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Abstract  We consider the problem of linear stability of steady-state plane-parallel flows of inviscid incompressible fluid of 
uniform density with free surface in the gravity field. Using the method of coupling the integrals of motion, we prove that 
sufficient conditions for the stability of these flows to small plane long-wave perturbations are absent. We construct an 
analytic example of a steady-state plane-parallel flow with small plane long-wave perturbations superimposed as normal 
modes  
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1. Introduction 
The wave motions in fluids undoubtedly belong to those 

natural phenomena which the human civilization has been 
dealing with essentially throughout its entire history. Thus, it 
is quite natural that people have constantly tried, and keep 
trying, to learn how to use waves in fluids beneficially. 
However, this requires a thorough understanding of wave 
motions in fluids and their properties. 

It is known that mathematical modelling is one of the main 
methods for studying waves in fluids. Unfortunately, often 
mathematical models of wave motion in fluids turn out quite 
complicated, and their analytic treatment is difficult. Then 
we can simplify the mathematical models using the long- 
wave approximation[1]. 

Mathematical models of long-wave fluid motions are dis-
tinguished by a combination of relative simplicity and ac-
ceptable accounting for the physical characteristics of in-
terest. Nevertheless, while applying mathematical models of 
long waves in a fluid, we should pay particular attention to 
the adequacy of scientific results to the fluid wave motions 
being described. 

In this article we study precisely the problem of adequacy 
of mathematical modelling of waves in fluids on an example 
of a basic mathematical model of long-wave fluid motions: 
the model of propagation of long waves on the free boundary 
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of a horizontal layer of a whirling ideal incompressible fluid 
of uniform density in the gravity field [2]. 

2. Statement of the Exact Problem 
We study plane long-wave flows of inviscid incom-

pressible fluid of uniform density in an infinitely long thin 
layer above horizontal bottom in the gravity field. We ne-
glect surface tension on the free boundary of the fluid layer. 

Under these assumptions, the Benney system of equations 
[2, 3] becomes 

, 0,t x y x x yu uu vu gh u v+ + = − + =                (1) 

where ( )tyxu ,,  and ( )tyxv ,,  are the horizontal and verti-
cal components of the velocity field of the fluid; 

0const >≡g  is the free fall acceleration; ( )txh ,  is the 
thickness of the fluid layer; t  is time; x  and y  are Carte-
sian coordinates. Henceforth independent variables appear-
ing in the lower indices indicate the corresponding partial 
derivatives of the functions in question.  

In addition to (1), we impose the following boundary 
conditions: (a) the impermeability condition 

0v =                                              (2) 
at the bottom (for 0=y ); (b) the kinematic condition 

0t xh uh v+ − =                                     (3) 

on the free boundary of the fluid layer (for hy = ). 
We take 

( ) ( ) ( ) ( )0 0, , 0 , , , 0u x y u x y h x h x= =           (4) 

as the initial data for the first equation in (1) and for (3), 
requiring that 0u  and 0h  satisfy the second equation in (1), 
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as well as (2). 
Then in the initial-boundary value problem (1)-(4) it is 

convenient to pass from the Euler independent variables 
,, xt  and y  to the mixed Euler-Lagrange variables ,, xt ′′  

and λ  [4]. This transition enables us to replace the initial- 
boundary value problem in a fluid layer with free boundary 
with a simpler mixed problem in a channel with fixed 
boundaries. 

The change of variables is given by[4] 
( ) [ ], , , , ; 0, 1 .t t x x y t x λ λ′ ′ ′ ′= = = Φ ∈         (5) 

Here λ  is the Lagrangian coordinate enumerating the 
trajectories of fluid particles in the layer; the function Φ  is 
assumed to satisfy 

.t xu v′ ′Φ + Φ =                              (6) 
It is important that the validity of the boundary conditions 

(2) and (3) follows automatically from (5) and (6). 
As a result, the mixed problem (1)-(4) becomes 

( )0, 0;t x x t xu uu gH uρ ρ+ + = + =  

( )
1

0

, , , ;H d t xλρ λ ρ λ≡ ≡ Φ∫                   (7) 

( ) ( ) ( ) ( )0 00, , , , 0, , , ,u x u x x xλ λ ρ λ ρ λ= =  

where we omit the primes on the independent variables t ′  
and x′  in order to avoid making the subsequent relations too 
bulky. 

The solutions to the initial-boundary value problem (7) 
characterize the plane long-wave flows of ideal incom-
pressible fluid of uniform density in the gravity field in an 
infinitely long horizontal channel of unit width, whose upper 
wall ,1=λ  because of the change (5), (6) of independent 
variables, corresponds to the free surface hy =  of the fluid 
layer, while the bottom wall ,0=λ  to its bottom .0=y  

The mixed problem (7) possesses the energy integral 
1

2 2

0

1 const
2 2

gE u d dx H dxρ λ
+∞ +∞

−∞ −∞

≡ + =∫ ∫ ∫        (8) 

provided that its solutions are either periodic or localized 
along the x -axis. 

Moreover, it is not difficult to show that the initial- 
boundary value problem (7) also has the integral of motion 
[5] 

( )
1

0

const.C u F d dxλ κ λ
+∞

−∞

≡ =∫ ∫             (9) 

Here 

: 0t xu
uλ

ρκ κ κ≡ + =  

and ( )κF  is an arbitrary function of its argument. 
Finally, the mixed problem (7) admits exact stationary 

solutions 
( ) ( )0 0 0, , const,u u H Hλ ρ ρ λ= = = ≡     (10) 

where 0u  is an arbitrary function of the independent vari-
able ,λ  while 0ρ  is a non-decreasing function of .λ  It is 
not difficult to show that ,0u  ,0ρ  and 0H  indeed make all 
equations of the initial-boundary value problem (7) into 
identities. 

The goal of our further study is to find out whether the 
exact stationary solutions (10) are stable to small plane 
long-wave perturbations ( ),,, λxtu′  ( ),,, λρ xt′  and ( )., xtH ′  

3. Statement of the Linearized Problem 
To this end, we linearize the mixed problem (7) in the vi-

cinity of the exact stationary solutions (10), which leads to 
the initial-boundary value problem 

0 0 00, 0;t x x t x xu u u gH u uρ ρ ρ′ ′ ′ ′ ′ ′+ + = + + =  
1

0

;H dρ λ′ ′= ∫                                    (11) 

( ) ( ) ( ) ( )0 00, , , , 0, , , ,u x u x x xλ λ ρ λ ρ λ′ ′ ′ ′= =  

on whose evolutionary solutions, in turn, there is a time- 
invariant functional 

( )
1 0 2

0 2 0 0 2
1 2

0

1 2
2

du d FE u u u d dx
d d

ρ ρ κ κ λ
λ κ

+∞

−∞

 
′ ′ ′ ′≡ + + + 

 
∫ ∫  

2 ,
2
g H dx

+∞

−∞

′+ ∫                                                       (12) 

a linear analog of the energy integral. Here 
10

0 0 ;du
d

κ ρ
λ

−
 

≡  
 

 

20 0
0 0: 0.t x

du duu u
d dλκ ρ ρ κ κ
λ λ

−
  

′ ′ ′ ′ ′≡ − + =  
  

 

We found this expression for the functional 1E  using the 
method of coupling the integrals of motion [6-10]. 

Indeed, it is easy to verify that the first variation Jδ  of 
the functional const=+≡ CEJ  (8), (9) vanishes on the 
exact stationary solutions (10) when 

( )
02

0 0 ,
2

dF u gH
d

κ
κ

= − −  

( )
02

0 0 0

1
2

uF gH u dx
λ

κ κ δ
+∞

−∞ =

  
+ + =  

  
∫                (13) 

( )
02

0 0 0

0

,
2

uF gH u dx
λ

κ κ δ
+∞

−∞ =

  
= + +  

  
∫  

where uδ  is the first variation of the horizontal component 
u  of the velocity field of the fluid. The second variation 

J2δ  of the integral ,J  calculated using the first relation of 
the system (13) and expressed in terms of the small plane 
long-wave perturbations (11), is of the same form as the 
functional 1E  of (12) in the case that the constraint 

( )
02

0 0 0 2

1
2

uF gH u dx
λ

κ κ δ
+∞

−∞ =

  
+ + =  

  
∫  

( )
02

0 0 0 2

0
2

uF gH u dx
λ

κ κ δ
+∞

−∞ =

  
= + +  

  
∫                (14) 

is satisfied (here u2δ  is the second variation of the hori-
zontal component u  of the velocity field of the fluid). 

It is worth observing that the second expression in (13) 
and the relation (14) are not dynamically contradictory and 
do not overdetermine the mixed problem (11) since its 
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equations form a system of order 2, while the walls 0=λ  
and 1=λ  of the channel in which the fluid is flowing are 
free of boundary conditions. Incidentally, we can satisfy the 
second expression in (13) and the relation (14) by restricting 
not the class of small plane long-wave perturbations (11), but 
the class of exact stationary solutions (10) by imposing on 
the function ( ),κF  in addition to the first expression in (13) 
as a requirement, the restriction 

( ) ( )
( )

0

0

0
1 10 0 0

102
10

,
F

F d
κ

κ

κ
κ κ κ

κ
= − ∫  

where ( )0
1 κF  is a function of its argument such that 

( )
( )

( )
( )0 0 0 0

0 0
1 10 1

0, 0;F F
κ κ κ κ

κ κ
= =

= =  

here ( )00κ  and ( )10κ  are the values of ( )λκ 0  for 0=λ  
and 1=λ  respectively, and 0

1κ  is the variable of integra-
tion. 

In accordance with the method of coupling the integrals of 
motion, the exact stationary solutions (10) to the initial- 
boundary value problem (7) are stable to small plane long- 
wave perturbations (11) if and only if the functional 1E  of 
(12) is sign definite or at least semidefinite. 

In order to find out whether 1E  is sign (semi)definite, it is 
convenient to express it as 

( ) ( )
1

T
1

0

, ; , , , .E A d dx u Hλ ρ κ
+∞

−∞

′ ′ ′ ′= ≡∫ ∫ f f f      (15) 

Here ikaA =  is the 44×  matrix with nonzero entries 
0 0

11 12 21 24 42, , ,
2 2 4

u ga a a a aρ
= = = = =  

( )
0 2

0
33 2

1 .
2

du d Fa
d d

κ
λ κ

=  

According to Sylvester's criterion[11], the integrand in the 
functional 1E  of (15) is positive definite if and only if all 
principal minors of A  are positive. At the same time, this 
expression is negative definite if and only if the principal 
minors of A  have the signs ( ) ,1 m−  where m  is the size of 
the principal minor. 

It is easy to verify that the principal minors of A  fail the 
requirements for sign definiteness. Indeed, for both positive 
and negative definiteness of the integrand in 1E  of (15) the 
size two principal minor 2∆  of A  must be positive. How-
ever, ,0402

2 <−=∆ u  which prevents the integral 1E  
from being sign (semi)definite. 

This implies that no sufficient conditions exist for the 
stability of the exact stationary solutions (10) to the mixed 
problem (7) to small plane long-wave perturbations 
( ),,, λxtu′  ( ),,, λρ xt′  and ( )., xtH ′  
However, for the initial-boundary value problem (7) a 

condition for the hyperbolicity of its equations was obtained 
in[1,3] by generalizing the method of characteristics to ei-
genvalue problems for operators. Whenever those articles 
discuss the mixed problem (11), this condition is treated no 
less than as a sufficient condition for the stability of the exact 
stationary solutions (10) to the initial-boundary value prob-
lem (7) to small plane long-wave perturbations. 

The result on the absence of sufficient conditions for lin-
ear stability, established above using the method of coupling 
the integrals of motion[6-10], clearly contradicts this result 
of[1,3]. 

Since the very fact of presence or absence of sufficient 
conditions for stability must be independent of the choice of 
a method for obtaining them, in order to resolve this contra-
diction, below we construct, jointly with my former student 
E. Yu. Knyazeva, an analytic example of an exact stationary 
solution (10) to the mixed problem (7) with small plane 
long-wave perturbations (11) superimposed as normal 
modes. 

4. Example 
We study the exact stationary solution (10) to the ini-

tial-boundary value problem (7) as 
( ) ( )0 3 th 100 0,5 ,u u Iλ λ= ≡ −    

( )0 01, 1; 1,H H gρ ρ λ= ≡ = ≡ ≡       (16) 

( )
( )( )

21

22
0

9th 100 0,5 1
0,0767 0.

9th 100 0,5 1
I d

λ
λ

λ

− −  ≡ ≈ >
− +  

∫  

We superimpose on this solution small plane long-wave 
perturbations ( ), , ,u t x λ′  ( ), , ,t xρ λ′  and ( ),H t x′  (11) as 
normal modes. Namely, 
( ) ( ) ( ) ( ) ( ) ( )1 1, , exp , , , exp ,u t x u t i x t x t i xλ λ α β ρ λ ρ λ α β′ ′= + = +

( ) ( ) ( )
1

1
0

, exp ;H t x t i x dρ λ α β λ′ = +∫          (17) 

( ) ( )
( )1 10 20

, ,B i Bu
i u i u

βλ ρ λ
α β α β

= = −
+ +

 

where 1 2iα α α≡ +  and B  are arbitrary complex constants, 
while ,β  1,α  and 2α  are arbitrary real constants. 

The functions (16) and (17) make the first two relations of 
the mixed problem (11) into identities provided that the 
characteristic equation[1,3] 

( )
( )

1

20
0

1 ,d ik k
u k

λ αχ
β

≡ − ≡
−

∫           (18) 

is satisfied. 
It is appropriate to note that the characteristic equation of 

type (18) was studied in detail in[1,3] only in the following 
two cases: (1) k  is a real constant, χ  is a real characteristic 
function; (2) k  is a complex constant, χ  is a complex 
characteristic function. Furthermore, in the second case it is 
established that if for definiteness, and without loss of gen-
erality, we assume that 0uλ >  then the characteristic equa-
tion (18) lacks complex roots if and only if a hyperbolicity 
condition is fulfilled; this is the limiting relation following 
from the condition of vanishing of the argument of the ana-
lytic function χ  of the complex variable k  as we go in the 
positive direction around a contour in the meromorphy do-
main of χ  surrounding its zeroes and poles, but not passing 
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through them (see, for instance, (1.11) on p. 252 of [1]). 
However, the case that k  is a complex constant and χ  is a 

real characteristic function is not covered in[1,3]. Below we 
fill this gap. 

More concretely, it is not difficult to observe, and this is 
also the convention in[1,3], that the function ( )0u λ  of (16) is 
strictly increasing since 

( )
0

2

300 0.
ch 100 0,5

du I
dλ λ

= >
−  

 

Now take 2 0α ≡  and 1 1 ,kα β≡  where 1k  is some real con-
stant. Then, since ( )0u λ  is an odd function, it follows that 

( )
( )

1 0

1 202 2
0 1

Im 2 0,u dk k
u k

λχ = − ≡
+

∫  

and the characteristic function ( )kχ  of (18) becomes real: 

( ) ( ) ( )
( )

1 02 2
1

1 1 202 2
0 1

Re 1 .
u kk k k d
u k

χ χ χ λ
−

= ≡ = −
+

∫    (19) 

Moreover, direct calculations show that 1k I=  is a root of 
(19). Indeed, 

( ) ( )
( )( )

21

1 22
0

9 th 100 0,5
1

9 th 100 0,5

I I
I d

I I

λ
χ λ

λ

− −  = − =
− +  

∫  

( )
( )( )

( )
21

22
0

9th 100 0,5 11 11 0.
9th 100 0,5 1

d I I
I I

λ
λ

λ

− −  = − = − =
− +  

∫  

Hence, 1k ik i I= =  is a complex root of the characteristic 
equation (18). 

This implies that since the characteristic function ( )kχ  of 
(18) and (19) is real, the hyperbolicity condition[1,3] for the 
equations of the initial-boundary value problem (7) is ful-
filled. Nevertheless, despite this condition, we discovered 
that the characteristic equation (18) has the complex root 

.k i I=  The reason for this contradiction is that the hyper-
bolicity condition[1,3] for the equations of the mixed prob-
lem (7) is fulfilled not for all possible pairs of small plane 
long-wave perturbations (11), but only for subclass of them 
(which, and this is important, is not independent). 

Consequently, the example constructed above shows ir-
refutably that the generalization[1,3] of the method of 
characteristics to eigenvalue problems for operators is erro-
neous, confirming simultaneously the validity of the method 
of coupling the integrals of motion[6-10]. Moreover, since 
much arbitrariness remains for the constant 1 ,α  for 1 0α >  
our example can be interpreted as an example of the incor-
rectness of the initial-boundary value problem (11) in the 
sense of Hadamard[12]. Finally, in the case 1 0α >  small 
plane long-wave perturbations ( ), , ,u t x λ′  ( ), , ,t xρ λ′  and 

( ),H t x′  of (11) as normal modes (17)-(19) increase in time, 
which, in turn, creates the instability of the exact stationary 
solution (16) to the mixed problem (7). 

5. Conclusions 
Thus, on the example of a mathematical model of the 

propagation of long waves on the free surface of a thin infi-
nitely long horizontal layer of a whirling inviscid incom-
pressible fluid of uniform density in the gravity field we have 
demonstrated that the generalization[1,3] of the method of 
characteristics to eigenvalue problems for operators is inap-
propriate for adequate mathematical modelling of waves in 
fluids. 

For this reason, it appears logical that the study of this 
subject must be continued in the following main directions: 
(1) to prove the absolute instability of the steady-state plane- 
parallel shear flows (10) to small plane long-wave perturba-
tions (11); (2) to obtain sufficient conditions for the practical 
linear instability of these flows to the same perturbations; 
and (3) to find new hyperbolicity conditions which would be 
expressed in terms of the integrals of motion and would 
therefore isolate properly independent particular classes of 
long waves. 
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