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Abstract  In this study, a new cumulative sum (CUSUM) control chart has been proposed to detect a shift in one of the 
scale parameters of the New Weibull-Pareto Distribution (NWPD). The V-Mask method was employed in the CUSUM 
construction. The study indicated a significant changes in the parameters of the V-Mask when a slight shift occurs in the scale 
parameter under study. The parameters observed in the V-mask included the mask angle, the lead distance and the Average 
Run Length (ARL). 
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1. Introduction 
Every rational consumer makes decision with regards to 

the purchase of a product or service based on the quality of 
such products or services. This quality is manifested by the 
level of satisfaction the consumer derives from the product 
or service over the life span of the product. In order to meet 
this quality, there should be a system of maintaining 
standards in manufactured products. This is done through the 
use of statistical processes which is key in identifying when a 
process needs attention and correction. Statistical Process 
Control (SPC) charts are being used widely by quality 
engineers for monitoring the stability of different process 
over time. A control chart helps to distinguish between 
normal process variation and unusual variation due to a 
special cause. Practical application of SPC charts have now 
been extended far beyond manufacturing industries to other 
industries such as biology, genetics medicine, finance among 
others. It is well known that Shewhart charts are effective in 
detecting isolated shifts or relatively large sustained shifts. 
The weakness of the Shewhart control charts is its inability to 
detect small to moderate shifts in any process. To overcome 
this challenge, quality control engineers use Cumulative 
Sum (CUSUM) control charts which are effective in 
detecting small to moderate shifts.  The construction of the  
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CUSUM greatly is done with a probability distribution. The 
effectiveness and for that matter the sensitivity and power of 
the CUSUM control chart to a greater extent depends on the 
type of distribution employed. This New Weibull-Pareto 
Distribution (NWPD) is suitable for modelling processes or 
systems with constant failure level. 

A great deal of researchers have employed different 
statistical distributions in construction of CUSUM control 
charts. Notably among them include: Hawkins and Olwell 
(1998) stated that the CUSUM control charts are most 
sensitive Statistical Process Contol (SPC) to signal a 
persistent small step change in a process parameter. Again, 
Naber and Bilgi (1994) developed a CUSUM control chart 
for the Gaussian distribution. Kantam and Rao (2004) 
investigated the CUSUM control chart for the Log-Logistic 
Distribution and concluded that it was able to detect shifts 
on the average than the Shewhart control charts Luguterah 
(2015) proposed a unified CUSUM control chart for the 
Erlang-truncated exponential distribution. Nasiru (2016) 
proposed a one-sided CUSUM control chart for shape 
parameter of the Pareto distribution and recently Shei and 
Maahi (2017) proposed a unified CUSUM control chart for 
the parameters of the Pareto distribution. All these 
researchers investigated the behavior of the lead distance, the 
mask angle and the Average Run Length (ARL).  

In this article we proposed the construction of a one-sided 
CUSUM control chart for monitoring shifts in one of the 
scale parameters of the New Weibull-Pareto distribution 
using the V-mask procedure.  
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2. New Weibull-Pareto Distribution 
The NWPD was developed by Nasiru and Luguterah 

(2015). The distribution has been applied and demonstrated 
in modeling real life problems and it has proved superior to 
both Weibull and Pareto distributions. The NWPD was used 
to model the exceedances of flood peaks (in 𝑚𝑚3/𝑠𝑠) of the 
Wheaton River near carcross in Yukon Territory, Canada. 
This data was recently analysed by Merovei and Puka (2014) 
and Bourguignon et al. (2013).  

The pdf of the New Weibull Pareto distribution is given 
by: 

𝑓𝑓(𝑥𝑥, 𝛾𝛾, 𝛿𝛿, 𝜆𝜆) = �𝛾𝛾𝛾𝛾
𝜆𝜆
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where 𝛾𝛾  is the shape parameter and 𝛿𝛿 , 𝜆𝜆  are scale 
parameters. 

It has a mean:  
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3. Sequential Probability Ratio Test 
(SPRT) 

Sequential sampling is an extension of the multiple 
sampling phenomenon. In this sampling process, a sequence 
of samples from a lot are taken and the number of samples 
are determined by the results of the sampling process. The 
procedure in which item-by-item are sampled sequentially 
was introduced by Wald (1947). This procedure is based on 
the sequential probability ratio test. The V-mask control 
scheme was proposed by Barnard (1959). The performance 
of the V-mask is determined by the lead distance and the 
angle of the mask. The mask is applied to successive values 
of the CUSUM statistic: 

𝐶𝐶𝑖𝑖 = �𝑥𝑥𝑗𝑗 = 𝑦𝑦𝑖𝑖 + 𝐶𝐶𝑖𝑖−1

𝑖𝑖

𝑗𝑗=1

 

where 𝑦𝑦𝑖𝑖  is the standardized observation: 

𝑦𝑦𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑢𝑢0

𝜎𝜎
 

The decision procedure consist of placing the V-mask on 
the cumulative sum control chart with the point O on the 
last value of 𝐶𝐶𝑖𝑖  and the line OP. If all the previous 
cumulative sums 𝐶𝐶1, 𝐶𝐶2 …, 𝐶𝐶𝑖𝑖  lie within the two arms of 
the V-mask, the process is in control. However, if any of the 
cumulative sum lie outside the arms of the V-mask, the 
process is considered to be out of control. Let 𝐿𝐿1  the 
likelihood function of the NWPD with a shift in the shape 
parameter and let 𝐿𝐿0 be the likelihood function of when 
there is no shift in the shape parameter of the NWPD. Then 
the ratio of these likelihoods is taken as 𝐿𝐿1

𝐿𝐿0
. 

The SPRT is used for testing null hypothesis, 𝐻𝐻0  as 
against the alternative hypothesis, 𝐻𝐻1. 

4. Cumulative Sum (CUSUM) Control 
Chart for the New Weibull-Pareto 
Distribution 

The pdf of the New Weibull-Pareto distribution is given 
by 

𝑓𝑓(𝑥𝑥, 𝛾𝛾, 𝛿𝛿, 𝜆𝜆) = �𝛾𝛾𝛾𝛾
𝜆𝜆
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where 𝛾𝛾  is the shape parameter and 𝛿𝛿 , 𝜆𝜆  are scale 
parameters. 

If 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛  are randomly, independent and 
identically distributed with the pdf in (1), then the 
likelihood ratio for testing the null hypothesis 

𝐻𝐻0 : 𝛿𝛿 =  𝛿𝛿0 
against the alternative hypothesis 

𝐻𝐻1 : 𝛿𝛿 =  𝛿𝛿1 
where 𝛿𝛿1 > 𝛿𝛿 and keeping 𝛾𝛾 and 𝜆𝜆 fixed.  

The likelihood of when a shift occurs is given by: 

𝐿𝐿1 = ∏ �𝛾𝛾𝛿𝛿1
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and the likelihood of when there is no shift is given by: 

𝐿𝐿0 = ∏ �𝛾𝛾𝛿𝛿0
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The likelihood ratio of the two (2) and (3) is given by: 
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This is reduced to:  
𝐿𝐿1
𝐿𝐿0

= �𝛿𝛿1
𝛿𝛿0
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The continuation region of the Sequential Probability 
Ratio Test (SPRT) distinguishing between the two 
hypotheses is given by: 

𝛼𝛼
1−𝛽𝛽

<  𝐿𝐿1
𝐿𝐿0

 <  1−𝛼𝛼
𝛽𝛽

          (6) 

where 𝛼𝛼 and 𝛽𝛽 are type I and II errors. Thus substituting 
for (5) into (6), it gives: 
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Taking logarithm of (7), it yields: 
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This becomes: 
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Setting 𝛼𝛼 to zero and taking the right hand side of the 
inequality it yields: 
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𝑛𝑛 ln �𝛿𝛿1
𝛿𝛿0
� + 𝛿𝛿0 �

∑𝑥𝑥𝑖𝑖
𝜆𝜆
� 𝛾𝛾 −  𝛿𝛿1 �

∑𝑥𝑥𝑖𝑖
𝜆𝜆
� 𝛾𝛾 <  ln �1

𝛽𝛽
�    (10) 

Thus:  

∑𝑥𝑥𝑖𝑖 <
−𝜆𝜆�ln 𝛽𝛽+𝑛𝑛 ln�𝛿𝛿1
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and finally 

∑𝑥𝑥𝑖𝑖 <  
𝑛𝑛𝑛𝑛 ln�𝛿𝛿1
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Equation (12) is then written in the form ∑𝑥𝑥𝑖𝑖 < 𝑚𝑚𝑚𝑚 + 𝑐𝑐, 
where  

c =
λlnβ

γ(δ1 −  δ0) 

and 

𝑚𝑚 =
𝜆𝜆 ln �𝛿𝛿1

𝛿𝛿0
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Alternatively, equation (12) can also be written in the form 

�𝑥𝑥𝑖𝑖 ≥ 𝑝𝑝𝑝𝑝 + 𝑞𝑞 

where  
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The mask angle is then obtained as:  

𝜃𝜃 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
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Table 1.  Simulated values of the mask angle, 𝛉𝛉 

𝛅𝛅𝟎𝟎      𝛅𝛅𝟏𝟏      𝛌𝛌     𝛄𝛄     𝛉𝛉 

0.5    0.55  0.2   0.3   51.8 
0.5    0.60   0.2   0.3   50.6 
0.5    0.65   0.2   0.3   49.4 
0.5    0.70   0.2   0.3   48.3 
0.5    0.75   0.2   0.3   47.2 
0.5    0.80   0.2   0.3   46.3 
0.5    0.85   0.2   0.3   45.3 
0.5    0.90   0.2   0.3   44.4 

𝛅𝛅𝟎𝟎      𝛅𝛅𝟏𝟏      𝛌𝛌     𝛄𝛄     𝛉𝛉 

0.5    0.45   0.2   0.3   54.6 
0.5    0.40   0.2   0.3   56.1 
0.5    0.35   0.2   0.3   57.8 
0.5    0.30   0.2   0.3   59.6 
0.5    0.25   0.2   0.3   61.6 
0.5    0.20   0.2   0.3   63.8 
0.5    0.15   0.2   0.3   66.4 
0.5    0.10   0.2   0.3   69.6 

Table 1 shows the simulated values of the mask angle, 𝜃𝜃 
given the values of λ , γ , 𝛿𝛿0  and 𝛿𝛿1 . When there is a 
positive shift in the parameter delta, 𝛿𝛿, from 𝛿𝛿0 to 𝛿𝛿1, it can 
be determined from the first part of Table 1 that the value of 
𝜃𝜃 decreases as (𝛿𝛿1  − 𝛿𝛿0) increases. On the other hand when 
there is a negative shift where 𝛿𝛿0 > 𝛿𝛿1 , the value of 𝜃𝜃 
increases. Not all but also, when the shift in the parameter is 
positive, larger shifts produce smaller mask angles. However, 
when the shift is negative, larger shifts in the parameter 
produce larger angles of the V-Mask. The details are shown 
in the second part of Table 1. 

The lead distance, 𝑑𝑑1 is the value of 𝑐𝑐 above. Thus:  

𝑑𝑑1 =  
λlnβ

γ(δ1 −  δ0) 

where δ1 > δ0. 
The alternative case of the lead distance is denoted by 𝑑𝑑−1 

which is equal to the value of 𝑞𝑞 as shown above. Thus:  

𝑑𝑑−1 =  
λlnβ

γ(δ1 −  δ0) 

where δ1 <  δ0. 
Given values of 𝛿𝛿0, 𝛿𝛿1, 𝜆𝜆, 𝛽𝛽 and 𝛾𝛾 with a positive shift 

in the parameter 𝛿𝛿, where 𝛿𝛿1 > 𝛿𝛿0. It shows that the lead 
distance, 𝑑𝑑 increases as the size of the shift increases as 
indicated in the first part of Table 2. Also, the smaller the 
shift in the parameter, the larger the value of the lead distance 
and the vice-versa. More also, no matter whether the shift in 
the parameter is positive or negative, the lead distance has 
the same value for any given shift. On the other hand if the 
shift is negative, 𝛿𝛿1 < 𝛿𝛿0 , the value of 𝑑𝑑  decreases as 
shown in the second part of Table 2.  

Table 2.  Simulated values of the lead distance, d  

𝛅𝛅𝟎𝟎    𝛅𝛅𝟏𝟏     𝛌𝛌     𝛃𝛃    𝛄𝛄   𝐝𝐝 

0.5   0.55  2.0  0.16  3.0  -24.4 
0.5   0.60  2.0  0.16  3.0  -12.2 
0.5   0.65  2.0  0.16  3.0  -8.1 
0.5   0.70  2.0  0.16  3.0  -6.1 
0.5   0.75  2.0  0.16  3.0  -4.9 
0.5   0.80  2.0  0.16  3.0  -4.1 
0.5   0.85  2.0  0.16  3.0  -3.5 
0.5   0.90  2.0  0.16  3.0  -3.1 
𝛅𝛅𝟎𝟎      𝛅𝛅𝟏𝟏    𝛌𝛌    𝛃𝛃    𝛄𝛄    𝐝𝐝 

0.5   0.45  2.0  0.16  3.0  24.4 
0.5   0.40  2.0  0.16  3.0  12.2 
0.5   0.35  2.0  0.16  3.0  8.1 
0.5   0.30  2.0  0.16  3.0  6.1 
0.5   0.25  2.0  0.16  3.0  4.9 
0.5   0.20  2.0  0.16  3.0  4.1 
0.5   0.15  2.0  0.16  3.0  3.5 
0.5   0.10  2.0  0.16  3.0  3.1 

5. The Average Run Length of the 
CUSUM 

The ARL is given by: 
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𝐴𝐴𝐴𝐴𝐴𝐴 = − ln 𝛼𝛼
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where 
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The ratio of the functions is given by:  
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Taking logarithm of (14) it yields: 
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Taking expectation of (15) gives: 
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�     (17) 

𝐸𝐸[𝑥𝑥] is defined by: 

𝐸𝐸[𝑥𝑥] =  ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥, 𝛾𝛾, 𝛿𝛿, 𝜆𝜆)𝑑𝑑𝑑𝑑∞
𝛿𝛿        (18) 

This implies: 

𝐸𝐸[𝑥𝑥] = 𝛾𝛾𝛾𝛾
𝜆𝜆 ∫ �𝑥𝑥 �𝑥𝑥

𝜆𝜆
�
𝛾𝛾−1

𝑒𝑒−𝛿𝛿�
𝑥𝑥
𝜆𝜆�𝛾𝛾� 𝑑𝑑𝑑𝑑∞

𝛿𝛿    (19) 

By integrating (19) it gives: 

𝐸𝐸[𝑥𝑥] = 𝜆𝜆𝛿𝛿
−1
𝛾𝛾 ∫ 𝑈𝑈�1+𝛾𝛾

𝛾𝛾 �−1∞
𝛿𝛿 𝑒𝑒−𝑢𝑢𝑑𝑑𝑑𝑑     (20) 

but  

Γ(𝑠𝑠, 𝑥𝑥) = � 𝑈𝑈𝑠𝑠−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑
∞

𝑥𝑥
. 

This is simplified as:  

𝐸𝐸[𝑥𝑥] = 𝜆𝜆𝛿𝛿
−1
𝛾𝛾 Γ �1+𝛾𝛾

𝛾𝛾
,𝑢𝑢�          (21) 

Substituting (21) into (17) for 𝐸𝐸[𝑥𝑥], it yields: 

𝐸𝐸[ln𝑍𝑍] = ln �𝛿𝛿1
𝛿𝛿0
� + 𝜆𝜆𝛿𝛿

−1
𝛾𝛾 Γ �1+𝛾𝛾

𝛾𝛾
,𝑢𝑢� �𝛾𝛾𝛿𝛿0

𝜆𝜆
−  𝛾𝛾𝛿𝛿1

𝜆𝜆
� (22) 

And finally: 

𝐴𝐴𝐴𝐴𝐴𝐴 = − ln 𝛼𝛼

ln�𝛿𝛿1
𝛿𝛿0
�+𝜆𝜆𝛿𝛿

−1
𝛾𝛾 Γ�𝛿𝛿0+𝛾𝛾𝛿𝛿0

𝜆𝜆 ,𝛾𝛾𝛿𝛿1𝑢𝑢
𝜆𝜆 �

       (23) 

where Γ(𝑎𝑎, 𝑏𝑏) is an upper incomplete gamma function. 
The sensitivity of the CUSUM depends on its performance 

based on the ARL. The in-control ARL and the out-of 
control ARL. The in-control ARL is the average number of 
observations from the in-control process before a false out-of 
control alarm is raised. On the other hand, the out-of control 
ARL refers to the average number of observations required 
to detect a shift in the process mean. CUSUM charts are 

designed to reduce the out-of control ARL for a shift in the 
process mean while maintaining a given in-control ARL 
(Bagshaw and Johnson (1975), Moustakides (1986)).  

Given the values of 𝛿𝛿0, 𝛿𝛿1, 𝜆𝜆, 𝜎𝜎, 𝛾𝛾, 𝜇𝜇 and 𝛼𝛼 with a shift 
in 𝛿𝛿 such that 𝛿𝛿0 <  𝛿𝛿1 , whereas the other parameters are 
fixed, the ARL decreases as the value of (𝛿𝛿1 − 𝛿𝛿0), enlarges. 
On the other hand if the shift in 𝛿𝛿 , is negative where 
𝛿𝛿0 >  𝛿𝛿1 , the ARL increases. Furthermore, if 𝛿𝛿0 <  𝛿𝛿1 , and 
the value of 𝛼𝛼  is reduced from 5% to 1% level of 
significance, the value of the ARL also reduces. It can also 
be determined that the larger shift in the process parameter, 
the smaller the ARL when the shift in the parameter is 
positive but when the shift in the parameter is negative, 
smaller shift produces smaller values and the vice-versa. The 
details are shown in Table 3. The first part of the Table 3 
indicates a positive shift with 𝛼𝛼 having a value of 𝛼𝛼 = 0.05. 
The second part of the Table 3 shows a negative shift and the 
third part of the Table 3 gives values of ARL when there is a 
changed in the value of 𝛼𝛼 from 0.05 to 0.01. 

Table 3.  Simulated values of the ARL 

  𝜹𝜹𝟎𝟎    𝜹𝜹𝟏𝟏   𝝀𝝀   𝝈𝝈    𝜸𝜸    𝝁𝝁    𝜶𝜶   ARL 

0.5   0.70  0.2  0.1  2.0  0.3  0.05  35.1 
0.5   0.75  0.2  0.1  2.0  0.3  0.05  19.4 
0.5   0.80  0.2  0.1  2.0  0.3  0.05  13.7 
0.5   0.85  0.2  0.1  0.2  0.3  0.05  10.7 
0.5   0.90  0.2  0.1  0.2  0.3  0.05  8.9 
0.5   0.95  0.2  0.1  0.2  0.3  0.05  7.7 
0.5   1.00  0.2  0.1  0.2  0.3  0.05  6.8 
0.5   1.05  0.2  0.1  0.2  0.3  0.05  6.1 

𝜹𝜹𝟎𝟎    𝜹𝜹𝟏𝟏   𝝀𝝀    𝝈𝝈   𝜸𝜸    𝝁𝝁    𝜶𝜶   ARL 

0.5   0.45  0.2  0.1  2.0  0.3  0.05  -8.4 
0.5   0.40  0.2  0.1  2.0  0.3  0.05  -6.3 
0.5   0.35  0.2  0.1  2.0  0.3  0.05  -4.9 
0.5   0.30  0.2  0.1  0.2  0.3  0.05  -3.9 
0.5   0.25  0.2  0.1  0.2  0.3  0.05  -3.2 
0.5   0.20  0.2  0.1  0.2  0.3  0.05  -2.6 
0.5   0.15  0.2  0.1  0.2  0.3  0.05  -2.1 
0.5   0.10  0.2  0.1  0.2  0.3  0.05  -1.6 

𝜹𝜹𝟎𝟎    𝜹𝜹𝟏𝟏    𝝀𝝀    𝝈𝝈   𝜸𝜸    𝝁𝝁   𝜶𝜶   ARL 

0.5   0.70  0.2  0.1  2.0  0.3  0.01  54.0 
0.5   0.75  0.2  0.1  2.0  0.3  0.01  29.9 
0.5   0.80  0.2  0.1  2.0  0.3  0.01  21.1 
0.5   0.85  0.2  0.1  0.2  0.3  0.01  16.5 
0.5   0.90  0.2  0.1  0.2  0.3  0.01  13.7 
0.5   0.95  0.2  0.1  0.2  0.3  0.01  11.8 
0.5   1.00  0.2  0.1  0.2  0.3  0.01  10.4 

0.5   1.05  0.2  0.1  0.2  0.3  0.01   8.6 

6. Practical Demonstration with Some 
Random Values of the NWPD 

Table 4 shows some random numbers generated with the 
NWPD. The first ten values are random numbers of the 
distribution when the scale parameter is fixed at 0.5. The last 
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five numbers represent some random numbers of the NWPD 
when the scale parameter shifts to 0.9. The V-Mask, having a 
mask angle of 76o and a lead distance of 3 was placed at the 
last point plotted. The process graph is then plotted with the 
CUSUM value to the nearest whole number against the 
sample number. The graph showed that sample 1 to 8 fell 
outside the arms of the V-Mask, indicating a shift in the 
process parameter as shown in Fig 1. 

 
 
 
 
 
 
 
 
 

Table 4.  Random numbers of the NWPD 

Sample   Data (𝒙𝒙 )    𝐥𝐥𝐥𝐥 𝒙𝒙    CUSUM 

1     5365.7       8.6        9 
2     18969.1      9.9       19 
3     9788.0       9.2       28 
4     186.4        5.2       33 
5     75.0         4.3       37 
6     1.4          0.3       38 
7     36.7        3.6        41 
8     1704.2      7.4        49 
9     306.1        5.7       54 
10    312.7        5.8       60 
11    434.7        6.1       66 
12    3.7          1.3       67 
13    379.4        5.9       73 
14    175.6        5.2       79 
15    1531.6       7.3       86 

 
 

 

Figure 1.  One-sided CUSUM plot for the simulated hypothetical data 
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7. Conclusions 
In this study, we proposed a new one-sided CUSUM 

control chart for the NWPD. The results shows that when 
there is a positive shift in the parameter delta, 𝛿𝛿, from 𝛿𝛿0  
to 𝛿𝛿1 , the value of the mask angle, 𝜃𝜃  decreases as the 
difference (𝛿𝛿1  − 𝛿𝛿0) increases. On the other hand when there 
is a slight negative shift in the value of the parameter, where 
𝛿𝛿0 > 𝛿𝛿1, the value of the mask angle, 𝜃𝜃 increases. 

Also, there has been an effect on the lead distance, 𝑑𝑑 
whenever there is a slight shift in the process parameter. The 
lead distance increases in value as the size of the shift 
becomes larger and the lead distance also decreases when the 
shift is negative, thus when 𝛿𝛿1 < 𝛿𝛿0. 

Furthermore, the ARL decreases as the value of (𝛿𝛿1 − 
𝛿𝛿0), enlarges. On the other hand if the shift in the parameter 
𝛿𝛿, is negative where 𝛿𝛿0 >  𝛿𝛿1 , the ARL increases. More also, 
if 𝛿𝛿0 <  𝛿𝛿1 , and the value of 𝛼𝛼, level of significance reduces, 
the value of the ARL also reduces.  
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