ≤ 10-6. The space time around a cosmic string is 
conical, with an angle deficit ∆θ ~ μ. They should produce axially symmetric gravitational lensing effect, not found by 
observations. Recently, braneworld scenarios suggest the existence of fundamental strings, predicted by superstring theory. 
These super-massive cosmic strings, Gμ~1, could be produced when the universe underwent phase transitions at energies 
much higher than the GUT scale. To overcome the conflict with observational bounds, we present the "classical" 
Nielsen-Olesen string solution on a warped five d imensional space time, where we solved the effective four dimensional 
equations from the fivedimensional equations together with the junction and boundary conditions. Where the mass per unit 
length in the bulk can be of order of the Planck scale, in the brane it will be warped down to unobservable GUT scale. It 
turns out that the induced four dimensional space timedoes notshow asymptotic conical behaviour. So there is no angle 
deficit and the space time seems to be un-physical, at least under fairly weak assumptions on the stress-energy tensor and 
without a positive brane tension. The results are confirmed by numerical solutions of the field equations. 
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1. Introduction 
The standard model is ext remely  successful up to scales 

MEW ~103 GeV. The fundamental scale of gravity is the 
Planck scale, MPl ~ 1019 GeV. It  is the scale where quantum 
gravity will act. The discrepancy between these two scales 
is called the hierarchy problem. Electro-weak interactions 
have been tested up to MEW , while gravity, on the other 
hand, has been tested to several millimetres, 32 orders of 
magnitude above MPl. 

Braneworld  models could overcome the hierarchy 
problem. The idea originates from string theory. 

One of the predictions of string theory is the existence of 
branes embedded in the full bulk space time. Grav itons can 
then propagate into the bulk, while other fields are confined 
to  thes e b ranes. It  als o  p red icts  that  space t ime is 
10-dimensional, with 6 of them are very compact and small, 
not verifiab le by any experiment. There are many models 
which attacked the hierarchy problem. Essentially there are  
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globally two categories: flat compact ext ra dimensions and 
warped extra dimensions. 

Recently, there is growing  interest in  the second category, 
i.e., the Randall-Sundrum(RS) warped 5-d imensional 
geometry ([1],[2]). We live in a 3+1 dimensional space time 
embedded in a 5-dimensional space time, with an ext ra 
dimension which can be very large compared to the ones 
predicted in string theory. One estimates that the ext ra 
dimension can be as large as 10-3 cm, which is the 
under-bound of Newton's law in our world. 

The observed 4-dimensional Planck scale Mpl = M4is no 
longer the fundamental scale but an effective one, an 
important consequence of the extra dimensions, which is 
now M5, the Planck scale in 5D. The weakness of gravity 
can be understand by the fact that it  "spreads" into the ext ra 
dimension and only a part is felt in the 4-dimensional brane. 

Spontaneously broken gauge theories give rise to 
topological defects, such as cosmic strings, monopoles and 
domain  walls. The simplest model is a U(1) gauge theory, 
involving a complex scalar field Φ interacting with the 
electromagnetic gauge field  and a "sombrero"-potential 
V(Φ) and described by the Lagrangian density ([3]) 

)(
4
1* Φ−−ΦΦ= VFFDDL µν

µν
µ

µ ,    (1) 
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withFμν the electromagnetic tensor and Dμ the 
gauge-covariant derivative. Cosmic strings occur as 
topological defects, consisting of confined regions of false 
vacuum in gauge theories with spontaneous symmetry 
breaking. When the temperature in the early universe falls 
down,the scalar field will develop a locus of trapped points 
of valse vacuum. This formation of vortices is equivalent to 
the Ginzburg-Landau theory of type II superconductivity. 

If local strings appeared in phase transitions in the early  
universe,they could have served as seeds for the formation 
of galaxies. However, observations of the cosmic 
microwave background, would rule out this model. Cosmic 
strings possess a conicalspace time, with an  angle deficit 
which could produce axially symmetric gravitational lens 
effects, not found by observations ([4]). 

M-theory, the improved version of superstring theory, 
allows, via braneworld scenarios, macroscopic fundamental 
strings that could play a ro le very similar to that of cosmic 
strings ([5],[6],[7]) 

The resulting super-massive cosmic strings are even 
more exot ic, because they could develop singular behaviour 
at finite d istance of the core of the string ([8],[9]). 

We will investigate on an axially symmetric 
5-dimensional warped space time the modifications of the 
behaviour of a gauge cosmic string in  the Abelian  Higgs 
model. The general relativ istic cosmic string was first 
investigated by Garfinkle ([10]) and later extended by Dyer 
and Marleau ([11]). 

In section 2 we outline the revised U(1) cosmic string in  
5D and present some numerical solutions. In section 3 we 
de investigate the angle deficit and the changes with respect 
to the 4D model. 

2. The Model 
Let us consider the warped 5 dimensional space time 

2 ( , ) 2 2

2 2 ( , ) 2 2

( )[ ( )
( , ) ]

A r t

A r t

ds F y e dt dz
dr K r t e d dyφ−

= − + +

         + +
 (2) 

F(y) the warp factor and y the extra dimension. For F=1 and 
y=0 we recognize the 4D axially  symmetric space time. We 
will follow the notations of references[12]-[15]. 

If there is a bulk scalar field (5)Φ (no coupling to a 5D 
gauge field Aμ , as in the 4D case), which could stabilize the 
branes ([16]), then we have for the 5D equations (from now 
on all the indices run from 0..4) 

µνµνµν κ TgG )5(2
5

)5(
5

)5( +Λ−=             (3) 

0)5()5()5( =Φ∇∇ µ
µ                 (4) 

with(5)Tμυ the energy momentum tensor of the bulk scalar 
field. When we write (5)Φ=(5)Xeiφ, then it turns out that the 
y-dependent part is separable. We obtain for F(y) and (5)X(y) 
the set equations 
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with c1 some constant. For c1=0 there exist exact solutions 
for F(y) and (5)X(y). It is remarkab le that these equations for 
F(y) and (5)X(y) are separable. 

 

 
Figure 1.  The warpfactor F(y) in the case of an empty bulk for positive 
bulk cosmological constant (upper) and negative one 

From now on we will consider the case of an empty bulk 
(c1 ≠1) and the field equations on the brane time-independent. 
There are two solutions for F, plotted in figure 1 
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with Di some constants. 
From the Einstein equations one obtains a constraint 

equation 

1
2

3
2

3
4)( c

K
K

K
AKA rrrr

r −
∂

−
∂∂

=∂  (9) 

Constraint systems appear whenever a theory has gauge 
symmetry, in general relat ivity equivalent to coordinate 
change. Gauge invariance implies here general covariance 
under coordinate transformations. In terms of fields on a 
space time one says that the theory has redundancy and the 
constraint equations are preserved in time ([17]). 

Let us now investigate the induced field equations on the 
brane. Following[14] we obtain 

 
Figure 2.The 5-dimensional cosmic string 

µνµνµνµνµν κκ ESTgG eff −++Λ−= 4
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whereΛeff=½(Λ5+κ4
2λ4) and λ4 the vacuum energy in the 

brane ( brane tension). (4)Tμν is the 4 d imensional energy 
momentum tensor. The equations for the 4D scalar and 
gauge fields are the same as in the 4D case([10]). The first 
correction term Sμν is the quadratic term in the 
energy-momentum tensor arising from the extrinsic 
curvature terms in the pro jected Einstein tensor 
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The second correction term Eμν is given by 
β

ν
α

µ
δγ

αγβδµν ggnnCE )4()4()5(=         (12) 

and is a part of the 5D Weyl tensor and carries info rmation of 
the gravitational field outside the brane and is constrained by 
the motion of the matter on the brane, i.e., the Codazzi 
equation. 

The induced metric on the brane is given by  (4)gμν= (5)gμν- 
nμnν , with nμ the unit normal vector on the brane. 
Eμνrepresents the 5D graviton effects, i.e., Kaluza-Klein 
modes in  the linearized theory ([1],[2]). In  the static case of 
the space time (2), one can evaluate the equations for K and 
A and the gauge fields X and P. In order to compare the 
change in behaviour of these equations with respect to 4D 
counterpart equations, we take the same combinations of the 
components of the Einstein equations as in the 4D case. The 
result is 
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where we used the same notations as in the 4D case , i.e., 
Θ1=K∂rA and Θ2=∂rK. Further, we write the energy 
momentum tensors as Tμν=σktkt+ρzkzkz+ρφkφkφ+ρrkrkr, 
Sμν=ξtktkt+ξzkzkz+ξφkφkφ+ξrkrkr, with ki a  set of orthonormal 
vectors on the 4D space time. We also used the constraint 
equation of (9). In the 4D case, the equations are, 
∂rΘ1=κ4

2K(ρr+ρφ) and ∂rΘ2=½κ4
2K(3ρr-2σ+ρφ), so we 

recognize the κ4-terms  in  ( 13) and (14). In  the special case of 
c1 = 8Λeff , we see on the right hand side that the κ5 term has 
the same combinations of the components of the 
energy-momentum tensor Sμν. On the left hand side we 
observe a difference due to the consequence of the Eμν term 
entering the equations. We will use these equations to 
evaluate the angle deficit in  our model. If we would take κ4

2 
= λ4κ5

4/6 ([1]) we then have 5 parameters for the model, i.e., 
β, e, η, λ4 and κ5. The effective field equations are 
supplemented by the 5D equations and the conservationof 
stress-energy. We can compare the numerical solution of the 
4D-brane equations with the "classical" Nielsen-Olesen 
solution. In figure 3 we plotted two solutions with the same 
initial conditions and parameters used by Garfinkle([10]). 
We used a standard routine using solely initial conditions. In 
order to find an "acceptable" solution, one has to fine tune 
the initial values ([11]). We observe that e-A K behaves 
differently. In the 4D case there is only a small deviation 
from Minkowski for large r, representing an angle deficit. 
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Figure 3.  Two characteristic solutions of the braneinduces U(1) gauge string. We used a standard "shooting" routine. We observe the same behaviour of X 
and P, but a significant different behaviour of e-AK. The dashed line represents the Minkowski space time 
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Figure 4.  Numerical solution of the metric component e-AKfor different values of the brane and bulk cosmological constants. The last one represents the 
most realistic situation, where λ4>0 and Λ5<0. The behaviour don't change significantly with increasing η 

In figure 4 we plotted e-AK for different values of the 
parameters. We don’t find a typical cosmic string behaviour 
as in the 4D case.For negative bulk cosmological constant, it 
seems to be possible to find a behaviour of e-AK which is 
comparable with the classical 4D behaviour ([10]). However, 
this is not a typical cosmic string situation. 

3.Analysis of The Angle Deficit 

The angle deficit can be calculated fo r a class of static 
translational symmetric space times which are 
asymptotically Minkowski minus a wedge. If we denote with 
l the length of an orbit  of (∂/∂φ)a in  the brane, then the angle 
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deficit is given by[10] 
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Using boundary conditions at the axis, we obtain  
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In order to evaluate the right hand side, we first calculate, 
as in the 4D case, the total derivative of the expression 
(κ4

2K2ρr) using the conservation of stress energy,  
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and the two field equations for A and K. We find after a 
straightforward calculat ion 
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Using the case where c1 =8Λeff and boundary conditions at 
the axis, we obtain 
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Further, we used that Sμν ~ (Tμν)2, so 
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Further we assumed |(4)Tμν | << λ4 ([14]). As in the 4D case 
we have also  

0lim 2 →
∞→

σK
r

 

and σ > |ρr| > |ρφ|. From the field equations we then have that 
Θ1 and Θ2 approach constant values k1 and k2 as r→∞.  The 
solution of (22)then yields 
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where we denote with 1Θ  and 2Θ  the asymptotic values. 
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The solutions for A  and K are then 
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with a0 and a2 some constants. The space time becomes 
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Let us compare our relat ion (22) with the 4D result: 
Θ1(Θ2-3/4Θ1)=κ4

2K2ρr. The solution 01 =∂=Θ AK results 
in a conical space time ([10]). In our case this solution is no 
option. We have now two possibilities fo r the asymptotic 
space time: both non-Kasner-like and non-conical. 
Combined with the warp factor F(y), the space time becomes 
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with F(y) in the empty bulk situation given by (8). These 
solutions are in  general un-physical. The behaviour depends 
on the sign of  k2/a2. Under less restrictive conditions, for 
example, c1 ≠ 8Λeffand with special choices of the parameters, 
the numerical solutions show some regular behaviour.Now 
we can evaluate the angle deficit. We can make a linear 
combination of (13),(14) and (22) in order to isolate the term 
e-AKσ ( as in the 4D case). We obtain: 
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The first term is again the linear energy density of the 
string and is of order η2. The correction terms are in contrast 
with the 4D case, unbounded and will give chaotic results, as 
is seen in the numerical solutions of figure 4. Only for 
positive brane tension and negative bulk tension (the 5D 
braneworld preferred values) there seems to be a stable 
solution for e-A K. However, this solution cannot be 
classified as a cosmic string. 

4. Conclusions 
Cosmic strings produced in the Einstein-Higgs-gauge 

field model at GUT-scales give rise to a conical space time 
and could have important cosmological effects. Strings 
produced at much higher energy scales, i.e., Gμ>> 10-6 ,show 
singular behaviour. They seem to be inconsistent with the 
observed CMB spectrum. One believes that cosmic 
super-strings with energy scale close to the Planck scale 
arising at the end of brane inflation in braneworld 
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cosmological models, could have comparable properties 
with respect to the GUT cosmic strings. Warped braneworld 
models with large extra dimensions could overcome the 
conflict with observation bounds. Here we considered on a 
warped 5D space time the "classical" self-gravitating 
Nielsen-Olesen vortex. It  seems possible that the absence of 
evidence of cosmic strings in observational data could be 
explained by our model, where the conical feature d isappears. 
In the super-massive case of Laguna and Garfinkle ([9]), i.e., 
where the linear mass per unit length Gμ>> 10-6, a  continuous 
transition occurs from a conical space time to a Kasner-type 
with  a curvature singularity at  finite  distance of the core for 
increasing symmetry breaking energy scale. In our induced 
brane space time we find a different result. On the brane, 
there is no conical space time, measured far from the core of 
the string. The solutions don't change significantly for 
increasing symmetry breaking scale η. We find an exact 
expression for the warp factor, which will warp down the 
found Kasner-like solutions. The numerical solutions 
confirm our conclusion. 
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