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Abstract  In this paper a quasi Sujatha distribution (QSD), of which Sujatha distribution of Shanker (2016 a) is a 
particular case, has been proposed. Its moment generating function, moments and other related properties have been studied. 
Important mathematical and statistical properties including hazard rate and mean residual life functions, stochastic ordering, 
mean deviations, Bonferroni and Lorenz curves, and stress-strength reliability have also been discussed. Method of 
maximum likelihood and the method of moments have been discussed for estimating its parameters. A numerical example 
has been presented to test its goodness of fit and the fit is compared with other lifetime distributions. 
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1. Introduction 
The Sujatha distribution, introduced by Shanker (2016 a), 

is defined by its probability density function (p.d.f.)  
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(1.1) 
Shanker (2016 a) has introduced this distribution for 

modeling lifetime data from engineering and biomedical 
science and discussed its applications for several lifetime 
data. It has been shown that it gives better fit than 
exponential and Lindley (1958) distributions. This 
distribution can be easily expressed as a mixture of 
exponential ( )θ , a gamma ( )2,θ  and a gamma ( )3,θ  

distributions with their mixing proportions
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The cumulative distribution function (c.d.f.) of Sujatha 
distribution (1.1) obtained by Shanker (2016 a) is given by            
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(1.2) 
The first four moments about origin of Sujatha distribution 

(1.1) are thus obtained as 
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Using the relationship between moments about mean and 
the moments about origin, the moments about mean of the 
Sujatha distribution (1.1) are obtained as   
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Shanker (2016 a) studied some of its important properties 
including skewness, kurtosis, hazard rate function, mean 
residual life function, stochastic ordering, mean deviations, 
Bonferroni and Lorenz curves, stress-strength reliability. 
Shanker (2016 b) has also obtained a Poisson mixture of 
Sujatha distribution named, “Poisson-Sujatha distribution 
(PSD)” and discussed its various properties, estimation of 
parameter and applications for counts data. Further, Shanker 
and Hagos (2016 a, 2015) have obtained the size-biased and 
zero-truncated version of PSD, discussed their statistical 
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properties, estimation of their parameter, and applications for 
modeling data which structurally excludes zero-counts. 
Shanker and Hagos (2016 b) have detailed study about 
applications of PSD for modeling count data. Shanker and 
Hagos (2016 c) have detailed and critical study on 
applications of zero-truncated Poisson, Poisson-Lindley and 
Poisson-Sujatha distributions. 

In this paper, a two - parameter quasi Sujatha distribution, 
of which one parameter Sujatha distribution introduced by 
Shanker (2016 a) is a particular case, has been proposed. Its 
raw moments and central moments have been obtained and 

coefficients of variation, skewness, kurtosis and index of 
dispersion have been discussed. Some of its important 
mathematical and statistical properties including hazard rate 
function, mean residual life function, stochastic ordering, 
mean deviations, Bonferroni and Lorenz curves, 
stress-strength reliability have also been discussed. The 
estimation of the parameters has been discussed using both 
the maximum likelihood estimation and the method of 
moments. A numerical example has been given to test the 
goodness of fit of the distribution and the fit has been 
compared with other well known distributions. 

 

2. A Quasi Sujatha Distribution 
A two - parameter quasi Sujatha distribution (QSD) having parameters θ  and α  is defined by its probability density 

function (p.d.f.) 
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It can be easily verified that at α θ= , (2.1) reduces to the Sujatha distribution (1.1) and at 0α = , it reduces to the 
size-biased Lindley distribution (SBLD) given by its p.d.f. 
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It can be easily verified that QSD (2.1) is a three-component mixture of exponential ( )θ  gamma ( )2,θ and gamma 

( )3,θ distributions. We have 
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The corresponding cumulative distribution function of QSD (2.1) can be obtained as 
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3. Moments and Related Measures 
The moment generating function of QSD (2.1) are obtained as 
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Thus, the r th moment about origin of QSD obtained as the coefficient of 
!
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The first four moments about origin of QSD are given by 
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The moments about mean of QSD are thus obtained as  
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The coefficient of variation ( ).C V , coefficient of skewness ( )1β , coefficient of kurtosis ( )2β  and index of dispersion 

( )γ  of QSD are given by 
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To study the nature of C.V, 1β , 2β , and γ  of QSD, the numerical values of these constants have been computed for 
varing values of the parameters and presented in tables 3.1, 3.2, 3.3, and 3.4 

Table 3.1.  CV of QSD for varying values of θ and α 

θ   
 

α 
0.5 1 2 3 4 5 

0.5 0.662392 0.708329 0.755148 0.777778 0.790569 0.798556 

1 0.702377 0.761739 0.816497 0.840635 0.853461 0.861102 

2 0.765466 0.83666 0.892143 0.912871 0.922627 0.927872 

3 0.812957 0.886072 0.935414 0.95119 0.957685 0.960727 

4 0.849837 0.920447 0.96225 0.97361 0.977525 0.978945 

5 0.879121 0.945247 0.979796 0.987577 0.989565 0.989835 

 
It is clear from table 3.1 that for a given value of ( )α θ , C.V increases as the value of ( )θ α  increases. 

Table 3.2.  1β  of QSD for varying values of θ and α 

θ   
 

α 
0.5 1 2 3 4 5 

0.5 1.145839 1.201582 1.294584 1.353418 1.391402 1.417143 

1 1.154381 1.247611 1.377838 1.451434 1.496069 1.525066 

2 1.21277 1.365976 1.535588 1.617472 1.662624 1.689961 

3 1.285766 1.475249 1.656065 1.733747 1.773301 1.79573 

4 1.357727 1.567307 1.745907 1.815305 1.848046 1.865362 

5 1.424397 1.643745 1.813728 1.873881 1.900102 1.912879 

 

It is obvious from the table 3.2 that for a given value of ( )α θ , 1β  increases as the value of ( )θ α  increases. 

Table 3.3.  2β  of QSD for varying values of θ and α 

θ   
 

α 
0.5 1 2 3 4 5 

0.5 4.944566 5.082378 5.380592 5.602897 5.76 5.872844 

1 4.924032 5.170213 5.625 5.931292 6.135306 6.275987 

2 5.022933 5.510204 6.21499 6.620247 6.865586 7.023417 

3 5.210301 5.903269 6.757653 7.193906 7.438127 7.585918 

4 5.431953 6.283795 7.2144 7.644246 7.868405 7.996219 

5 5.663815 6.633262 7.591146 7.995389 8.192249 8.297711 
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Table 3.3 reveals that for a given value of α , 2β  increases as the value of θ  increases. For 0 0.5θ< ≤  and 
0 1α< ≤ , 2β  decreases. Again for a given value of 1θ ≥ , 2β  increases as the value of α  increases. 

Table 3.4.  γ  of QSD for varying values of θ and α 

θ   
 

α 
0.5 1 2 3 4 5 

0.5 2.31348 1.218487 0.627273 0.418803 0.3125 0.248364 

1 2.466667 1.305556 0.666667 0.441667 0.327778 0.259524 

2 2.678571 1.4 0.696429 0.454545 0.334416 0.263348 

3 2.808824 1.439394 0.7 0.452381 0.331197 0.260117 

4 2.888889 1.452381 0.694444 0.446078 0.325758 0.255556 

5 2.936842 1.451923 0.685714 0.438889 0.320136 0.251067 

 
It is obvious from table 3.4 that for a given value of ( )α θ , γ  decreases (increases) as the value of ( )θ α  increases. 

4. Hazard Rate Function and Mean Residual Life Function 
Let X  be a continuous random variable with p.d.f. ( )f x  and c.d.f. ( )F x . The hazard rate function (also known as 

the failure rate function) and the mean residual life function of X  are respectively defined as  
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The corresponding hazard rate function, ( )h x  and the mean residual life function, ( )m x  of QSD (2.1) are obtained as  
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5. Stochastic Orderings 
Stochastic ordering of positive continuous random variables is an important tool for judging their comparative behavior.  

A random variable X  is said to be smaller than a random variable Y  in the  
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(i) stochastic order ( )stX Y≤  if ( ) ( )X YF x F x≥ for all x  

(ii) hazard rate order ( )hrX Y≤  if ( ) ( )X Yh x h x≥  for all x  

(iii) mean residual life order ( )mrlX Y≤  if ( ) ( )X Ym x m x≤  for all x  

(iv) likelihood ratio order ( )lrX Y≤  if 
( )
( )

X

Y

f x
f x

 decreases in x . 

The following results due to Shaked and Shanthikumar (1994) are well known for establishing stochastic ordering of 
distributions 

lr hr mrlX Y X Y X Y≤ ⇒ ≤ ⇒ ≤                                         (5.1) 

stX Y≤
⇓

   
 

The QSD is ordered with respect to the strongest ‘likelihood ratio ordering’ as shown in the following theorem: 
Theorem: Let X ∼  QSD ( )1 1,θ α  and Y ∼  QSD ( )2 2,θ α . If 1 2 1 2andα α θ θ= >  or 1 2 1 2andθ θ α α= > , 

then lrX Y≤  and hence hrX Y≤ , mrlX Y≤  and stX Y≤ . 
Proof: We have  

( )
( )

( )
( )

( )1 2
2 2

1 2 2 2 1 1 1
2 2

2 1 1 1 2 2 2

2
2

X

Y

f x x
f x

x x e
x x

θ θθ α θ θ α θ θ
θ α θ θ α θ θ

− − + + + +
=   + + + + 

;  0x >  

Now  

( )
( )

( )
( )

( )
2 2

1 2 2 2 1 1 1
1 22 2

2 1 1 1 2 2 2

2
log log log

2
X

Y

f x
f x

x x x
x x

θ α θ θ α θ θ θ θ
θ α θ θ α θ θ

   + + + +
= + − −    + + + +    

. 

This gives    
( )
( )

( ) ( )
( )( ) ( )2 1 1 2 2 1 1 2

1 22 2
1 1 1 2 2 2

2
log X

Y

f x
f x

xd
dx x x x x

α θ α θ α θ α θ
θ θ

α θ θ α θ θ

− + −
= − −

+ + + +
. 

Thus if 1 2 1 2andα α θ θ= >  or 1 2 1 2andθ θ α α= > , ( )
( )log 0X

Y

f x
f x

d
dx

< . This means that lrX Y≤ and hence

hrX Y≤ , mrlX Y≤ and stX Y≤ . This shows flexibility over Sujatha distribution introduced by Shanker (2016 a). 

6. Mean Deviations 
The amount of scatter in a population is measured to some extent by the totality of deviations usually from mean and 

median. These are known as the mean deviation about the mean and the mean deviation about the median defined by 
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( )Median M X= . The measures ( )1 Xδ  and ( )2 Xδ can be calculated using the following simplified relationships 
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Using p.d.f. (2.1) and expression for the mean of QSD, we get  
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Using expressions from (6.1), (6.2), (6.3), and (6.4), the mean deviation about mean, ( )1 Xδ  and the mean deviation 

about median, ( )2 Xδ  of QSD are obtained as 
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7. Bonferroni and Lorenz Curves 
The Bonferroni and Lorenz curves (Bonferroni, 1930) and Bonferroni and Gini indices have applications not only in 

economics to study income and poverty, but also in other fields like reliability, demography, insurance and medicine. The 
Bonferroni and Lorenz curves are defined as 
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respectively or equivalently  
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respectively, where ( )E Xµ =  and ( )1q F p−= .
The Bonferroni and Gini indices are thus defined as 
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Using p.d.f. of QSD (2.1), we get 
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Now using equation (7.7) in (7.1) and (7.2), we get 
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αθ θ

− + + + + + + + +
 = − + +
  

   (7.8) 

and 

( )
( ) ( ) ( ) ( ){ }3 3 2 2 33 2 2 6 1

1
2

qq q q q q q e
L p

θθ θ α θ α θ

αθ θ

−+ + + + + + + +
= −

+ +
    (7.9) 

Now using equations (7.8) and (7.9) in (7.5) and (7.6), the Bonferroni and Gini indices of QSD are thus obtained as 

( ) ( ) ( ) ( ){ }3 3 2 2 33 2 2 6 1
1

2

qq q q q q q e
B

θθ θ α θ α θ

αθ θ

−+ + + + + + + +
= −

+ +
   (7.10) 

( ) ( ) ( ) ( ){ }3 3 2 2 32 3 2 2 6 1
1

2

qq q q q q q e
G

θθ θ α θ α θ

αθ θ

−+ + + + + + + +
= − +

+ +
 (7.11) 

8. Estimation of Parameters
8.1. Maximum Likelihood Estimates (MLE) 

Let ( )1 2 3, , , ... , nx x x x  be a random sample from QSD (2.1)). The likelihood function, L  of (2.1) is given by

( )
2

2

12

n n
n x

i i
i

L x x e θθ α θ θ
αθ θ

−

=

 
= + +  + + 

∏
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and so its natural log likelihood function is thus obtained as 

  ( )
2

2

1
ln ln ln

2

n

i i
i

L n x x n xθ α θ θ θ
αθ θ =

 
= + + + −  + + 

∑                       (8.1.1) 

The maximum likelihood estimates (MLEs) θ̂  and α̂  of θ  and α  are then the solutions of the following non-linear 
equations 

( ) 2

2
1

1ln 2 0
2

n
i i

i i i

n x xL n n x
x x

α
θ θ αθ θ α θ θ=

+ +∂
= − + − =

∂ + + + +
∑  

2
1

ln 1 0
2

n

i i i

L n
x x

θ
α αθ θ α θ θ=

∂
= − + =

∂ + + + +
∑  

where x  is the sample mean. 
These two natural log likelihood equations do not seem to be solved directly. However, the Fisher’s scoring method can be 

applied to solve these equations. We have 

( )
( )

( )
( )

2222

2 2 2 221

1ln 2
2

n i i

i i i

x xnL n

x x

α
θ θ αθ θ α θ θ=
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( ) ( )
2 2

2 2 221

ln 1
2
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x x

θ
α αθ θ α θ θ=

∂
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∑  

( )
( )
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22

2 221

ln 2
2

n i i

i i i

x xL n

x xθ α αθ θ α θ θ=

+∂
= − −
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∑  

The following equations can be solved for MLEs θ̂  and α̂  of θ  and α of QSD 

0
0

0
0

2 2

2
0

2 2
0

ˆ2 ˆ
ˆˆ

ln ln ln
ˆ

lnˆln ln

L L L

LL L
θ θ

θ θ α αα α

θ αθ θ θ θ
α α

αθ α α =
=

==

 ∂ ∂ ∂     ∂ ∂∂ − ∂  =     ∂− ∂ ∂      ∂ ∂ ∂ ∂ 

 

where 0θ  and 0α  are the initial values of θ  and α , respectively. These equations are solved iteratively till sufficiently 

close values of θ̂  and α̂  are obtained.  

8.2. Method of Moments Estimates (MOME) 
Since the QSD (2.1) has two parameters to be estimated, the first two moments about origin are required to estimate its 

parameters. Equating the population mean to the sample mean, we have 

( ) ( ) ( )
2 6 2 4

2 2 2
x αθ θ αθ θ θ

θ αθ θ θ αθ θ θ αθ θ
+ + + + +

= = +
+ + + + + +

 

( )
1 4

2
x θ

θ θ αθ θ
+

= +
+ +

 

42
1x

θαθ θ
θ
+

+ + =
−

                                                                        (8.2.1) 
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Again replacing the second population moment with the corresponding sample moment, we have 

( )
( )

( )
( )

( )
( )2 2 2 2

2 3 12 2 2 4 5
2 2 2

m
αθ θ αθ θ θ

θ αθ θ θ αθ θ θ αθ θ
+ + + + +′ = = +
+ + + + + +

( )
( )2 2
4 52

2
θ

θ θ αθ θ
+

= +
+ +

 

   
( )

2
2

4 5
2

2m

θ
αθ θ

θ

+
+ + =

′ −
                                                                  (8.2.2) 

Equations (8.2.1) and (8.2.2) gives the following cubic equation in θ  

( ) ( )3 2
2 24 2 10 1 12 0m m x xθ θ θ′ ′+ − − − + =                                (8.2.3) 

Solving equation (8.2.3) using any iterative methods such as Newton-Raphson method, Regula -Falsi method or Bisection 
method, method of moment estimate (MOME) θ  of θ  can be obtained and substituting the value of θ  in equation 
(8.2.1), MOME α  of α  can be obtained as 

( ) ( )
( )

2
2 1 6

1

x x

x

θ θ
α

θ θ

− + − +
=

−

 



 

                                       (8.2.4) 

9. Stress-Strength Reliability 
The stress- strength reliability describes the life of a component which has random strength X  that is subjected to a 

random stress Y . When the stress applied to it exceeds the strength, the component fails instantly and the component will 
function satisfactorily till X Y> . Therefore, ( )R P Y X= <  is a measure of component reliability and in statistical 
literature it is known as stress-strength parameter. It has wide applications in almost all areas of knowledge especially in 
engineering such as structures, deterioration of rocket motors, static fatigue of ceramic components, aging of concrete 
pressure vessels etc. 

Let X  and Y  be independent strength and stress random variables having QSD (2.1) with parameter ( )1 1,θ α  and 

( )2 2,θ α  respectively. Then the stress-strength reliability R  can be obtained as 

( ) ( ) ( )
0

| XR P Y X P Y X X x f x dx
∞

= < = < =∫  

( ) ( )1 1 2 2
0
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. 

It can be easily verified that above expression reduces to the corresponding expression for Sujatha distribution (1.1) at 

1 1α θ=  and 2 2α θ= .                             
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10. Illustrative Example 
The following data set represents the failure times (in minutes) for a sample of 15 electronic components in an accelerated 

life test, Lawless (2003, pp.204) 
 

1.4  5.1  6.3  10.8  12.1  18.5  19.7  22.2  23.0  30.6  37.3  46.3  53.9  59.8  66.2 
 
For this data set, QSD has been fitted along with one parameter exponential, Lindley and Akash distributions and two - 

parameter weighted Lindley (WLD), Weibull, Gamma and Lognormal distributions. The probability density function (p.d.f.), 
and the cumulative distribution function (c.d.f.) of weighted Lindley, Weibull, Gamma, Lognormal, Lindley and exponential 
distributions are presented in table 10.5. The ML estimates, values of 2ln L−  and K-S statistics of the fitted distributions are 
presented in table 10.6. Recall that the best distribution corresponds to the lower values of 2ln L−  and K-S.   

 

Table 10.5.  The p.d.f. and the c.d.f. of fitted distributions 

Distribution p.d.f. c.d.f. 

WLD ( )
( ) ( )

( )
1 1

; , 1 xx
f x x e

α α
θθ

θ α
θ α α

+ −
−= +

+ Γ
 

( )

( ) ( )

( )
( ) ( )

,

; , 1
x

x

x e
F x

α θ

θ α α θ

θ
θ α

θ α α

−

+ Γ

+
= −

+ Γ

 
 
   

Weibull ( ) 1; , xf x x e
αα θθ α θ α − −=  ( ); , 1 xF x e

αθθ α −= −  

Gamma ( )
( )

1; , xf x x e
α

α θθ
θ α

α
− −=

Γ
 ( ) ( )

( )
,

; , 1
x

F x
α θ

θ α
α

Γ
= −

Γ
 

Lognormal ( ) ( )21 log

21
; ,

2

x

f x e
x

θ

αθ α
πα

−
−

=  ( ) log
; ,

x
F x

θ
θ α φ

α

−
=  

 
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Lindley ( ) ( )
2

; 1
1

xf x x e θθ
θ

θ
−= +

+
 ( ) 1

; 1
1

xx
F x e θθ θ

θ
θ

−+ +
= −

+
 
  

 

Exponential ( ); xf x e θθ θ −=  ( ); 1 xF x e θθ −= −  

Table 10.6.  MLE’s, - 2ln Land K-S Statistics of the fitted distributions 

Distribution 
ML Estimates 

2 ln L−  
K-S 

Statistics θ̂  α̂  

QSD 0.084 12.211 128.018 0.081 

WLD 0.059 0.704 128.405 0.698 

Weibull 0.034 1.306 128.040 0.451 

Gamma 0.052 1.442 128.372 0.100 

Lognormal 2.931 1.061 131.234 0.161 

Sujatha 0.106  132.860 0.177 

Lindley 0.070  128.810 0.110 

Exponential 0.036  129.480 0.155 
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11. Concluding Remarks 
A two - parameter quasi Sujatha distribution (QSD) which 

includes one parameter Sujatha distribution as a particular 
case has been proposed and studied. Its mathematical 
properties including moments, coefficient of variation, 
skewness, kurtosis, index of dispersion, hazard rate function, 
mean residual life function, stochastic ordering, mean 
deviations, Bonferroni and Lorenz curves, and 
stress-strength reliability have been discussed. The method 
of moments and the method of maximum likelihood 
estimation have also been discussed for estimating its 
parameters. Finally, a numerical example of real lifetime 
data set has been presented to test the goodness of fit of the 
QSD over exponential, Lindley, Sujatha, Lognormal, 
Gamma, Weibull and WLD. 
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