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Abstract  Recently, the East Mediterranean region witnessed frequent extreme climate change conidtions manifested in 
high waves, strong wind and seismic activity. This resulted in increased attention to the safety of existing oil rigs. Thus, based 
on the variable dependency of the extreme value theory, the study aims to propose a new method to control the effect of 
climate conditions, particularly the wind speed, which may inflict structural damage to oil rigs. Additionally, the study seeks 
to compare the extreme value dependence between two different regions in Lebanon in order to evaluate how oil rigs, which 
will be installed in Lebanon’s maritime area, resist to high wind speed. 
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1. Introduction 
Millions of barrels of oil equivalent are produced every 

day. In fact, at the end of 2015 production reached 97 million 
barrels per day [6]. Geological and geophysical studies 
conducted in the Lebanese offshore, including the 
interpretation of 2D and 3D seismic data, have revealed the 
presence of natural gas resources. Some prospects are 
located in water areas with a depth of 2,000 meters [11]. The 
fixed or floating platform shall be designed according to 
water depth and bathymetry of seabed to resist the extreme 
weather conditions. The future oil and gas exploration and 
production activities in the Lebanese offshore shall comply 
with the Health, Safety and Environment requirements in 
every phase of the value chain. 

Nowadays, semi-submersible and dynamically positioned 
drilling ships are used in exploring and drilling exploratory 
wells in water depths down to 2,500 meters.  

The cost to operate these rigs is enormous. 
Weather-related events can affect drilling operations by 
causing delays that can incur high costs. For this reason, the 
univariate extreme value theory has been highlighted in the 
research literature where the variables are independent and 
identically distributed [1], [7]. This theory is widely used 
widely in many disciplines such as hydrology, meteorology, 
biology, environment, flood, hurricane, finance and  
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insurance [2], [4], [5], [8], [23]. The latest studies have 
specifically focused on variable dependency [10], [12]. 

In this research paper, the interest is specifically oriented 
toward the study of the univariate extreme value theory as 
applied to wind speed, using the classical method of the 
Block Maxima and the Peak Over Threshold (POT) in order 
to calculate the return level of significant wind speed over 
periods of 50, 100, 500 and 1000 years to protect the design 
of floating semi-submersible. This return level is used by the 
engineers in the design of oil rigs, and for mooring system to 
avoid wind risks especially to floating rigs. 

By using both the Frechet and Weibull distribution 
respectively in the block Maxima and POT methods, we 
demonstrate that the POT method is more adequate to study 
the return levels of the wind speed in Lebanon. 

Furthermore, we are interested in studying the bivariate 
extreme value theory to compare the wind speed across two 
different regions in Lebanon: Jiyeh in Southern Lebanon and 
Tripoli in Northern Lebanon. The dataset used in this study is 
composed of daily wind speeds registered every six hours 
during the period of 9-11-2009 to 10-6-2015. The bivariate 
extreme value theory studies the dependence between two 
variables and calculates the extreme conditional quantiles 
through both the block maxima and POT methods. There are 
different models in the literature to estimate the parameters 
of the bivariate extreme distributions [13], [17]. In order to 
study the dependence of the wind speed in two different 
regions, we develop three models which are the logistic, 
asymmetric logistic in the block maxima method and Husler 
Reiss model in the POT method [15], [16]. 
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2. The Univariate Extreme Value 
Theory 

The classical univariate extreme value theory was 
developed by Frechet, Fisher and Tippett [3]. Two methods 
are used for estimating the extreme quantiles [7], [9], [10]. 
The first one is the block maxima method, which suggests 
the use of the generalized extreme-value (GEV) to calculate 
the limit distribution of the maxima or minima based on the 
Fisher-Tippett theorem [14]. 

Theorem: Let 𝑋𝑋1, …𝑋𝑋𝑛𝑛  be a sequence of independent 
and identically distributed random variables, and Mn =
max(X1, . . . , Xn ) . If a sequence of pairs of real numbers 
(an , bn ) exists such that an > 0 :     

lim
𝑥𝑥→∞

𝑃𝑃 �
𝑀𝑀𝑛𝑛 − 𝑏𝑏𝑛𝑛
𝑎𝑎𝑛𝑛

≤ 𝑥𝑥� = 𝐺𝐺(𝑥𝑥) 

where 𝐺𝐺 is a non degenerate distribution function, then the 
limit distribution 𝐺𝐺 belongs to one of the three distributions 
below called the generalized extreme value 𝐺𝐺𝐺𝐺𝐺𝐺 
distributions whose standard forms are: 

1-Gumbel: 
Ω(x) = exp[−exp(−x)] 

Where x ∈ ℝ.   
2-Frechet: 

ϕ𝜃𝜃(x) = exp[−x−𝜃𝜃   ] 
Where 𝑥𝑥 ≥ 0 and 𝜃𝜃 > 0 is the shape parameter. 
3-Weibull : 

𝜓𝜓𝜃𝜃(𝑥𝑥) = exp[−(−𝑥𝑥)𝜃𝜃 ] 
Where 𝑥𝑥 ≥ 0 and 𝜃𝜃 > 0  is the shape parameter. 
The GEV distribution is given by: 

𝐺𝐺𝛾𝛾 ,Γ,𝜎𝜎(𝑥𝑥) = 𝐺𝐺𝛾𝛾 �
𝑥𝑥−Γ
𝜎𝜎
� = exp �− �1 + 𝛾𝛾 �𝑥𝑥−𝛤𝛤

𝜎𝜎
��

−1
𝛾𝛾
�  

where 𝑥𝑥 is such that 1 + 𝛾𝛾 �𝑥𝑥−Γ
𝜎𝜎
� > 0, 𝛾𝛾 ∈ ℝ, Γ ∈

ℝ,    𝜎𝜎 > 0.  
Γ the location parameter, 𝜎𝜎 the scale parameter and 𝛾𝛾  

the shape parameter. 
  If  𝛾𝛾 ≥ 0, we have a Frechet distribution. 
  If  𝛾𝛾 ≤ 0, we have a Weibull distribution. 
  If  𝛾𝛾 = 0, we have a Gumbel distribution. 
The second method is the POT method, which studies the 

values that exceed a given threshold and uses the 
Generalized Pareto distribution (GPD) whose survival 
function is the following: 

𝐻𝐻�{𝛾𝛾 ,𝜎𝜎}(𝑌𝑌) =

⎩
⎨

⎧�1 + 𝛾𝛾
𝑦𝑦
𝜎𝜎
�
−1
𝛾𝛾  𝑖𝑖𝑖𝑖 𝛾𝛾 ≠ 0 

exp �
−𝑦𝑦
𝜎𝜎
�   𝑖𝑖𝑖𝑖 𝛾𝛾 = 0

�  

Theorem [13] 
There is an equivalence between the convergence in 

distribution of the maximum to a GEV and the convergence 

in the distribution of the exceedances to a GPD [14]: 

lim
𝑥𝑥→∞

𝑃𝑃 �
𝑀𝑀𝑛𝑛 − 𝑏𝑏𝑛𝑛
𝑎𝑎𝑛𝑛

≤ 𝑥𝑥� = 𝐺𝐺𝛾𝛾(𝑥𝑥) 

⇒ Lim
𝑢𝑢→+𝑥𝑥𝐹𝐹

sup
[0,xF−𝑢𝑢]

|𝐹𝐹�𝑢𝑢 (𝑦𝑦) −𝐻𝐻�𝛾𝛾 ,𝜎𝜎(𝑦𝑦)| = 0 

Where 𝑥𝑥𝐹𝐹 is the endpoint of the function 𝐹𝐹. 
The advantage of the POT method is that it is easier to 

construct a sample of exceedances than a sample of maxima. 
Using both methods we can calculate the return level over 

a period of 𝑇𝑇 years of a given variable, which is the value of 
the variable that will be exceeded one time every 𝑇𝑇 years 
with a probability of 1

𝑇𝑇
. 

2.1. Block Maxima Method and Parameters Estimation 
The classical approach to modelling the extremal 

properties of an independent and identically distributed 
variables 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛  is held by using the block maxima 
method, which relies on probabilistic results based on the 
Fisher and Tippett (1928) theorem [14]. To apply the block 
maxima method, we choose to consider a block of 15 days, 
and thus we have 15 × 4 = 60 observations in each block; 
therefore, the year is divided into 24 blocks. Finally, we 
obtain 136 maxima that will constitute the studied sample. 

The estimation of the GEV distribution parameter is 
obtained by using the maximum likelihood method [21] with 
a 95%  confidence interval (CI) which is given in the 
following Table: 

Table 1.  Estimation of the GEV distribution parameters 

 Γ 𝜎𝜎 𝛾𝛾 

Parameter 23.17 5.04 0.37 

Standard deviation 0.52 0.46 0.10 

CI (95%) [22.14,24.19] [4.14,5.95] [0.17,0.57] 

We find that 𝛾𝛾 > 0, so the distribution of the maximum is 
a Frechet distribution. 

To verify this result we use the comparison models 
method. If we suppose the maxima to be independent and 
having the same GEV distribution, then for a very high value 
𝑛𝑛, we have the deviance [19]: 

𝐷𝐷 = 2𝑙𝑙(�̂�𝜇,𝜎𝜎�) − 𝑙𝑙𝑝𝑝(𝜇𝜇,𝜎𝜎�) ∼ 𝜒𝜒𝑘𝑘2 

where  𝑙𝑙(�̂�𝜇,𝜎𝜎�)  is the maximum likelihood for the model 
with 𝛾𝛾 ≠ 0 and  𝑙𝑙𝑝𝑝(𝜇𝜇,𝜎𝜎�) the maximum likelihood for the 
model with 𝛾𝛾 = 0. 

So, we condiser the hypothesis 𝐻𝐻0: 𝛾𝛾 = 0, we will reject 
𝐻𝐻0 if 𝐷𝐷 > 𝐶𝐶𝛼𝛼  where 𝛼𝛼 is the 1 − 𝛼𝛼 quantile with 𝛼𝛼 = 5%. 

We obtain: 

𝑙𝑙(�̂�𝜇,𝜎𝜎�)  = −462.888 

and  

𝑙𝑙(0,𝜎𝜎�)  = −471.323 

Hence, 
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𝐷𝐷 = 2�−462.888 − (−471.323)� = 16.87 

The value of D is higher to the critical value (𝐶𝐶𝛼𝛼 = 3.84), 
so we reject 𝐻𝐻0 and thus 𝛾𝛾 > 0  and the GEV distribution 
is Frechet. 

2.2. Return Level 
The return levels for the periods of 𝑇𝑇 years are given by 

the following formulas [19]: 

𝑍𝑍𝑝𝑝 = 𝐹𝐹�−1(𝑝𝑝)

≃ �
Γ −

𝜎𝜎
𝛾𝛾
�1 − �−𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)�−𝛾𝛾�   𝑖𝑖𝑖𝑖 𝛾𝛾 ≠ 0

Γ − 𝜎𝜎 log�−𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)�   𝑖𝑖𝑖𝑖 𝛾𝛾 = 0
� 

Next we search the value that will be exceeded once every 
𝑛𝑛 × 𝑘𝑘 × 𝑇𝑇 observations where 𝑝𝑝 = 1

𝑛𝑛𝑘𝑘𝑇𝑇
 and 𝑛𝑛  the number 

of observations per block, 𝑘𝑘 the number of blocks per year.  
If we consider the value that will be exceeded once every 

𝑘𝑘 × 𝑇𝑇 blocks then the return level of 𝑇𝑇  years is: 

𝑥𝑥𝑞𝑞 = �
Γ� −

𝜎𝜎�
𝛾𝛾�
�1 − (− log(1 − 𝑞𝑞))−𝛾𝛾��  𝑖𝑖𝑖𝑖  𝛾𝛾� ≠ 0

Γ� − 𝜎𝜎� log(− 𝑙𝑙𝑛𝑛𝑛𝑛(1 − 𝑞𝑞))   𝑖𝑖𝑖𝑖 𝛾𝛾� = 0
� 

The results obtained by the statistical software (R) are the 
following [18]: 

Table 2.  Estimations of the return levels 𝑍𝑍𝑝𝑝  

Return 
period 
(years) 

50 100 500 1000 

𝑞𝑞 
1

24 × 50
 

1
24 × 100

 
1

24 × 500
 

1
24 × 1000

 

𝑥𝑥𝑞𝑞  99.95 102.19 113.58 117.60 

 
Based on Table 2, the wind speed that will be exceeded 

once every 24 × 50 = 1200, 2400, 12000, 24000  blocks 
is 99.95, 102.19,113.58,117.60 km/h, respectively. 

2.3. POT Method and Parameters Estimation 
To fix a threshold 𝑢𝑢0  we consider all the values that 

exceed it by using the linear mean excess function (MEF), 
for 𝑢𝑢 > 𝑢𝑢0 we have [22]: 
𝑀𝑀𝐺𝐺𝐹𝐹(𝑢𝑢) = 𝐺𝐺(𝑋𝑋 − 𝑢𝑢|𝑋𝑋 > 𝑢𝑢) where 𝐺𝐺(𝑋𝑋) < ∞ 
With 𝛾𝛾 < 1  we have: 

𝐺𝐺(𝑋𝑋 − 𝑢𝑢|𝑋𝑋 > 𝑢𝑢) =
𝜎𝜎𝑢𝑢

1 − 𝛾𝛾
=
𝜎𝜎𝑢𝑢0 + 𝛾𝛾(𝑢𝑢 − 𝑢𝑢0)

1 − 𝛾𝛾
 

                     =
𝛾𝛾

1 − 𝛾𝛾
𝑢𝑢 +

𝜎𝜎𝑢𝑢0 − 𝛾𝛾𝑢𝑢0

1 − 𝛾𝛾
 

Based on the mean residual life (𝑚𝑚𝑚𝑚𝑙𝑙) plot in the software 
(R), we choose the value of the wind speed above by which 
the mean excess function becomes linear. 

 
Figure 1.  MRL plot 

It seems that above 30 𝑘𝑘𝑚𝑚/ℎ the MEF becomes linear, so 
we choose 30 as a threshold and we have 145 exceedances 
among 8160 observations, which represent 1.78% of the 
observations. 

The parameter's estimations are in the following Table: 

Table 3.  Parameters estimation by GPD 

Parameter 𝜎𝜎 𝛾𝛾 

Estimation 9.63 -0.27 

Standard deviation 1.07 0.08 

CI (95%) [7.54,11.73] [-0.42,-0.12] 

We notice that 0 is not included in the confidence interval. 
To verify, we consider the below hypothesis: 

𝐻𝐻0: 𝛾𝛾 = 0 

We propose the Analysis of Variance (ANOVA) test: 

Table 4.  Parameter estimations by GPD 

Model Test Deviance T-test 

𝑀𝑀1 𝛾𝛾 ≠ 0 868.2314  

𝑀𝑀0 𝛾𝛾 = 0 876.315 8.083595 

 
The statistic test shows that 8.083595 > 3.84 (the 95% 

quantile of 𝜒𝜒1
2, so we reject 𝐻𝐻0 and hence the corresponding 

distribution is Weibull. 
The return level for a period of 𝑇𝑇 years is given by the 

following formula [22]: 

𝑍𝑍𝑝𝑝 = 𝐹𝐹�−1(𝑝𝑝) ≃

⎩
⎨

⎧𝑢𝑢 +
𝜎𝜎
𝛾𝛾
��

𝑝𝑝
𝐹𝐹�(𝑢𝑢)�

−𝛾𝛾  
− 1�     𝑖𝑖𝑖𝑖 𝛾𝛾 ≠ 0

𝑢𝑢 − 𝜎𝜎 log �
𝑝𝑝

𝐹𝐹�(𝑢𝑢)�     𝑖𝑖𝑖𝑖 𝛾𝛾 = 0
� 

where 𝑢𝑢 is the threshold. 
The obtained results are: 
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Table 5.  Estimation of the return levels 

Return 
period 
(years) 

50 100 500 1000 

𝑝𝑝 
1

50 × 24
× 60

 
1

100 × 24
× 60

 
1

500 × 24
× 60

 
1

1000 × 24
× 60

 

𝑍𝑍𝑝𝑝  60.40 61.27 62.77 63.23 

Based on Table 5 we can deduce that the wind speed be 
exceeded once every 50 × 24 × 60 = 72000, 144000, 
720000 and 1440000 observations is 60.40, 61.27, 62.77 
and 63.23 km/h, respectively. 

Finally, by comparing the results of the two methods in the 
case of univariate extreme values, we notice that there is a 
considerable difference due to the distributions in both 
methods being different. In fact, the Frechet distribution 
gives high and not very realistic return levels for the wind 
speed unlike the Weibull distribution, which gives more 
acceptable values. 

Hence, we can say that the POT method is more 
appropriate than the block maximum one for the wind speed 
variable and, thus, the return levels of the wind speed in 
Jiyeh for periods of 50,100,500 and 1000 years are not very 
high and risky. 

3. Bivariate Extreme Value Theory 
The bivariate extreme value theory has so far received 

little attention in the literature [24]. As the univariate case, 
the bivariate extreme value is applied in several areas. For 
example, in the analysis of environmental extreme value data, 
there is a need of models of dependence between extremes 
from different sources. We study one more variable, in this 
section which is the wind speed in Tripoli to test the 
dependency between it and the wind speed in Jiyeh and then 
we calculate the conditional probabilities. 

3.1. Bivariate Block Maxima Method 

The recorded database of the wind speed in Tripoli is 
similar to that of Jiyeh; we choose the same division of 
blocks. First we apply the logistic distribution method to 
estimate the parameters of the bivariate extreme distribution. 
⋆ The bivariate logistic distribution function for a pair of 

variables (𝑋𝑋,𝑌𝑌)  where each one follows a univariate 
generalized extreme value distribution is [17]: 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = exp � −�𝑥𝑥
−1
𝛼𝛼 + 𝑦𝑦

−1
𝛼𝛼 �

𝛼𝛼
�  

where 𝛼𝛼 is the dependence parameter: 

1.  If 𝛼𝛼 → 1 then 𝐺𝐺(𝑥𝑥,𝑦𝑦) → exp � −�1
𝑥𝑥

+ 1
𝑦𝑦
��  so we 

have an independence between the two variables. 
2.  If 𝛼𝛼 → 0 then 𝐺𝐺(𝑥𝑥,𝑦𝑦) → exp  � −𝑚𝑚𝑎𝑎𝑥𝑥 �1

𝑥𝑥
, 1
𝑦𝑦
��  so 

we have a perfect dependence. 

The estimated parameters using the maximum likelihood 

method are in the following Table: 

Table 6.  Estimation of parameters of case1 of the logistic model 

Parameter 𝜇𝜇1 𝜎𝜎1 𝛾𝛾1 

Estimation 23.28 5.11 0.31 

Standard deviation 0.51 0.45 0.08 

CI (95%) [22.28,24.28] [4.22,5.29] [0.15,0.47] 

Table 7.  Estimation of parameters of case 2 of the logistic model 

Parameter 𝜇𝜇1 𝜎𝜎1 𝛾𝛾1 𝛼𝛼 

Estimation 31.68 8.76 -0.07 0.38 

Standard 
deviation 0.83 0.59 0.05 0.03 

CI (95%) [30.05,33.31] [7.60,9.93] [0.17,0.02] [0.31,0.45] 

⋆ Secondly we apply the bivariate asymmetric logistic 
distribution function for the pair of variables (𝑋𝑋,𝑌𝑌) [17]: 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = exp �−(1 − 𝑡𝑡1)𝑥𝑥−1 − (1 − 𝑡𝑡2)𝑦𝑦−1

− �(𝑡𝑡1𝑥𝑥−1)
1
𝛼𝛼  + (𝑡𝑡2𝑦𝑦−1)

1
𝛼𝛼�

𝛼𝛼
� 

Where 𝛼𝛼 is the dependence parameter, 𝑡𝑡1 and 𝑡𝑡2 are the 
asymmetric parameters. 

1.  If 𝑡𝑡1 = 𝑡𝑡2 = 1, we have the logistic model. 
2.  If 𝛼𝛼 = 1 or 𝑡𝑡1 = 0 or 𝑡𝑡2 = 0, we have an 

independence. 
3.  If 𝑡𝑡1 = 𝑡𝑡2 = 1 and 𝛼𝛼 → 0, we have a perfect 

dependence. 
The estimated parameters are: 

Table 8.  Estimation of parameters of case 1 of the asymmetric logistic 
model 

Parameter Γ1 𝜎𝜎1 𝛾𝛾1 𝑡𝑡1 

Estimation 23.3 5.13 0.33 0.96 

Standard 
deviation 0.51 0.46 0.09 0.09 

CI (95%) [22.29,24.3] [4.23,6.03] [0.16,0.49] [0.78,1.14] 

Table 9.  Estimation of parameters of case 2 of the asymmetric logistic 
model 

Parameter Γ2 𝜎𝜎2 𝛾𝛾2 𝑡𝑡2 𝛼𝛼 

Estimation 31.81 8.91 -0.09 0.99 0.38 

Standard 
deviation 0.86 0.63 0.05 21×

10−6 0.041 

CI(95%) [30.12, 
33.5] 

[7.67,
10.14] 

[-0.19, 
0.0005] 

[0.9991,
0.9992] 

[0.29, 
0.46] 

⋆ Third we apply the bivariate Husler-Reiss distribution 
function for a pair of variables (𝑋𝑋,𝑌𝑌) [17]: 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = exp[−𝐺𝐺(𝑥𝑥,𝑦𝑦)] 
Where 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = 1
𝑥𝑥
𝜙𝜙 �𝑎𝑎

2
+ 1

𝑎𝑎
𝑙𝑙𝑛𝑛𝑛𝑛 𝑦𝑦

𝑥𝑥
� + 1

𝑦𝑦
𝜙𝜙 (𝑎𝑎

2
+1
𝑎𝑎
𝑙𝑙𝑛𝑛𝑛𝑛 𝑥𝑥  

𝑦𝑦
) 
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where 𝑥𝑥,𝑦𝑦 > 0 , 𝜙𝜙(. )  the normal cumulative distribution  
𝑁𝑁(0,1); a represents the independence. 

1.  If 𝑎𝑎 → ∞ , 𝐺𝐺(𝑥𝑥,𝑦𝑦) → 1
𝑥𝑥

 +  1
𝑦𝑦

 i.e we have an 
independence; 

2.  If 𝑎𝑎 → 0 , 𝑎𝑎
2

+ 1
𝑎𝑎

× 𝑙𝑙𝑛𝑛𝑛𝑛 𝑦𝑦
𝑥𝑥
→ 𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛 �𝑙𝑙𝑛𝑛𝑛𝑛 𝑦𝑦

𝑥𝑥
� × ∞  then 

𝐺𝐺(𝑥𝑥,𝑦𝑦) → max �1
𝑥𝑥

, 1
𝑦𝑦
� i.e total dependence. 

The estimated parameters are: 

Table 10.  Estimation of parameters of case 1 of Husler-Reiss model 

Parameter Γ1 𝜎𝜎1 𝛾𝛾1 

Estimation 23.30 5.11 0.31 

Standard 
deviation e 0.51 0.45 0.08 

CI (95%) [22.31,24.30] [4.23,5.99] [0.15,0.46] 

Table 11.  Estimation of parameters of case 2 of Husler-Reiss model 

Parameter Γ2 𝜎𝜎2 𝛾𝛾2 𝑎𝑎 

Estimation 31.69 8.8 -0.09 2.55 

Standard 
deviation 0.83 0.60 0.05 0.26 

CI(95%) [30.06, 
33.32] 

[7.63, 
9.97] 

[-0.186, 
9.973] 

[2.04,3.
06] 

3.2. Models Comparison 
To compare the three previous models and choose the 

most appropriate one we can use the Akaike information 
criterion (AIC). The best model is the one with the lowest 
AIC where 𝐴𝐴𝐴𝐴𝐶𝐶 = 2𝑘𝑘 − 2𝐿𝐿 [17]. 

with k: the number of parameters and L: the log likelihood 
of the model. 

Table 12.  Models comparison 

 Standard deviation AIC 

Logistic model 0.05 1779.658 

Asymmetric logistic model ---- 1784.596 

Husler-Reiss model 0.16 1778.723 

Table 13.  Verification of dependence test 

 Deviance (D) Degree of 
freedom T-test p-value 

𝑀𝑀1 1765.65 --- --- --- 

𝑀𝑀0 1933.99 1 168.34 1.7× 10−38 

Since the logistic and Husler-Reiss models have the 
lowest and very similar AIC values, we choose the model 
with the lowest standard deviation of the dependence 
parameter, which is the logistic model. 

To verify the dependence between the two variables, we 
propose the following statistic test: 

𝐻𝐻0:𝛼𝛼 = 1  

𝐻𝐻1:𝛼𝛼 ≠ 1 

We obtain a p-value < < 5%, so we strongly reject the 
independence hypothesis 𝐻𝐻0  and thus we conclude the 
dependency between the two regions in Lebanon. 

3.3. Conditional Probability Quantile 

We can also calculate the probability that the wind speed 
in Jiyeh exceeds a given value given that the wind speed in 
Tripoli exceeds 50 km/h: 

𝑃𝑃�𝑋𝑋 > 𝑧𝑧𝑝𝑝�𝑌𝑌 > 50� =
𝑃𝑃(𝑋𝑋 > 𝑧𝑧𝑝𝑝 ,𝑌𝑌 > 50)

𝑃𝑃(𝑌𝑌 > 50)

=
1 − 𝑃𝑃�𝑋𝑋 < 𝑧𝑧𝑝𝑝� − 𝑃𝑃(𝑌𝑌 < 75) + 𝑃𝑃(𝑋𝑋 < 𝑧𝑧𝑝𝑝 .𝑌𝑌 < 75)

1 − 𝑃𝑃(𝑌𝑌 < 75)  

We can simplify the calculation by transforming the 
marginal distribution of 𝑋𝑋 and 𝑌𝑌 into a Frechet distribution.   

The transformation for Y is the following: 

𝑦𝑦𝐹𝐹 = � 1 + 𝛾𝛾𝑦𝑦 �
50 − 𝜇𝜇𝑦𝑦
𝜎𝜎𝑦𝑦

��

1
𝛾𝛾𝑦𝑦

 

and for 𝑋𝑋: 

𝑧𝑧𝑝𝑝 = 𝑥𝑥𝐹𝐹 = � 1 + 𝛾𝛾𝑥𝑥 �
𝑧𝑧𝑝𝑝 − 𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

��
1
𝛾𝛾𝑥𝑥  

with the marginal probability of 𝑌𝑌: 

𝑃𝑃(𝑌𝑌 < 𝑦𝑦𝐹𝐹) = exp �
−1
𝑦𝑦𝐹𝐹
� 

and of 𝑋𝑋: 

𝑃𝑃�𝑋𝑋 < 𝑧𝑧𝑝𝑝� = exp �
−1
𝑥𝑥𝐹𝐹
� 

and  

𝑃𝑃�𝑋𝑋 < 𝑧𝑧𝑝𝑝 ,𝑌𝑌 < 75� = 𝐺𝐺(𝑥𝑥𝐹𝐹 ,𝑦𝑦𝐹𝐹) = exp � −�𝑥𝑥𝐹𝐹
−1
𝛼𝛼 + 𝑦𝑦𝐹𝐹

−1
𝛼𝛼 �

𝛼𝛼

� 

Thereby, we have the graph of the conditional probability: 

 

Figure 2.  Conditional probability 

Finally, using this graph, we find that the probability that 
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the wind speed in Jiyeh exceeds 99.95 equal to 1
24∗50

=
8.33 ∗ 10−4  (return level of 50 years in the univariate case), 
given that the wind speed in Tripoli is higher than 50 km/h is 
0.1. 

3.4. Bivariate POT Method 

As the univariate case, we choose the threshold for Tripoli 
wind speed data using the mrl plot [18]. 

 

Figure 3.  MRL Plot 2 

By linearity, we choose 𝑢𝑢 = 40 above which there are 
138 values that represent 1.69% of the total observations.  
The parameters are estimated using the censored likelihood 
method. 

⋆ Logistic GPD 
Table 14.  Estimation of parameters of case 1 of logistic model 

Parameter 𝜎𝜎1 γ1 

Estimation 9.34 -0.22 

Standard deviation 0.98 0.07 

CI (95%) [7.42,11.26] [-0.36,-0.08] 

Table 15.  Estimation of parameters of case 2 of the logistic model 

Parameter 𝜎𝜎2 γ2 𝛼𝛼 

Estimation 7.66 -0.23 0.51 

Standard deviation 0.98 0.07 0.03 

CI (95%) [6.23,9.09] [-0.34, -0.12] [0.45,0.57] 

⋆ Asymmetric logistic General Pareto GPD  

Table 16.  Estimation of parameters of case 1 of the asymmetric logistic 
model 

Parameter 𝜎𝜎1 γ1 𝑡𝑡1 

Estimation 9.65 -0.23 1 

Standard 
deviation 1.17 0.09 2× 10−6 

CI (95%) [7.36,11.95] [-0.39, -0.06] [0.99996, 
0.99997] 

Table 17.  Estimation of parameters of case 2 of the asymmetric logistic 
model 

Parameter 𝜎𝜎2 γ2 𝑡𝑡2 𝛼𝛼 

Estimation 7.89 -0.22 0.97 0.57 

Standard 
deviation 0.88 0.077 0.10 0.04 

CI (95%) [6.17, 
9.62] 

[-0.37,  
-0.07] 

[0.77, 
1.17] 

[0.49, 
0.64] 

⋆ Husler-Reiss GPD  

Table 18.  Estimation of parameters of case 1 of Husler Reiss model 

Parameter 𝜎𝜎1 γ1 

Estimation 9.42 -0.24 

Standard deviation 0.95 0.06 

CI (95%) [7.56,11.28] [-0.36,-0.11] 

Table 19.  Estimation of parameters of case 2 of Husler-Reiss model 

Parameter 𝜎𝜎2 γ2 𝑎𝑎 

Estimation 7.56 -0.22 1.77 

Standard 
deviation 0.72 0.05 0.14 

CI (95%) [6.16,8.96] [-0.33,-0.12] [1.49,2.03] 

⋆ Models comparison: 

As before, the best model that will be chosen is the one 
with the lowest AIC [20]. 

Table 20.  Models comparison 

 AIC 

Logistic model 3875.009 

Asymmetric logistic model 3887.713 

Husler-Reiss model 3869.492 

We choose the Husler Reiss model since it has the lowest 
AIC. 

To calculate the same conditional probability as before, 
we transform the marginal distribution of 𝑋𝑋  and 𝑌𝑌 into a 
Frechet distribution. 

The transformation for 𝑌𝑌 is:  

𝑦𝑦𝐹𝐹 = −� log � 1 − 𝜁𝜁𝑦𝑦 �1 +
𝛾𝛾𝑦𝑦�𝑌𝑌 − 𝑢𝑢𝑦𝑦�

𝜎𝜎𝑦𝑦
�

−1
𝛾𝛾𝑦𝑦

 ��

−1

 

and for 𝑋𝑋: 

𝑧𝑧𝑝𝑝 = 𝑥𝑥𝐹𝐹 = −� log � 1 − 𝜁𝜁𝑥𝑥 �1 +
𝛾𝛾𝑥𝑥(𝑋𝑋 − 𝑢𝑢𝑥𝑥)

𝜎𝜎𝑥𝑥
�

−1
𝛾𝛾𝑥𝑥
��

−1

 

where 𝜁𝜁𝑥𝑥 = 𝑚𝑚𝑥𝑥
𝑛𝑛

 and 𝑚𝑚𝑥𝑥  is the number of values that exceed 
the threshold of the 𝑋𝑋 variable and 𝑛𝑛 the total number of 
observations. 
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𝜁𝜁𝑦𝑦 = 𝑚𝑚𝑦𝑦
𝑛𝑛

 where 𝑚𝑚𝑦𝑦  is the number of values that exceed the 
threshold of 𝑌𝑌. 

So, the marginal probability of 𝑌𝑌  is: 

𝑃𝑃(𝑌𝑌 < 𝑦𝑦𝐹𝐹) = exp �
−1
𝑦𝑦𝐹𝐹
� 

of 𝑋𝑋: 

𝑃𝑃�𝑋𝑋 < 𝑧𝑧𝑝𝑝� = exp �
−1
𝑥𝑥𝐹𝐹
� 

And, 
𝑃𝑃�𝑋𝑋 < 𝑧𝑧𝑝𝑝 ,𝑌𝑌 < 50� = 𝐺𝐺(𝑥𝑥𝐹𝐹 ,𝑦𝑦𝐹𝐹)

= exp �− � 
1
𝑥𝑥𝐹𝐹
𝜙𝜙 �

𝑎𝑎
2

+
1
𝑎𝑎
𝑙𝑙𝑛𝑛𝑛𝑛

𝑦𝑦𝐹𝐹
𝑥𝑥𝐹𝐹
�

+
1
𝑦𝑦𝐹𝐹
𝜙𝜙 �

𝑎𝑎
2

+
1
𝑎𝑎
𝑙𝑙𝑛𝑛𝑛𝑛

𝑥𝑥𝐹𝐹
𝑦𝑦𝐹𝐹
��� 

where 𝜙𝜙(. ) the normal cumulative distribution 𝑁𝑁(0,1). 
Finally, the graph of the conditional probability    

𝑃𝑃(𝑋𝑋 > 𝑧𝑧𝑝𝑝 |𝑌𝑌 > 50) is: 

 

Figure 4.  Conidional probability for case 2 

Using this graph, we find that the probability for the wind 
speed at Jiyeh to exceed 60.4 km/h (return level of 50 years 
in the univariate case) given that the wind speed in Tripoli 
exceeds 50 km/h is 0.68. 

This probability is high since the added condition is 
favorable and the difference between the two wind speeds is 
only 10.4 km/h (60.4-50). 

4. Summary and Conclusions 
The damage that can be caused by any extreme weather 

impact on an offshore rig in the future, will surely have huge 
burden on both the country and the operating companies 
working offshore Lebanon. The damage is not only limited 
to financial losses but also to the environmental and social 
impacts. Results have shown that the return levels of the 
wind speed in Jiyeh are not very high and risky.  

The wind speed in Jiyeh and Tripoli dependent on each 
other and, thus, they almost represent the same risk level 

since a high value in Tripoli will cause a high value in Jiyeh. 
The return levels will then be used by engineers to forecast 

risks and protect the semi-submersible rigs from extreme 
wind speeds. The problem that remains is the choice of the 
return level to be used in the design of the rig, this choice will 
be a trade-off between the desired security level and the cost.   

So finally, we believe that additional mathematical / 
statistical analysis should be conducted in future studies. To 
that end, modeling the return levels related to wave height, 
can help us evaluate another aspect of the structure integrity 
for potential offshore rigs. 
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