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Abstract  This research aims at modeling the risks of COVID-19 spread in Egypt, by specifying an optimal statistical 
model to analyse the daily count of COVID-19 new cases. A new three-parameter discrete distributions has been developed 
namely, the Discrete Marshall–Olkin Generalized Exponential (DMOGEx) distribution. Probability mass function, hazard 
rate and some statistical properties of reliability are discussed. Parameter estimation of the Based on the maximum 
likelihood estimation (MLE) method is discussed for the DMOGEx distribution. Numerical study was done using daily count 
of new cases in Egypt, empirical results were interpreted in detail and expectation probabilities for daily new cases were 
discussed. Monte Carlo Simulation has been performed to evaluate the restricted sample properties of the proposed 
distribution. 
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1. Introduction 
During December 2019, Corona-Virus "COVID-19" 

started in Wuhan, China (Hongyan et al. 2020). On March 
11, 2020 the world health organization (WHO) described 
COVID-19 as a pandemic. Therefore, countries around the 
world have increased their risk and disasters measures 
trying to decrease the spread rate of the COVID-19. On 
June 17, 2020 the following were the main indicators 
globally: 

 
Coronavirus Cases Deaths Recovered Active Cases 

8,527,421 453,83 4,494,858 3,578,729 
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In terms of Egypt, on June 17, 2020 the following were 
the main indicators: 

 
Coronavirus Cases Deaths Recovered 

50,437 1,938 13,528 

 

 
Source: https://www.worldometers.info/coronavirus/ 
COVID-19's risk parameters are as follows 

(https://covid19.who.int/), (Saleh et al. 2020): 
-  The number of infected people resulting from contact 

with one case (Virus transmission rate” Ro”). That is, 
the average number of people to which a single 
infected person will transmit the virus. The initial 
estimations of Ro are between 1.5 and 3.5. Ro < 1 
means coronavirus will gradually disappear. 
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-  Death rate among people with coronavirus (Fatality 
rate). According to epidemiologists, as a virus can be 
mutate, Fatality rate can be changed. 

-  The extent to which the infection can be transmitted 
from an infected person without symptoms of   
corona virus infection “Incubation Period”. That is, 
“symptoms of Coronavirus” how long it takes to 
appear. Estimated ranges for symptoms of COVID-19 
to be appear from 2 days up to 14, during which the 
patient may not display any symptom but the virus is 
contagious. 

To model daily deaths in Egypt due to COVID-19 during 
the period from March 8 to April 30, 2020, a natural discrete 
Lindley distribution has been introduced by Al-Babtain et al. 
(2020). Hasab et al. (2020) used the Susceptible Infected 
Recovered (SIR) epidemic dynamics of COVID-19 
pandemic to model the novel Coronavirus epidemic in Egypt. 
El-Morshedy et al. (2020) studied a new discrete distribution, 
called discrete generalized Lindley, to analyze the counts of 
the daily coronavirus cases in Both Hong Kong Iran. 
Autoregressive time series model based on the two-piece 
scale mixture normal distribution has been used by Maleki  
et al. (2020) to forecast the recovered and confirmed 
COVID-19 cases. Moreover, the daily new COVID-19 cases 
in China have been predicted by Nesteruk (2020) and Batista 
(2020b) by using the mathematical model, called susceptible, 
infected and recovered (SIR). Batista (2020a) used logistic 
growth regression model is used for the estimation of the 
final size and its peak time of the coronavirus epidemic. 

The question may come to mind of any researcher: why do 
we need discrete distributions? Since In count data analysis, 
we see the most of the existing continuous distributions do 
not set suitable results for modeling the COVID-19 cases. 
The cause for this as we know that counts of deaths or daily 
new cases show excessive dispersion. Discrete Rayleigh (DR) 
which is introduced by Roy (2004). 

In order to insure members of the Egyptian society from 
the risk arising from the spread of COVID-19 in Egypt, this 
study aims to model the daily new cases and deaths of the 
COVID-19 employing a new statistical tool. To achieve this 
aim: Firstly, we represent a review for discrete models as 
Poisson, geometric, negative binomial, discrete Weibull 
(DW) which is introduced by Nakagawa and Osaki (1975), 
discrete Buur (DB) which is introduced by Krishna and 
Pundir (2009), discrete Lindley (DL) which is introduced  
by Gómez-Déniz and Calderín-Ojeda (2011), discrete 
generalized exponential (DGEx) which is introduced by 
Nekoukhou et al. (2013) natural discrete Lindley (NDL) 
which is introduced by Al-Babtain et al. (2020) and discrete 
Gompertz Exponential (DGzEx) which is introduced by  
El- Morshedy et al. (2020). Secondly, we introduce a new 
flexible discrete models can be donated as discrete 
Marshall-Olkin generalized exponential (DMOGEx) 
distribution. 

An aspect of the importance of research is the necessity of 
mathematical and statistical modeling of the extent and 

spread of the COVID-19 that measures the progress of 
medical solutions for drugs and vaccines in reducing the risk 
of virus spread. The authors suggest in future research that 
there will be new and different applications in this critical 
area such as censored sample and competing risk model. For 
more details of these application see Balakrishnan and 
Cramer (2014) and more example see Almetwaly and 
Almongy (2018), Almetwally et al. (2019), Hassany et al. 
(2020) and Zhao et al. (2020). 

The rest of the paper is organized as follows. In Section 2, 
the discrete model description. Some reviews for discrete 
models are established in Section 3. In Section 4, we 
introduce a new flexible discrete model with some plots for 
its probability mass function (PMF) and hazard rate (hr). In 
Section 5, the method of maximum likelihood is used to 
estimate the parameter. Section 6 applies a bias reduction 
method to the derived MLE estimator. Daily new cases of 
COVID-19 in the case of Egypt is used to validate the use of 
models in fitting lifetime count data are presented in Section 
7. Finally, conclusions are provided in Section 8. 

2. Discrete Model Description 
In the statistics literature, sundry method are available to 

obtain a discrete analog for a continuous distribution. The 
most commonly used technique to generate discrete 
distribution is called a survival discretization method. It 
requires that the random variable under consideration is 
non‐negative and continuous and both the cumulative 
distribution function (CDF) and the survival function exists. 
The PMF of discrete distribution is defined in Roy (2003) as 
𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 𝑃𝑃(𝑥𝑥 ≤ 𝑋𝑋 ≤ 𝑥𝑥 + 1) = 𝑆𝑆(𝑥𝑥) − 𝑆𝑆(𝑥𝑥 + 1)  (1) 

where 𝑥𝑥 = 0,1,2, … , where 𝑆𝑆(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≥ 𝑥𝑥) = 𝐹𝐹(𝑥𝑥;Φ) , 
where 𝐹𝐹(𝑥𝑥;Φ) is a CDF of continuous distribution and Φ 
is a parameter vector. The random variable X is said to have 
the discrete distribution if its CDF is given by 

𝑃𝑃(𝑋𝑋 < 𝑥𝑥) = 𝐹𝐹(𝑥𝑥 + 1;Φ).           (2) 

The hazard rate is given by ℎ𝑟𝑟(𝑥𝑥) = 𝑃𝑃(𝑋𝑋=𝑥𝑥)
𝑆𝑆(𝑥𝑥)

. The reversed 
failure rate of discrete distribution is given as 

𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥) = 𝑃𝑃(𝑋𝑋=𝑥𝑥)
1−𝑆𝑆(𝑥𝑥)

. 

3. Review for Discrete Models 
In this section, some discrete distributions which has been 

developed in the literature are discussed. 

3.1. Discrete Burr Distribution 

The PMF of the discrete Burr (DB) distribution which has 
been defined by Krishna and Pundir (2009) is given as 
follows 

𝑃𝑃(𝑥𝑥;𝜃𝜃,𝑎𝑎) = 𝜃𝜃ln(1+𝑥𝑥𝛼𝛼 ) − 𝜃𝜃ln (1+(𝑥𝑥+1)𝛼𝛼 ); 
𝑥𝑥 = 0,1,2, … ,𝛼𝛼 > 0,0 < 𝜃𝜃 < 1, 
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and the CDF of the discrete Burr distribution is 

𝐹𝐹(𝑥𝑥;𝜃𝜃,𝛼𝛼) = 𝜃𝜃ln(1+(𝑥𝑥+1)𝛼𝛼 ), 
The hazard rate (hr) of the discrete Burr distribution is 

ℎ𝑟𝑟(𝑥𝑥;𝜃𝜃,𝛼𝛼) = 1 − 𝜃𝜃ln�1+(𝑥𝑥+1)𝛼𝛼
1+𝑥𝑥𝛼𝛼 �. 

Figure 1 presents some possible shapes for the PMF of the 
DB distribution. Figure 2 show some possible shapes for the 
hr of the DB distribution. 

3.2. Discrete Lindley Distribution 

The PMF of the discrete Lindley (DL) distribution that has 
been defined by Gómez-Déniz and Calderín-Ojeda (2011) is 
given as follows 

𝑃𝑃(𝑥𝑥;𝜃𝜃) =
𝜃𝜃𝑥𝑥

1 − ln(𝜃𝜃)
[𝜃𝜃 ln(𝜃𝜃) + (1 − 𝜃𝜃)(1 − ln(𝜃𝜃𝑥𝑥+1))]; 

𝑥𝑥 = 0,1,2, … , 0 < 𝜃𝜃 < 1. 
The CDF of the discrete Lindley distribution is 

𝐹𝐹(𝑥𝑥;𝜃𝜃) =
1 − 𝜃𝜃𝑥𝑥+1 + [(2 + 𝑥𝑥)𝜃𝜃𝑥𝑥+1 − 1] ln(𝜃𝜃)

1 − ln(𝜃𝜃) , 

The hazard rate of the discrete Lindley distribution is 

ℎ𝑟𝑟(𝑥𝑥;𝜃𝜃,𝛼𝛼) =
𝜃𝜃𝑥𝑥[𝜃𝜃 ln(𝜃𝜃) + (𝜃𝜃 − 1)(ln(𝜃𝜃𝑥𝑥+1) − 1)]
1 − 𝜃𝜃𝑥𝑥+1 + [(2 + 𝑥𝑥)𝜃𝜃𝑥𝑥+1 − 1] ln(𝜃𝜃) . 

Figure 3 provides some possible shapes for the PMF of the 
DL distribution, while Figure 4 show some possible shapes 
for the hr of the DL distribution. 

 

 

Figure 1.  The PMF plots of the DB distribution 

 

Figure 2.  The hr plots of the DB distribution 

 

Figure 3.  The PMF plots of the DL distribution 
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Figure 4.  The hr plots of the DL distribution 

 

Figure 5.  The PMF plots of the DMOGEx distribution 

3.3. Discrete Generalized Exponential Distribution 

The PMF of the DGEx distribution defined by Nekoukhou 
et al. (2013) is as follows 

𝑃𝑃(𝑥𝑥;𝜃𝜃,𝛼𝛼) =  (1 − 𝜃𝜃𝑥𝑥+1)𝛼𝛼 − (1 − 𝜃𝜃𝑥𝑥)𝛼𝛼  
𝑥𝑥 = 0,1,2, … ,𝛼𝛼 > 0, 0 < 𝜃𝜃 < 1 , when 𝜃𝜃 = 𝑒𝑒−𝜆𝜆 ; 𝜆𝜆 > 0 , 

the CDF of the DGEx distribution is 
𝐹𝐹(𝑥𝑥;𝜃𝜃) = (1 − 𝜃𝜃𝑥𝑥+1)𝛼𝛼 , 

The hazard rate of the DGEx distribution is 

ℎ𝑟𝑟(𝑥𝑥;𝜃𝜃,𝛼𝛼) =
(1 − 𝜃𝜃𝑥𝑥+1)𝛼𝛼 − (1 − 𝜃𝜃𝑥𝑥)𝛼𝛼

1 − (1 − 𝜃𝜃𝑥𝑥+1)𝛼𝛼 . 

The figures of PMF and hr of DGEx distribution is drawn 
in Nekoukhou et al. (2013). 

4. New Flexible Discrete Model 
In this Section, we introduce a new flexible discrete  

model donated [Roy (2003)], can be donated as discrete 
Marshall-Olkin generalized exponential (DMOGEx) 
distribution. Parameter estimation of DMOGEx distribution 
is discussed by using MLE. 

4.1. The DMOGE Distribution 

Ristić and Kundu (2015) introduced the continues 

Marshall-Olkin Generalized exponential (MOGEx) 
distribution with continues CDF and survival function 
respectively given by 

𝐹𝐹(𝑥𝑥,𝛼𝛼,𝜃𝜃, 𝜆𝜆) =
�1 − 𝑒𝑒−𝜃𝜃𝑥𝑥 �𝛼𝛼

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝑒𝑒−𝜃𝜃𝑥𝑥 )𝛼𝛼 ; 𝑥𝑥 > 0,𝛼𝛼,𝜃𝜃, 𝜆𝜆 > 0, 

and 

𝑆𝑆(𝑥𝑥,𝛼𝛼,𝜃𝜃, 𝜆𝜆) =
𝜆𝜆�1 − �1 − 𝑒𝑒−𝜃𝜃𝑥𝑥 �𝛼𝛼�

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝑒𝑒−𝜃𝜃𝑥𝑥 )𝛼𝛼  

Using the survival discretization method Equation (1) and 
survival function of MOGEx distribution, we define the 
PMF of the DMOGEx distribution as 

𝑃𝑃(𝑥𝑥,𝛼𝛼,𝜃𝜃, 𝜆𝜆) =
𝜆𝜆�1−�1−𝑒𝑒−𝜃𝜃𝑥𝑥 �

𝛼𝛼
�

𝜆𝜆+(1−𝜆𝜆)�1−𝑒𝑒−𝜃𝜃𝑥𝑥 �
𝛼𝛼 −

𝜆𝜆�1−�1−𝑒𝑒−𝜃𝜃 (𝑥𝑥+1)�
𝛼𝛼
�

𝜆𝜆+(1−𝜆𝜆)�1−𝑒𝑒−𝜃𝜃 (𝑥𝑥+1)�
𝛼𝛼 ;  

𝑥𝑥 = 0,1,2, …                (3) 
Let 𝜌𝜌 = 𝑒𝑒−𝜃𝜃  with 0 < 𝜌𝜌 < 1, we get 

𝑃𝑃(𝑥𝑥,𝛼𝛼,𝜌𝜌, 𝜆𝜆) =
𝜆𝜆[1 − (1 − 𝜌𝜌𝑥𝑥)𝛼𝛼 ]

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥)𝛼𝛼

−
𝜆𝜆[1 − (1 − 𝜌𝜌𝑥𝑥+1)𝛼𝛼 ]

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥+1)𝛼𝛼 . 

Figure 5 shows the PMF plots for different values of the 
model parameters. It can be seen from figure 5 that the PMF 
of the DMOGEx distribution is unimodal and right-skewed. 
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Figure 6.  The hr plots of the DMOGEx distribution 

The CDF of the DMOGEx distribution is given as  

𝐹𝐹(𝑥𝑥,𝛼𝛼,𝜌𝜌, 𝜆𝜆) = �1−𝜌𝜌𝑥𝑥+1�𝛼𝛼

𝜆𝜆+(1−𝜆𝜆)(1−𝜌𝜌𝑥𝑥+1)𝛼𝛼
, 𝑥𝑥 ∈ ℕ0,     (4) 

Where ℕ0 = {0,1,2, … }. Moreover, the survival function 
of the DMOGEx distribution is given by 

𝑆𝑆(𝑥𝑥,𝛼𝛼,𝜌𝜌, 𝜆𝜆) =
𝜆𝜆[1 − (1 − 𝜌𝜌𝑥𝑥+1)𝛼𝛼 ]

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥+1)𝛼𝛼  

and the hr function of the DMOGEx distribution is given by 

ℎ𝑟𝑟(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆) = 1−(1−𝜌𝜌𝑥𝑥 )𝛼𝛼

1−(1−𝜌𝜌𝑥𝑥+1)𝛼𝛼  
𝜆𝜆+(1−𝜆𝜆)�1−𝜌𝜌𝑥𝑥+1�𝛼𝛼

𝜆𝜆+(1−𝜆𝜆)(1−𝜌𝜌𝑥𝑥 )𝛼𝛼
− 1, 

𝑥𝑥 ∈ ℕ0. 
Figure 6 shows the hr function plots of the DMOGEx 

distribution. It is noted that the shape of the hr function is 
either increasing or decreasing depending on the parameters 
values. 

4.2. Parameter Estimation 
The unknown parameters of the DMOGEx distribution  

are obtained by the maximum likelihood estimation   
(MLE) method. According Al-Babtain et al. (2020) and   
El- Morshedy et al. (2020), this method is based on the 
maximization of the log-likelihood for a given data set, 
assume that 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 is a random sample of size 
n from a DMOGEx (𝛼𝛼,𝜌𝜌, 𝜆𝜆) distribution. The log-likelihood 
function becomes 

𝑙𝑙(𝛼𝛼,𝜌𝜌, 𝜆𝜆) = � ln �
𝜆𝜆[1 − (1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼 ]

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

−
𝜆𝜆[1 − (1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼 ]

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼
� , 

and the log-likelihood function can be rewritten as following 

𝑙𝑙(𝛼𝛼,𝜌𝜌, 𝜆𝜆) = 𝑛𝑛 ln(𝜆𝜆) + � ln[(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼 − (1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼 ]
𝑛𝑛

𝑖𝑖=1

−� ln[𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼 ]
𝑛𝑛

𝑖𝑖=1

−� ln[𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼 ]
𝑛𝑛

𝑖𝑖=1

    (5) 

Hence, the likelihood equations are 
𝜕𝜕𝑙𝑙(𝛼𝛼,𝜌𝜌, 𝜆𝜆)

𝜕𝜕𝛼𝛼

= �
(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼 ln(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1) − (1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼 ln(1 − 𝜌𝜌𝑥𝑥𝑖𝑖)

(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼 − (1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

−�
(1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼 ln(1 − 𝜌𝜌𝑥𝑥𝑖𝑖)

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

−�
(1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼 ln(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

, 

𝜕𝜕𝑙𝑙(𝛼𝛼,𝜌𝜌, 𝜆𝜆)
𝜕𝜕𝜌𝜌

= 𝛼𝛼�
 𝑥𝑥𝑖𝑖  𝜌𝜌𝑥𝑥𝑖𝑖−1(1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼−1 − (𝑥𝑥𝑖𝑖 + 1)𝜌𝜌𝑥𝑥𝑖𝑖(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼−1

(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼 − (1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

+ 𝛼𝛼�
(1 − 𝜆𝜆)𝑥𝑥𝑖𝑖  𝜌𝜌𝑥𝑥𝑖𝑖−1(1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼−1

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

+ 𝛼𝛼�
(1 − 𝜆𝜆)(𝑥𝑥𝑖𝑖 + 1)𝜌𝜌𝑥𝑥𝑖𝑖(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼−1

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

, 

and  
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𝜕𝜕𝑙𝑙(𝛼𝛼,𝜌𝜌, 𝜆𝜆)
𝜕𝜕𝜆𝜆

=
𝑛𝑛
𝜆𝜆
−�

1 − (1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

−�
1 − (1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼

𝜆𝜆 + (1 − 𝜆𝜆)(1 − 𝜌𝜌𝑥𝑥𝑖𝑖+1)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

. 

The estimate of the parameter by using MLE, which   
can be obtained by a numerical analysis such as the 
Newton–Raphson algorithm. 

5. Simulation Study 
A simulation study is conducted to compare and evaluate 

the behaviour of the estimators with respect to their bias and 
mean square error (MSE). We generate 10,000 random 
samples of sizes 𝑛𝑛 =  50, 100 and 200 from DMOGEx 
distribution. Different sets of parameter values are used 
and the MLE of 𝛼𝛼, 𝜃𝜃 and 𝜌𝜌 are computed. Thereafter, 
the bias and MSE of the estimates of the unknown 
parameters are computed. Simulated outcomes are listed in 
Tables 1-2 and the following observations are detected.  

•  The bias and MSE decrease as sample sizes increase for 
all estimates (see Tables 1-2). 

•  The bias and MSE of MLE for ρ  estimate is smaller 
than the corresponding for 𝛼𝛼 and 𝜃𝜃. 

•  For fixed values of ,α θ  and as the values of ρ
increase, the bias and MSE in approximately most of 
situations, of estimates are increasing.  

6. Application Analysis 
This data represents the daily new cases of COVID-19 in 

Egypt. The data is available at https://covid19.who.int/ and 
contains the daily new cases between 15 March and 10 June 
2020. The data are: 17, 16, 40, 30, 14, 46, 29, 9, 33, 39, 76, 
14, 39, 41, 40, 33, 47, 54, 69, 86, 120, 85, 103, 149, 128, 110, 
139, 95, 145, 126, 125, 160, 155, 168, 171, 188, 112, 189, 
157, 169, 433, 0, 227, 463, 260, 226, 269, 358, 0, 298, 272, 
736, 387, 0, 393, 495, 924, 346, 0, 685, 398, 0, 399, 491, 510, 
535, 1465, 0, 774, 783, 727, 752, 702, 789, 910, 1127, 1289, 
1367, 1536, 1399, 1152, 1079, 1152, 1348, 1497, 1467, 1365, 
1385. 

Table 1.  Bias and MSE of parameters of DMOGEx distribution when 𝛼𝛼 = 2 

 
𝜌𝜌 = 0.85 𝜌𝜌 = 0.65 𝜌𝜌 = 0.45 

𝜃𝜃 𝑛𝑛 
 

Bias MSE Bias MSE Bias MSE 

0.15 

50 

𝛼𝛼 0.4920 0.4269 1.3000 1.9761 1.3099 2.7251 

𝜃𝜃 0.0993 0.0866 0.4764 0.3595 0.8344 1.7948 

𝜌𝜌 0.0287 0.0111 0.0798 0.0915 0.4702 0.6383 

100 

𝛼𝛼 0.4487 0.3158 1.2757 1.8952 1.4033 2.4931 

𝜃𝜃 0.0532 0.0414 0.0248 0.0586 0.5080 0.6817 

𝜌𝜌 0.0178 0.0069 0.0187 0.0439 0.3642 0.3712 

200 

𝛼𝛼 0.4452 0.2456 1.1711 1.5110 1.1674 2.1652 

𝜃𝜃 0.0020 0.0117 -0.0266 0.0151 0.3485 0.2816 

𝜌𝜌 0.0003 0.0032 -0.0212 0.0246 0.3152 0.2326 

0.5 

50 

𝛼𝛼 0.3922 0.2686 1.0641 1.4509 1.8988 4.5027 

𝜃𝜃 0.0831 0.1056 0.1302 0.2907 0.4083 0.9274 

𝜌𝜌 0.0104 0.0024 0.0302 0.0305 0.1070 0.1692 

100 

𝛼𝛼 0.3323 0.1752 0.9613 1.1768 1.8521 3.9835 

𝜃𝜃 0.0555 0.0422 -0.0197 0.1246 0.2310 0.3882 

𝜌𝜌 0.0102 0.0010 0.0106 0.0152 0.0981 0.0854 

200 

𝛼𝛼 0.2875 0.1066 0.8424 0.7610 1.8598 3.6646 

𝜃𝜃 0.0146 0.0248 0.0839 0.0674 0.1450 0.2681 

𝜌𝜌 0.0025 0.0005 0.0303 0.0094 0.0640 0.0696 

2 

50 

𝛼𝛼 0.23559 0.20443 0.89277 1.36872 1.88128 4.51247 

𝜃𝜃 0.04435 0.11921 0.04149 0.57806 0.16718 1.11406 

𝜌𝜌 0.00218 0.00034 0.01362 0.00485 0.04637 0.03101 

100 

𝛼𝛼 0.15016 0.06438 1.01651 1.21783 1.45640 2.29179 

𝜃𝜃 0.01186 0.04148 -0.25379 0.41143 0.27648 0.22615 

𝜌𝜌 -0.00201 0.00011 0.01127 0.00215 0.05956 0.00852 

200 

𝛼𝛼 0.05790 0.00806 0.58601 0.49414 1.22208 1.62871 

𝜃𝜃 -0.00706 0.00227 0.09212 0.09258 0.23400 0.21271 

𝜌𝜌 -0.00078 0.00010 0.00529 0.00202 0.04574 0.00818 
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Table 2.  Bias and MSE of parameters of DMOGEx distribution when 𝛼𝛼 = 0.85 

 
𝜌𝜌 = 0.85 𝜌𝜌 = 0.65 𝜌𝜌 = 0.45 

𝜃𝜃 𝑛𝑛 
 

Bias MSE Bias MSE Bias MSE 

0.15 

50 

𝛼𝛼 0.4105 0.3025 0.4360 0.5333 0.4372 0.5195 
𝜃𝜃 0.1054 0.1208 0.3651 0.4286 0.3195 0.4064 
𝜌𝜌 0.0651 0.0238 0.2796 0.2911 0.2595 0.2595 

100 

𝛼𝛼 0.4325 0.3030 0.4982 0.4571 0.3020 0.4138 
𝜃𝜃 0.0709 0.0842 0.1788 0.1513 0.4973 0.5278 
𝜌𝜌 0.0550 0.0192 0.1605 0.0890 0.3894 0.4707 

200 

𝛼𝛼 0.4461 0.2249 0.5770 0.4474 0.2763 0.2619 
𝜃𝜃 -0.0301 0.0068 0.0652 0.0351 0.3747 0.2670 
𝜌𝜌 0.0116 0.0031 0.0977 0.0383 0.3063 0.2410 

0.5 

50 

𝛼𝛼 0.4043 0.2476 0.7103 0.8120 0.8462 1.2802 
𝜃𝜃 -0.0097 0.1050 0.1421 0.4565 0.5029 0.8497 
𝜌𝜌 0.0202 0.0044 0.0607 0.0443 0.2300 0.2543 

100 

𝛼𝛼 0.4150 0.2091 0.7640 0.7302 0.9033 1.2381 
𝜃𝜃 -0.0899 0.0532 -0.0469 0.1237 0.3157 0.5780 
𝜌𝜌 0.0094 0.0023 0.0304 0.0213 0.1476 0.1138 

200 

𝛼𝛼 0.4376 0.2136 0.7987 0.7233 0.7415 0.7227 
𝜃𝜃 -0.1422 0.0393 -0.1282 0.0742 0.2720 0.2319 
𝜌𝜌 0.0031 0.0008 0.0147 0.0098 0.1586 0.0670 

2 

50 

𝛼𝛼 0.2714 0.1389 0.5996 0.5177 1.1843 2.0389 
𝜃𝜃 -0.0580 0.1768 -0.0657 0.2469 0.0016 1.6069 
𝜌𝜌 0.0114 0.0010 0.0434 0.0096 0.0638 0.0536 

100 

𝛼𝛼 0.2569 0.0998 0.5879 0.4509 1.0823 1.5163 
𝜃𝜃 -0.0901 0.1139 -0.1823 0.2991 -0.1362 0.8294 
𝜌𝜌 0.0098 0.0005 0.0319 0.0045 0.0597 0.0224 

200 

𝛼𝛼 0.1834 0.0409 0.4954 0.2773 1.0228 1.1829 
𝜃𝜃 0.0119 0.0032 -0.0262 0.0376 -0.1681 0.3429 
𝜌𝜌 0.0086 0.0002 0.0387 0.0028 0.0673 0.0184 

Table 3.  ML estimates, K-S, P-values, AIC, BIC, CAIC and HQIC for COVID-19 data in Egypt data 

Model 
𝜌𝜌 

S. E. 
𝛼𝛼 

S. E. 
𝜆𝜆 

S. E. 
KS 

AIC CAIC BIC HQIC 
P-value 

DMOGEx 
0.0510 0.3266 0.0022 0.0799 

1216.8859 1217.1716 1224.3179 1219.8801 
0.1967 0.1282 0.0002 0.6287 

DGEx 
0.9983 0.5275  

- 
0.0894 

1217.7000 1217.8420 1224.6550 1220.6970 
0.2952 0.1569 0.4821 

NDL 
0.0048 

- 
 
- 

0.3006 
1340.7733 1340.8198 1343.2506 1341.7714 

0.0003 0.0000 

DGzEx 
0.4253 0.0026 0.0628 1.0000 

1245.9900 1246.2757 1253.4220 1248.9841 
0.0754 0.0004 0.1142 0.0000 

DB 
0.9103 0.8050 - 

 
0.3691 

1355.2080 1355.3492 1360.1627 1357.2041 
0.2218 0.0457 0.0000 

DL 
0.9952 

- 
 
- 

0.2974 
1344.7129 1344.7594 1347.1902 1345.7109 

0.0003 0.0000 

Geometric 
0.0024 

- 
 
- 

0.1582 
1240.2482 1240.2948 1242.7256 1241.2463 

0.0002 0.0244 

NB 
0.1741 

- 
- 
 

0.5868 
9922.9851 9923.0316 9925.4624 9923.9831 

0.0018 0.0000 

DW 
0.9851 0.1593  

- 
1.0000 

1242.2256 1242.3667 1247.1802 1244.2217 
0.0163 0.1759 0.0000 
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Figure 7.  Estimated PMF, CDF, PP-plot and QQ-plot of DMOGEx for COVID-19 data in Egypt data 

 

Figure 8.  Prediction of the probabilities and hazard rate for daily new cases in Egypt 

Table 3 provide values of Kolmogorov- Smirnov (KS) 
statistic along with its P-value, Akaike information criterion 
(AIC), corrected AIC (CAIC) and Hannan-Quinn 
information criterion (HQIC) for all models fitted based on 
COVID-19 data. In addition, these tables contain the MLE 
and standard errors (SE) of the parameters for the considered 
models. We compare the fits of the DMOGEx model with 
DGEx [Nekoukhou et al. (2013)], NDL [Al-Babtain et al. 
(2020)], DGzEx [El- Morshedy et al. (2020)], DB [Krishna 
and Pundir (2009)], DL [Gómez-Déniz and Calderín-Ojeda 
(2011)], Geometric, negative binomial (NB) and DW models 
in Tables 3. The fitted DMOGEx PMF, CDF, PP-plot and 
QQ-plot of this data set are displayed in Figure 7, 
respectively. These figure indicate that the DMOGEx 
distribution get the lowest values of KS, AIC, CAIC, BIC, 
HQIC and largest p-value, among all fitted models. 

Using the estimated model parameters, some probabilities 
can be predicted. For example, a researcher wants to know 
approximately the percentage that 2000 or less new cases 

will occur in Egypt in one day. The probabilities related to 
these different cases are calculated for different values from 
the counts of daily new cases of Egypt. The prediction of 
these probabilities is reported in Table 4. 

Table 4.  prediction of the probabilities for daily new cases in Egypt 

x 𝑃𝑃(𝑋𝑋 < 𝑥𝑥) ℎ𝑟𝑟 

2000 0.9877771 0.000026962 

3000 0.9986204 0.0000030205 
3500 0.9995372 0.0000010127 

7. Concluding Remarks 
In this article, with the aim of managing the risk of 

spreading COVID-19 in Egypt, we proposed and studied the 
discrete Marshall–Olkin generalized exponential distribution. 
Review of some discrete distribution are provided as discrete 
Buur, discrete Lindley and discrete generalized exponential 
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distribution. Maximum likelihood estimation method is 
discussed to estimate parameter of DMOGEx distribution. 
Monte Carlo Simulations are obtained to evaluate the 
restricted sample properties of the DMOGEx distribution. 
We proved empirically that the DMOGEx model reveals its 
superiority over other competitive models for the analysis of 
daily new cases of COVID-19 in Egypt. 
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