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Abstract  A non-linear mathematical model is formulated and analysed to study the mathematical modelling of the 
optimal control of HBV infection in the presence of cytotoxic cells. The proposed model describes the interaction between 
normal cells, HBV and cytotoxic cells. The goal is to maximize the number of normal cells by evaluating the impact of 
optimal control strategies mainly treatment and preventions activities in terminating or restricting the spread of the disease. 
In this study, the existence of an optimal control pair is obtained. Also numerical simulations and sensitivity analysis are 
carried out to determine key parameters contributing to the spread of the disease and to illustrate analytical results. A 
sensitivity analysis shows that the control variable, which represents the efficiency of preventions activities, is the most 
sensitive parameter and the least is death rate of HBV due to treatment. Numerical studies of the model are carried out to 
see the effects of the key parameters on the optimal control of HBV infection in the presence of cytotoxic. The result of the 
study showed that application of optimal control in the presence of cytotoxic cells leads to the decrease of infection of HBV 
disease. 
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1. Introduction 
Hepatitis is an inflammation of the liver, most commonly 

caused by a viral infection. There are five viruses that cause 
hepatitis, called hepatitis A, B, C, D and E. Hepatitis B 
virus (HBV) is the most serious type of viral hepatitis. 
Hepatitis B is an infection that attacks the liver and can 
cause both acute and chronic HBV disease. HBV is a major 
global health problem, and puts people at high risk of death 
from scarring (cirrhosis) of the liver and liver cancer. More 
than 240 million people have chronic (long-term) liver 
infections [9]. About 600000 people die every year due to 
the acute or chronic consequences of hepatitis B [8]. About 
5% of the world’s population are chronic carriers, and with 
an annual occurrence of more than 50 million [5]. The virus 
is transmitted through contact with the blood or other body 
fluids of an infected person, and is preventable with the 
currently available safe and effective vaccine. 

The most common ways of infection of HBV are: 
through intravenous drug use, through unprotected sexual 
activities, from mother to baby at birth; and child-to-child  
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transmission through household settings for example, via 
open wounds. Most infections occur during infancy or 
childhood. Since most infections in children are 
asymptomatic, there is little evidence of acute disease 
related to HBV, but the rates of chronic liver disease and 
liver cancer in adults are high [1]. 

Once infected with hepatitis B virus (HBV), there is an 
incubation period of four to ten weeks; the surface antigen 
HBsAg then becomes detectable in the blood, with 
anti-HBC antibodies detectable shortly after. Another 
surface antigen, HBeAg, is then released into the blood 
indicating that the virus is infecting the liver cells and the 
host is highly infectious [4]. 

Molecular techniques have provided fundamental insight 
into the fine detail of the interaction between HBV and 
immune system. However, many biologically important 
questions are not primarily concerned with the molecular 
mechanisms of immune recognition but with the population 
dynamics of the immune response. Mathematical models 
are always needed to answer the questions of the interaction 
between HBV and immune system. 

Mathematical modelling and model analysis of the 
Hepatitis dynamics are important for exploring possible 
mechanisms and dynamical behaviours of the viral infection 
process, estimating key parameter values, and guiding 
development of efficient antiviral drug therapies. 
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Cytotoxic cells, also called cytotoxic T cells or Cytotoxic 
T lymphocyte (CTL) are type of immune cells that can kill 
certain cells, including foreign cells, cancer cells, and cells 
infected by a virus. Cytotoxic cells are produced in small 
numbers in the body and could possibly be isolated from 
other blood cells, cultured in the laboratory by using the 
technique called “induced pluripotent stem-cell” to make 
them propagate and may be directly injected into patients 
for therapy. 

In this paper, it is intended to determine the optimal 
control of hepatitis B Virus (HBV) infection in the presence 
of cytotoxic cells, by extending the work by [7]. It is 
intended to maximize the number of normal cells (cells of 
the main tissue of the liver). 

Several studies so far have been carried out to analyse 
mathematically the control of HBV disease with acute and 
chronic stages. [7], carried out a research on optimal 
antiviral treatment strategies of HBV infection with logistic 
hepatocytes growth without considering the effect of 
cytotoxic cells. Therefore, this study intends to extend the 
work by [7], by including cytotoxic cells and determine the 
optimal control of the disease. 

2. Model Formulation 
A nonlinear mathematical model is proposed and analysed 

to study the optimal control of HBV infection in the presence 
of cytotoxic cell. In the proposed model, it is assumed that 
the use of prevention activities and treatment are applied as a 
control of the disease for a given time interval. It is assumed 
that, the optimal control of inhibiting viral production in the 
presence of cytotoxic cells will reduce the HBV infection. In 
modelling process, the classes considered are Normal cells, 
which are the main cells of the liver, HBV and cytotoxic 
cells. 

In formulating the model, the following assumptions are 
taken into consideration: 

i.  Normal cells grow at a rate that depends on the 
homeostatic liver size, at a maximum per capita 
proliferation rate. 

ii.   The normal cells become infected at maximum rate  
iii.  Cytotoxic cell are created by normal cells at per 

capita rate, and rate stimulation of cytotoxic cells 
by HBV is   

iv.  Cytotoxic cells are deactivated by HBV at rate and 
they naturally die at rate µ2. 

v.  The cytotoxic cells stimulation half saturation rate 
is σ 

vi.  The HBV naturally die at rate and death rate of 
HBV due to treatment is  

vii.  HBV is distracted by cytotoxic cell at rate  
viii.  The control functions and are bounded Lebesgue 

integrable functions. 
ix.  The control represents the efficiency of 

preventions activities in blocking new infection 
x.  The control represents the efficiency of treatments 

in inhibiting viral production. All parameters in 
the mathematical model are strictly positive. 

Table 2.1.  State variables of the HBV model 

Symbols Descriptions 

x  Normal cell 

y  HBV 

z  Cytotoxic cell 

Table 2.2.  Parameters of the HBV model 

Parameter Descriptions 

K  normal cell carrying capacity 

1r  growth rate of normal cell 

2r  rate stimulation of cytotoxic cells by HBV 

ϕ  production rate of cytotoxic cell 

β  contact rate (rate of infection of normal cell) 

1µ  natural death rate of HBV 

2µ  natural death rate of cytotoxic cell 

1u
 

control variable (due to prevention activities) 

2u
 

control variable (death rate of HBV due to treatment) 

1c
 

rate of destruction of HBV by cytotoxic cell 

2c
 

rate of deactivation of cytotoxic cell by HBV 

σ
 

cytotoxic cells stimulation half saturation rate 

Taking into account the above considerations, we then 
have the following schematic flow diagram: 

  
Figure 2.1.  Model Flowchart 

The model is thus governed by the system of non linear 
ordinary differential equations given in Appendix A. 
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The nonlinear system (1) will be qualitatively analysed so 
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as to find the conditions for existence of a disease-free 
equilibrium points. The analysis of the model allows us to 
determine the impact of optimal control strategy for HBV 
disease in the presence of cytotoxic cells. On finding the 
basic reproductive number, one can determine if the disease 
vanishes or persists. 

3.1. Positivity of the Solutions 
It is necessary to prove that all solutions of system (1) with 

positive initial data will remain positive for all times . 
This will be established by the following Lemma. 

Lemma 3.1 

If  are nonnegative then 
 remain nonnegative for all  (Lashare 

et al., 2012). 

To prove the above Lemma the equations of the system 
(1) are used. From the system (1), 

 

To determine positivity of  we consider 

 

which gives 

. 

Hence 

 
Similar proofs can be established for the positivity of the 

other solutions. 

3.2. Disease-free Equilibrium Point (DFE) 

The disease free equilibrium of the model (1) is obtained 
by setting 

 

Let  be the equilibrium point of the 
system (1). Then, setting the right hand side of system (1) to 
zero, we get 

and  

Therefore, the Disease-free equilibrium (DFE) denoted 
by  of the model system (3.1) is given by, 

               (2) 

 

3.3. Model Reproduction Number 

The reproduction number  measures the average 
number of newly infected cells that arise from any one 
infected cell in the beginning of the infection. It is obtained 
by taking the dominant eigenvalue (spectral radius) of 

           (3) 

where  
 is the rate of appearance of new infection in 

compartment   
 is the transfer of individuals into compartment   

 is the transfer of individuals out of compartment  
by all other means.  

 is the DFE 

 

By linearization approach, the associated matrix at disease 
free equilibrium is obtained as 

             (4) 

This gives 

 

At DFE . Therefore 

               (5) 

The transfer of individuals out of the compartment i is 
given by 

        (6) 

Using the linearization approach, the associated matrix at 
DFE is given by 
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It follows that the effective reproduction number is given 
by, 

              (11) 

It is observed that only the parameter, ,  and the 

control variables  and  affect the reproduction 

number .  

If , then an individual becomes 

HBV-free [6]. Epidemiologically, this implies that HBV 
can be eliminated from the society if . That means 

if , then on average, an infected normal cell 
produce less than one new infected normal cell over the 
course of infectious period and the infection cannot grow. 

3.4. Sensitivity Analysis 
In determining how best to reduce human mortality and 

morbidity due to HBV infection, the sensitivity indices of the 
effective reproductive number ‘ ’ to the parameters in the 
model is calculated using approach of [2]. These indices tell 
us how crucial each parameter is to disease transmission and 
prevalence and discover parameters that have a high impact 
on  and should be targeted by intervention strategies. 
The normalized forward sensitivity index of a variable to a 
parameter is a ratio of the relative change in the variable to 
the relative change in the parameter. When a variable is a 
differentiable function of the parameter, the sensitivity index 
may be alternatively defined using partial derivatives. 

Definition: The forward sensitivity index of variable  
that depends differentiably on index on a parameter  is 
defined as: 

 

We derive an analytical expression for sensitivity of  
as: 

 

to each parameter involved in . The sensitivity 
calculations are performed using a set parameter 
estimations given in table 3.1 of the model system (1) are 
called out using a set of parameter values given in the  
Table 3.1. 

For example the sensitivity indices for  with respect 

to , , and  are given by; 

 

 

respectively. 

Table 3.1.  Parameter estimations 

Parameter Estimated value 

 0.054 

 
0.0033 

 
0.0248 

 340 

The other indices,  , , and  are obtained 
following the same method and tabulated as follows: 

Table 3.2.  Numerical values of sensitivity indices of  to parameters 

for the HBV model, evaluated at the baseline parameter values given in 

Table 3.1 

Symbol Sensitivity index 

 
+1 

 +1 

 
-1.9868865487 

 
-1.9868865487 

 
-0.5 

Table 3.2 above, shows that when the parameters,  
and  increase while the other parameters remain 
constant, the value of  increases implying that they 
increase the HBV infection as they have positive indices. 
When the parameter ,  and  increase while 

keeping other parameters constant, the value of  
decreases, implying that they decrease the HBV infection as 
they have negative indices. But individually, the most 
sensitive parameter is the control rate due to prevention 
activities and HBV death rate. 

4. Analysis of Optimal Control 
In this section, the model system of equations (1) is 

analysed qualitatively to determine the optimal control of 
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HBV infection in the presence of cytotoxic cell. The aim is 
to maximize the objective functional 

  (12) 

where the parameters  and  are based on 
the benefits and cost of the treatment and prevention 
activities. 

The aim is to maximize the objective functional in (12), 
by increasing the number of normal cells (cells of the main 

liver). That means an optimal control pair  is 

determined such that 

      (13) 

where  is the control set defined by 

:  measurable, 

       (14) 

4.1. Characterization of the Optimal Control 

Since an optimal control exists for maximizing the 
functional (12) subject to equations (1), Pontryagin’s 
maximum principle is applied to 

(15) 

where 

         (16) 

and  are the adjoint functions to be 
determined. 

Theorem 3.4 

Given optimal controls  and solutions  

and  of the corresponding state system (1), there exists 
adjoint parameters  and  satisfying 
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where,  and  are the adjoint variables. 
This can be determined by solving the system by using 

Pontryagin’s Maximum Principle, of which;  
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with transversality conditions; 

          (19) 

The optimal control is given by: 

  (20) 

        (21) 

Proof 

The Hamiltonian (18) is used in order to determine the 
adjoint equations as well as the transversality conditions. 

Let ,  and  Differentiating the 
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           (24) 

 At      (25) 

Thus 

 

               (26) 

4.2. The Optimality System 

The optimality system consists of the state system 
coupled with the adjoint system with the initial conditions, 
transversally conditions, and characterization of the optimal 
control [7]. 

 
Such that: 

 

 

 

 

 

 

 
with 

 

5. Numerical Simulation 
In order to illustrate the analytical results of the study, 

numerical simulations of the model system (1) are carried 
out using the set of estimated parameter values below others 
from the literature. The control variable  represents the 
control variable meant to reduce the HBV infection due to 

prevention activities and the control variable  
represents control variable meant to eliminate HBV through 
treatment. 

Computer simulations are done to verify the effectiveness 
of the model by comparing the disease progression before 
and after introducing the two optimal control variables  

and . The model system is simulated using MATLAB 
program, and the following initial conditions have been 
considered: , , and . 

Table 4.1.  Parameter values 

Parameter Estimated value 
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Figures 4.1 show the variation of normal cells, HBV and 
cytotoxic cells without control. 

In the absence of optimal control, the normal cells 
decrease with time as shown in Figure 4.1(A). The decrease 
in normal cells with time may be due to the higher contact 
rate because there is no control while the disease is there. 
The number of HBV in Figure 4.1(B) increases rapidly for 
certain amount of time leading to the decrease in cytotoxic 
cells in Figure 4.1(C). This is due to deactivation process of 
cytotoxic cells by HBV. Then, HBV starts to decrease with 
time due to the increase in cytotoxic cells. This is because 
of the stimulation of cytotoxic cells by HBV. The increase 
in cytotoxic cells leads to the increase in rate of destruction 
of HBV by cytotoxic cells, hence, decrease of HBV. 
However the increase in cytotoxic cells does not persist due 
to the fact that some of them die naturally and others are 
deactivated by HBV. Also as it is observed that in Figure 
4.1(A) the normal cells almost vanishes within a short time 
leading to the decrease in cytotoxic cells and HBV. Figure 
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Figures 4.1.  Variation in normal cells, HBV and cytotoxic cells without control 

Figures 4.2 show Variation in normal cells, HBV and cytotoxic cells in presence of one control. 

 

Figures 4.2.  Variation in normal cells, HBV and cytotoxic cells in presence of one control 
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Figure 4.2(A) shows variation of normal cells when there 
is only one control variable which controls the contact rate. 
The blue line presents the variation of normal cells in the 
presence of one optimal control while the red line presents 
the variation of normal cells without optimal control. 
Comparing the two cases it is observed that normal cells 
increase with time in the presence of prevention activities 
which control the contact rate. The presence of prevention 
activities reduces HBV as seen in figure 4.2(B)). In figure 
4.2 (c), the cytotoxic cells show some similar behaviour 
with and without control but the increase is more higher in 
the presence of prevention activities because the HBV have 
been instantly reduced when control condition is in place 
and some undergoes natural death hence reduces the 
deactivation of cytotoxic cells. Figure 4.2(D) represents 
control variable  while control variable . 

Figures 4.3 show the variation of normal cells, HBV and 
cytotoxic cells in the presence of only one control variable

. 

When the control condition  is in place, the normal 
cells first decrease with time, then start to build up as seen 
in Figure 4.3(A). This is because of the control of HBV 
through treatment, but it shows that the response to 
treatment takes much time compared to prevention 
activities as seen in Figure 4.2(A). Figure 4.2(B) shows that 
HBV have been instantly reduced when control condition is 
in place, and also due to the reason that some undergo 
natural death. Cytotoxic cells show some similar behaviour 

with and without control but the increase and decrease starts 
in earlier when there is control compared to when there is 
no control condition. Figure 4.3(D) represents control 
variable  while control variable . 

Figures 4.4 show the variation of normal cells, HBV and 
cytotoxic cell in the presence of two control variables. 

Figure 4.4(A) shows variation of normal cells when there 
are two control variables which control the contact rate. The 
control variable  represents the control variable meant 
to reduce the HBV infection due to prevention activities and 
the control variable  represents control variable meant 
to eliminate HBV through treatment. 

The blue line represents the variation of normal cells in 
the presence both optimal control variables while the red 
line represents the variation of normal cells without optimal 
control. Comparing the two cases, it shows that normal cells 
increase with time in the presence of control conditions  

and . The presence of control variables reduces HBV 
(see Figure 4.4(B)). In Figure 4.2(c), the cytotoxic cells 
show some similar behaviour with and without control but 
the increase is higher in the presence of control variables 
because the HBV have been instantly reduced when control 
condition is in place and some undergo natural death, hence, 
reduce the deactivation of cytotoxic cells. Figure 4.4(D) 
represents control variable  and the control 

variable . 

 

Figures 4.3.  Variation in normal cells, HBV and cytotoxic cells in the presence of only one control variable  
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Figure 4.4.  Variation in normal cells, HBV and cytotoxic cell in the presence of two control variables 

6. Discussion 
In this paper, the qualitative and numerical results were 

presented. A non-linear mathematical model has been 
formulated and analysed to study the optimal control of 
HBV infectiology in the presence of cytotoxic cells. The 
main objective of this work was to develop and analyse an 
optimal control of mathematical model of HBV infectiology 
in the presence of cytotoxic cells by extending the model 
developed by Laarabi et al., 2013. 

On analysing the model, it is found that system (1) for 
Normal cells, HBV and cytotoxic cells interaction model is 
positive and bounded. 

Also numerical simulations and sensitivity analysis were 
carried out to determine key-parameters contributing to the 
spread of the disease and to illustrate analytical results 
obtained in the study. 

The sensitivity analysis shows that the control which 
represents the efficiency of preventions is the most sensitive 
parameter and the least is death rate of HBV due to 
treatment. 

Numerical study of the model is carried out to see the 
effects of the key parameters on the optimal control of HBV 
infectiology in the presence of cytotoxic cells. Some of the 
main findings of this work include: 

(i)  In the absence of optimal control, the normal cells 
decrease with time as shown in Figure 4.1(A). 
The decrease in normal cells with time may be 
due to the higher contact rate because there is no 
control while the disease is there  

(ii)  The normal cells increase with time in the 
presence of prevention activities that control the 

contact rate. The presence of prevention activities 
reduces HBV, (see Figure 4.2(B)).  

(iii)  It shows that the response to treatment takes 
much time compared to prevention activities see 
figure 4.3(A) and figure 4.2(A). Figure 4.2(B) 
shows that HBV have been reduced when control 
condition is in place, and also due to the reason 
that some undergo natural death.  

(iv)  The normal cells increase with time in the 
presence of control conditions and. The presence 
of control variables reduces HBV (see Figure 
4.4(B), hence maximizing the normal cells. 

Generally, the model analysis shows that the presence of 
cytotoxic cells, the control conditions, prevention activities 
and treatment have the effect of reducing the HBV infection. 
It is observed that when the control conditions are in place 
the normal cells are significantly increased compared to the 
case where there are no control conditions. 

7. Conclusions 
The model of HBV infection in the presence of cytotoxic 

cells includes two control variables: the control  which 
represents the efficiency of preventions activities in 
blocking new infection, and the control  which 
represents the efficiency of treatments in inhibiting viral 
production. The objective was to maximize the normal cells 
(main cells of the liver). The optimal control theory is used 
to prove the existence and characterization of optimal 
control pair. The results show that preventions activities 
alone or treatment alone may succeed in elimination of 
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infection from an individual, from figure. The study further 
showed that a combination of both controls has much 
impact than individual controls. The conclusion is that, the 
presence of cytotoxic cells and the proposed control 
strategies are effective in reducing the HBV infection and 
maximizing the normal cells. 

Appendix A: Model Equations 

( )1 11 1 ,dx xr x u xy
dt k

β = − − − 
   

( ) ( )1 1 1 21 ,dy u xy c zy u y
dt

β µ= − − − +     (1) 

2
2 2 ,r zydz c zy z

dt y
ϕ µ

σ
= + − −

+  
0 0 0(0) 0, (0) 0, (0) 0.x x y y z z= ≥ = ≥ = ≥  
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