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Abstract  In this paper, a size- biased quasi Poisson-Lindley distribution, of which the size-biased Poisson-Lindley 
distribution of Ghitany and Al Mutairi[4] is a particular case, has been obtained by size biasing the quasi Poisson - Lindley 
distribution of Shanker and Mishra[14]. A general expression for the thr  factorial moment of this distribution has been 
derived and hence its first four moments have been obtained. The method of maximum likelihood and the method of moments 
of estimation of its parameters have been discussed. The distribution has been fitted to some data sets to test its goodness of 
fit.  

Keywords  Poisson-Lindley Distribution, Size-biased Distribution, Estimation of Parameters, Goodness of Fit 

 

1. Introduction 
Size-biased distributions arise in practice when 

observations from a sample are recorded with unequal 
probabilities, having probability proportional to some 
measure of unit size. Fisher[3] first introduced these 
distributions to model ascertainment bias which were later 
formalized by Rao[11] in a unifying theory. Van Deusen[16] 
discussed size-biased distribution theory and applied it to 
fitting distributions of diameter at breast height (DBH) data 
arising from horizontal point sampling (HPS). Later, Lappi 
and Bailey[7] used size-biased distributions to analyze HPS 
diameter increment data. Most of the statistical applications 
of these distributions, especially to the analysis of data 
relating to human population and ecology can be found in 
Patil and Rao ([9],[10]). Gove[5] reviewed some of the 
recent results on size-biased distributions pertaining to 
parameter estimation in forestry, with special emphasis on 
Weibull family. 

If a random variable X have distribution f(x;θ ) then a 
simple size-biased distribution is given by its probability 
function f *(x;θ ) = ( ) 1;x f x θ µ′  where 1 ( )E Xµ′ = , 
is the mean of the distribution.  

Ghitany and Al Mutairi[4] obtained a size-biased Poisson 
- Lindley distribution (SBPLD) given by its probability mass 
function (p.m.f.) 
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by size biasing the Poisson -Lindley distribution (PLD) of 
Sankaran[12] having pmf 
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It is to be mentioned that Sankaran[12] obtained the 
distribution (1.2) by mixing the Poisson distribution with the 
Lindley (1958) distribution having pdf 
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The first four moments about origin of the SBPLD (1.1) 
have been obtained as 
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and so its variance as 
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Recently, Shanker and Mishra[14] obtained a quasi 
Poisson-Lindley distribution (QPLD) given by its pmf 
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It can be seen that the PLD (1.2) is a particular case of it at 
α θ= . Shanker and Mishra[14] have shown that (1.9) is a 
better model than the PLD of Sankaran[12] for analyzing 
different types of count data. This distribution arises from the 
Poisson distribution when its parameter λ  follows the 
Shanker and Mishra[13] quasi Lindley distribution having its 
probability density function (p.d.f) 
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In this paper, a size-biased quasi Poisson-Lindley 
distribution (SBQPLD) of which the SBPLD (1.1) is a 
particular case, has been obtained. A general expression for 
the thr  factorial moment of this distribution has been 
obtained and hence its first four moments about origin of this 
distribution have been obtained. The method of maximum 
likelihood and the method of moments of estimation of its 
parameters have been discussed. The distribution has been 
fitted to some data- sets and it has been found that to almost 
all these data-sets it provides closer fits than the SBPLD. 
This shows that the SBQPLD is more flexible than the 

Ghitany et al[4] SBPLD for analyzing different types of 
count data. 

2. A Size-Biased Quasi Poisson-Lindley 
Distribution (Sbqpld) 

The pmf of size-biased quasi Poisson-Lindley distribution 
(SBQPLD) with parameters α  and θ  is obtained as  
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Taking the pmf ( )3 ; ,P x θ α  from (1.9) and its mean 

( ) ( )1 2 1µ α θ α′ = + +  of Shanker and Mishra[14], we 
get 
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It can be easily seen that (2.2) reduces to (1.1) at α θ= . 
The SBQPLD can also be obtained from the size-biased 

Poisson distribution when its parameter λ  follows a 
size-biased quasi Lindley distribution with p.d.f. 
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We have  
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which is the SBQPLD. To know the behaviors of the pmf of the SBQPLD, plots of its pmf have been drawn for different 
values of its parameters in figure 1.  

As  
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is a decreasing function of x , ( )4 ; ,P x θ α  is log-concave. Therefore, the SBQPLD is unimodal, has an increasing failure 
rate (IFR) and hence increasing failure rate average (IFRA). It is new better than used (NBU), new better than used in 
expectation (NBUE) and has decreasing mean residual life (DMRL). Details about the definitions of these aging concepts can 
be seen in Barlow and Proschan[1]. 
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Figure 1.  Plots of SBQPLD for different values of parameters θ and α 

3. Moments 
The rth factorial moment of the SBQPLD (2.2) can be obtained as 
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Taking (x+r) in place of x, we get 
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The expression within bracket is clearly ( )rλ +  and hence we have 
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Using gamma integral, we get finally, after a little simplification, a general expression for the rth factorial moment of the 
SBQPLD as 
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After obtaining the first four factorial moments, by substituting r = 1,2,3 and 4 in (3.4) and then using the relationship 
between factorial moments and moments about origin, the first four moments about origin of the SBQPLD were obtained as 
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It can be easily verified that at α θ= , these moments reduce to the respective moments, (1.4) to (1.7) of the SBPLD. 

4. Estimation of Parameters 
4.1. Maximum Likelihood Estimates 

Let ( 1 2, , , nx x x ) be a random sample of size n from the SBQPLD (2.2) and let xf  be the observed frequency in the 

sample corresponding to X x=  ( )1,2,...,x k=  such that 
1

k

x
x

f n
=

=∑ , where k  is the largest observed value having 

non-zero frequency. The likelihood function, L  of the SBQPLD is given by 
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and so the log likelihood function is obtained as 
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The two log likelihood equations are thus obtained as  
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The two equations (4.3) and (4.4) are difficult to solve directly. However, the Fisher’s scoring method can be applied to 
solve these equations. For, we have 
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can be solved for the estimates, θ̂  and α̂ . where 0θ  and 0α  are the initial values of θ  and α  respectively. These 

equations are solved numerically and iteratively till sufficiently close estimates θ̂  and α̂  are obtained. 

4.2. Method of Moments 

The SBQPLD has two parameters to be estimated and so its first two moments are required to get the estimates of its 
parameters by the method of moments. 

From (3.5) and (3.6) we have 
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which gives a quadratic equation in α  as  
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Replacing the first two population moments by the respective sample moments in (4.9) an estimate k of K can be obtained 

and using it in (4.10), an estimate α
∧

 of α  can be obtained. 
Again, substituting the value of α̂  in (3.3) and replacing the population mean by the sample mean x , an estimate of θ  

is obtained as  
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5. Goodness of Fit 
The SBQPLD has been fitted to a number of data- sets related to a number of observations of the size distribution of ‘freely 

–forming’ small groups in various public situations reported by James[6], Coleman and James[2], and Simonoff[15] and it 
was found that to all these data -sets, the SBQPLD provides closer fits than the SBPLD. The fittings of the SBQPLD to only 
three such data-sets have been presented in the following tables.  

The expected frequencies according to the SBPLD have also been given in these tables for ready comparison with those 
obtained by the SBQPLD. The estimates of the parameters have been obtained by the method of maximum likelihood using 
the Fisher’s scoring method. 

It can be seen that the SBQPLD gives much closer fits than the SBPLD and thus provides a better alternative to the SBPLD. 
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Table 1.  Counts of groups of people in public places on a spring afternoon in Portland 

Size of 
Groups 

Observed 
frequency 

Expected frequency 
SBPLD SBQPLD 

1 1486 1532.5 1485.4 
2 694 630.6 697.3 
3 195 191.9 189.7 
4 37 51.3 40.6 
5 10 12.8 8.3 
6 1 3.9 1.7 

Total 2423 2423.0 2423.0 

  ˆ 4.5082θ =  ˆ 7.14227θ = , ˆ 0.79159α = −  

2χ  13.766 0.710 

d.f 3 2 

P(
2χ ) < 0 .01 0.70 

Table 2.  Counts of Shopping Groups-Eugene, Spring, Department Store and Public Market 

Size of 
Groups 

Observed 
frequency 

Expected frequency 
SBPLD SBQPLD 

1 316 323.0 315.7 
2 141 132.5 142.9 
3 44 40.2 40.5 
4 5 10.7 8.9 
5 4 3.6 2.0 

Total 60 510.0 510.0 

  ˆ 4.5224θ =  ˆ 6.57872θ = , ˆ 0.52229α = −  

2χ  3.021 0.659 

d.f 2 1 

P(
2χ ) 0.40 0.44 

Table 3.  Counts of Play Groups-Eugene, Spring, Public Playground D 

Size of 
Groups 

Observed 
frequency 

Expected frequency 
SBPLD SBQPLD 

1 305 314.4 304.2 
2 144 134.4 148.5 
3 50 42.5 42.8 
4 5 11.8 9.2 
5 2 3.1 1.9 
6 1 0.8 0.4 

Total 507 507.0 507.0 

  ˆ 4.3179θ =  ˆ 6.74857θ = , ˆ 0.76547α = −  

2χ  6.415 2.415 

d.f 2 1 

P(
2χ ) 0.043 0.130 
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6. Conclusions 
In this paper, a size-biased quasi Poisson-Lindley 

distribution (SBQPLD), of which the size-biased 
Poisson-Lindley distribution (SBPLD) is a particular case, 
has been introduced to model count data. A general 
expression for the thr  factorial moment of this distribution 
has been obtained and hence its first four moments about 
origin of this distribution have been obtained. The method of 
maximum likelihood and the method of moments of 
estimation of its parameters have been discussed. The 
distribution has been fitted to some data- sets and it has been 
found that to all these data- sets it provides closer fits than 
the SBPLD. The SBQPLD has been found more general in 
nature and wider in scope than SBPLD. It provides closer fits 
to observed data-sets than those provided by the SBPLD and 
hence it should be preferred to the SBPLD while modeling 
count data-sets. 
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