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Abstract  Procedures for multiple comparisons between treatment averages are of great interest in applied research. They 

are used to compare factor’s levels means, since the most popular tests show problems related to ambiguous results and to the 

control of the type I error rates, besides their performance are worst in heterocedastics and unbalanced cases. This work has as 

objective to implement two Bayesian alternatives for multiple comparisons proposed by Andrade & Ferreira (2010) for 

completely randomized design in R code, contemplating the possibility of analyzing homocedastic and heterocedastic cases, 

with or without balancing. The implementation was illustrated by an example. In addition, the results of the two tests were 

compared with those of the Tukey test. The implementation was done successfully, allowing more possibility of choice for 

the user. 
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1. Introduction 

A common problem in science and also in industry is the 

comparison of the means of some treatments of interest, to 

determine which of these treatments differ from each other, 

if this difference exists (RAFTER et al, 2002). The most 

usual way to treat this problem is analysis of variance 

(ANOVA). 

Since the treatments of the fixed-effect test, the global 

F-test of ANOVA tests the hypothesis of equality between 

the population means of the treatments compared. If the F 

test is significant, with more than two treatments being 

qualitative, multiple comparison procedures (MCP) are then 

used to test the difference between the treatments 

(HOCHBERG & TAMHANE, 1987; HSU, 1996; BRETZ  

et al, 2010). 

MCP are statistical procedures that compare two or more 

means. There is a vast bibliography about them 

(HINKELMANN & KEMPTHORNE, 1987, HOCHBERG 

& TAMHANE, 1987; HSU, 1996; BRETZ et al, 2010). All 

comparisons of treatments are performed when MCP are 

used. They allow the analysis of differences between means 

after the conclusion of the experiment to detect possible 

groups in a set of levels of unstructured factors.  

The major problem with these tests is the ambiguity of the 

results, which makes interpretation difficult (MACHADO et 

al, 2005). This problem can be circumvented by alternative  
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methods of clustering (SCOTT & KNOTT, 1974; 

CALINSKI & CORSTEN, 1985), but they have the 

disadvantage of being valid only under normality. 

A second problem, which does not less important, is the 

type I error control (HOCHBERG & TAMHANE, 1987; 

HSU, 1996). A common difference between MCP concerns 

how to measure type I error rates, which can be either by 

comparison or by experiment (STEEL & TORRIE, 1980; 

BENJAMINI & HOCHBERG, 1995). The performance 

varies with type I error rates and power, making it difficult to 

decide which MCP to use (DEMIRHAN et al, 2010).  

The MCP and the F test require that certain assumptions 

be satisfied - the samples should be randomly and 

independently selected; the residues must be normally 

distributed and the variances must be homogeneous 

(RAFTER et al, 2002). Because one or more of these 

assumptions may be violated for a given set of data, it is 

important to be aware of how this would impact an 

inferential procedure. The insensitivity of a procedure to one 

or more violations of its underlying assumptions is called its 

robustness. The first assumption is the least likely to be 

violated, because it is under the control of the researcher. If 

violated, neither the MCP nor the F-test are robust. Most of 

the procedures seem to be robust under moderate departures 

from normality in that the error rate per experiment will only 

be slightly higher than specified.  

Some MCP have been specifically developed to be used 

when the variances are not all equal. Many of the proposed 

procedures control the general risk of type I errors, but have 

little statistical power. Three procedures that have often been 

recommended are those developed by Game & Howell 

(1976), Dunnett C (1980), and Dunnett T3 (1980). These 
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procedures control the overall risk of a type I error 

experimentally at approximately the level of nominal 

significance and have the best statistical power between the 

alternative solutions. Tamhane (1979) proposed two 

approximated approaches for the multiple comparisons with 

a control and all-pairwise comparisons when the variances 

are unequal. Demirhan et al (2010), Ramsey et al (2010) and 

Ramsey et al (2011) studied the influence of violations of 

assumptions of normality and homogeneity of variances on 

the choice of a multiple comparison procedure. Tamhane 

(1979), Chen & Lee (2011), Li (2012), Shingala & 

Rajyaguru (2015), Sarmah & Gogoi (2015) have also done 

studies on multiple comparison procedures for populations 

with unequal variances. 

Booststrap resampling methods can be used in studies of 

multiple comparisons of the means of one-factor levels in 

situations of heterogeneity of variances of normal or 

non-normal probabilistic models (KESELMAN et al, 2002). 

An alternative is the use of Bayesian procedures. A fair 

number of articles takes into account the problem of multiple 

comparisons from the Bayesian point of view (DUNCAN, 

1965; WALLER & DUNCAN, 1969; BERRY, 1988; 

GOPALAN & BERRY, 1998; BERRY & HOCHBERG, 

1999; SHAFFER, 1999; BRATCHER & HAMILTON, 2005; 

GELMAN et al, 2012).  

Andrade & Ferreira (2010) proposed Bayesian 

alternatives for multiple comparisons using a methodology 

based on a posteriori t multivariate distribution, 

contemplating the possibility of analyzing both cases of 

homogeneity and heterogeneity of variances, with and 

without balancing. The proposed alternatives were superior 

to the other procedures studied, in the simulated examples, 

because they controlled the type I error and presented a 

greater power. In addition to having advantages over 

conventional tests, in the sense that there isn't need for 

homogeneity of variances and data balancing, that is very 

significant from a practical point of view. Despite the 

superiority of the Bayesian alternatives, they weren't 

implemented which made it difficult to use them. 

Free programs, such as the R (R DEVELOPMENT CORE 

TEAM, 2017) program, are widely used to perform 

experiments analysis. In addition to being free, R has several 

packages for the most diverse areas and allows the user to 

create their own functions. In addition, it receives 

contributions from researchers from around the world in the 

form of packages, making a major development of the 

program and enabling solutions to real problems to be easily 

found or created by the researcher himself. 

Therefore, the objective of this article is to implement in R 

code, two Bayesian alternatives for multiple comparisons 

proposed by Andrade & Ferreira (2010), in the context of 

completely randomized designs, when the validity 

assumptions are satisfied, as well as when the assumptions 

are not met. 

2. Methodology 

A function in code R (R DEVELOPMENT CORE TEAM, 

2017) was programmed to perform two Bayesian tests 

presented by Andrade & Ferreira (2010) for the case of the 

completely randomized design. This function allows to 

analyze the experimental data considering the cases of 

homogeneity and heterogeneity of variances in models with 

normal distribution, in situations of balancing or not. 

For this, a sample of size n of the multivariate t 

distribution t (n, , , ) was generated, whose parameters 

are specified by: 
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where 
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 , k is the number of population means and 

 is the covariance matrix of the means.  

From the posteriori multivariate t distribution, we were 

generate k chains of means i, using the Monte Carlo method 

and assuming constant means, vector  = (, , ... , )t , that 

is, all the same components. Thus, without loss of generality, 

it was assumed  = 0 (for all k components), imposing the 

null hypothesis H0 in the Bayesian method. 

Following the generation of the standardized amplitude of 

the posteriori, under H0, and it was obtained in the posteriori 

distribution of the averages as follows: 

         (2) 

in which h represents the harmonic mean of the variances of 

the mean k, given by: 
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to consider the possibility of analyzing both the case of 

heterogeneous variances and the case of homogeneous 

variances and under non-equilibrium conditions. 

The posteriori densities of the standardized amplitude 

distribution q and the upper  quantile of this distribution 

were obtained using a Kernel density estimator of the R 

program (R DEVELOPMENT CORE TEAM, 2017). 

To make the inference about the hypothesis H0: i = i’, i ≠ 

i’ = 1, 2, ..., k, considering all the pairs, it was obtained 

 = h . q.,               (4) 
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for  % being q. the upper quantile 100% of the posterior 

distribution of q e h obtained from expression (3). 

For perform the test dbayes, the differences between the 

pairs of mean and the least significant difference  are 

compared. For any amplitude greater than , the difference is 

significantly considered non-zero. 

For second test, called pbayes, a new chain with the lower 

limits (LIii’) and higher (LSii’) of an interval a posteriori for 

each pair of averages (i, i’) was obtained as follows: 

'
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As a measure of evidence for or against H0: i = i’, we 

calculated the posterior probability of the intervals 

containing the value zero. Let I (0  [LIj 
ii’, LSj 

ii’] ) be the 

indicator function to verify that the value zero belongs to the 

interval in the jth Monte Carlo sample unit of the a posteriori 

chain,  
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After performing the above procedures it was possible to 

implement a function named Bayes (), which should receive 

the arguments presented in Table 1. 

Table 1.  Bayes function arguments 

Argument Meaning 

N sample size to be simulated 

alpha significance level 

file file with the experimental data 

For proper operation of the Bayes () function, in addition 

to the input arguments, the mvtnorm package need to be 

installed. 

The function proposed in this work performs the analysis 

of variance for the case of completely randomized design; it 

verifies the fulfillment of the assumptions of homogeneity of 

variances by the Bartlett test (BARTLETT, 1937) and 

normality by the Shapiro-Wilk test (SHAPIRO & WILK, 

1965); it performs multiple comparisons through the two 

Bayesian tests. 

Table 2.  Nitrogen content, in mg, of red clover plants inoculated with 
combinations of R. trifolii and R. melioti cultures 

Treatments 
Repetitions 

1 2 3 4 5 

1 17.7 24.8 27.9 25.2 24.3 

2 17.0 19.4 9.1 11.9 15.8 

3 20.7 21.0 20.5 18.8 18.6 

4 14.3 14.4 11.8 11.6 14.2 

5 17.3 19.4 19.1 16.9 20.8 

SOURCE: Adapted from Steel & Torrie, p. 141, 1980 

The performance of the tests was illustrated with a data set 

from a CRD experiment with red clover plants: five 

treatments of different cultures of five nitrogen-fixing 

bacteria, adapted from Stell & Torrie (1980). The data are 

shown in Table 2. 

In addition, a comparison is made between the results 

presented by the two tests proposed with test's Tukey, for the 

same data set. 

3. Results 

The Bayes function (N, alpha, file) receives three entries, 

N is the sample size to be simulated, alpha is the significance 

level and file the file with the experimental data. 

Initially the analysis of variance was performed and the 

assumptions of normality and homoscedasticity were 

verified. 

The mean vectors  (Yb in the implemented function), the 

covariance matrix  (Syb in the implemented function) and 

the degree of freedom  (nu in the implemented function) for 

the multivariate t distribution generation were calculated 

from the experimental data, middle of the tpostmult function.  

 

By means of the qpostbayes function k k means chains i 

were generated, using the Monte Carlo method, imposing the 

null hypothesis H0 in the Bayesian method. The generation 

of the standardized amplitude of the posteriori was 

performed, under H0, from expressions (2) and (3). 

 

The inference about the hypothesis H0: i = i’, i ≠ i’ = 1, 

2, ..., k, was made through two Bayesian tests (dbayes e 

pbayes). 

To test the hypothesis of equality of means by means 

dbayes test, we obtained the least significant difference  

from the expression (4), delta function in the code.  

 

The differences were then compared with the delta value. 

For any amplitude greater than delta, the difference is 

considered significantly different from zero, that is, there is 

difference between the treatments of that pair. 
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To test the hypothesis of equality of means by means of 

the pbayes test, we used the limits generated from equation 

(5) and calculated the posterior probability of the intervals 

containing the value zero, according to equation (6). There 

isn't difference between the pair of means for probabilities 

greater than 95% of zero being in the ranges. 

 

The power the pbayes test was calculated. 

 

The implementation of the function is illustrated by the 

example cited in materials and methods, using N = 10000, 

alpha = 0.05 and file as the experimental data of Table 2, 

which should be inserted in R (R DEVELOPMENT CORE 

TEAM, 2017) according to Figure 1. 

 

Figure 1.  Format in which the data must be inserted in the R 

The interface shown to the user for the variance analysis 

and the normality and homocedasticity assumptions is 

presented in Figure 2. 

 

Figure 2.  Interface with variance analysis, Shapiro-Wilk normality test 

and Bartlett's variance homogeneity test 
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It is observed that the p-value was lower than alpha (p 

value = 3.103x10-5), that is, there is a significant difference 

between the treatments. By means of the Shapiro-Wilk test it 

is verified that the errors follow a normal or approximately 

normal distribution (p-value greater than alpha). It is also 

observed, by the Bartlett test, that the variances are 

heterogeneous (p-value less than alpha).  

The output obtained in the R for the dbayes test is shown 

in Figure 3. 

 

Figure 3.  Output for the dbayes test, ns indicates non-significant and * 

significant at 5%. Averages followed by the same letter in the column do not 

differ by 5% probability by the dbayes test 

The output for the pbayes test with its power in R is shown 

in Figure 4. 

 

Figure 4.  Output to the pbayes test with its power. ns indicates not 

significant and * significant at 5% 

It is observed that the pbayes test is more powerful than 

dbayes test since it identifies more significant differences.  

The Tukey test was used as a procedure to perform 

multiple comparisons for the data set under analysis. The 

comparative results between the two proposed tests and the 

Tukey test are presented in Figure 5. 

 

Figure 5.  Comparison between the tests proposed with Tukey 

In the example presented, it can be observed that the 

pbayes test shows a greater sensitivity regarding the 

detection of differences between treatments in relation to the 

dbayes and Tukey tests. The dbayes test presented a lower 

identification in relation to Tukey test, but it is worth noting 

that since the data do not show homogeneity of variances, the 

Tukey test result is not reliable. 

4. Conclusions 

The implementation of the two Bayesian alternatives 

(dbayes and pbayes tests) for multiple comparisons proposed 

by Andrade & Ferreira (2010) was done successfully.          

The two tests can be performed in software R (R 

DEVELOPMENT CORE TEAM, 2017), in the context of 

completely randomized designs, when the validity 

assumptions are satisfied, as well as when the assumptions 

are not satisfied. 

Selecting an appropriate multiple comparison procedure 

requires extensive evaluation of the available information on 

the status of each test. Information on the importance of type 

I errors, power, computational simplicity, and so on, are 

extremely important to the selection process. In addition, 

selecting an appropriate multiple comparison procedure 

depends on data that conforms to validity assumptions. 

Routinely selecting a procedure without careful 

consideration of available and alternative information can 

severely reduce the reliability and validity of results. 

Thus, the implementation of these two tests provides 

another possibility of choice for the user. The intention is to 

incorporate the functions developed in an R package and test 

their performances for other designs and analysis schemes. 
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