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Abstract The Bayesian analysis of the scale parameter of error function distribution has been considered in this paper. A
class of informative and non-informative priors has been assumed to derive the corresponding posterior distributions. The
Bayes estimators and associated risks have calculated under different loss functions. The Bayesian credible intervals have
been constructed under each prior. The performance of the Bayes estimators have been evaluated and compared under a
comprehensive simulation study. The purpose is to find out the combination of a loss function and a prior having the
minimum Bayes risk and hence producing the best results. The study depicts that in order to estimate the said parameter use

of entropy loss function under informative priors can be preferred.
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1. Introduction

The error function distribution is one of the most widely
used distributions in statistics. Estimating its parameter using
Bayesian inference is extremely useful. Eberly and Casella[1]
discussed the construction of Bayesian credible intervals
using Rao—Blackwellized construction which offers smallest
standard error of estimate. Korsgaard et al.[2] considered the
mu ltivariate normal distribution and concentrated on the
model where residuals associated with liabilities of the
binary traits have been assumed to be independent. A
Bayesian analysis using Gibbs sampling has been outlined
for the model where this assumption has been relaxed.
Wang|[3] proposed a criterion to choose a loss function in
Bayesian analysis. Liang[4] introduced and derived
Dempster EM-Algorithm for the two-component normal
mixture models to obtain the iterative computation estimates,
also used data augmentation and general Gibbs sampler to
get the sample from posterior distribution under conjugate
prior. Wang[S]developed the new method, called
matrix-variate graphical models (M GGMs), which involves
simultaneously modeling variable and sample dependencies
with the matrix-normal distribution. Khan and Islam[6]
evaluated the maintenance performance of the system when
time is continuous and consider half-normal failure lifetime
model as well as repair time model.
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However, error function distribution has rarely received
the attention of the analysts. But it is always of interest to
study the behaviour and properties of the estimators for the
parameters of the new/deprived distributions. So, the
problem of estimation of the parameter of the error function
distribution under a Bayesian frame work has been addressed
in this paper. A class of priors have been assumed under
various loss functions to estimate the parameter of the
distribution.

2. Model and Likelihood Function

The probability density function of error function
distribution is:

It is a special case of normal distribution with mean zero and
considering ——=— = @ where O is the standard deviation
DY

of'the normal distribution.
The likelihood function for a random sample of size ‘n’ is
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3. Bayesian Analysis under the
Assumption of Uniform Prior

The uniformprior is assumed to be: P (a)) ocl
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The posterior distribution under the assumption of 4.Bayesian Analysis under the

uniform prior is: Assumption of Jeffreys Prior
n+l
. 2 The Jeffreys prior is defined as:
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and PLF are respectively presented in the following.

p(olx)=

("22) KGR

— Ihe Ba} es estimators and IISkS undel SELI) QLI > ELI
1

Ogprrp =

and PLF are respectively given in the following.
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5. Bayesian Analysis under the [ 1
Assumption of Maxwell Prior . F(n+4)
The Maxwell prior is assumed to be: R(wPLF) =) n+3 - 2 1
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Where ‘ @ is hyper-parameter

The posterior distribution under Maxwell prior is:
n+3
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The Bayes estimators and risks under SELF, QLF, ELF
and PLF are respectively shown in the following.

6. Bayesian Analysis under the
Assumption of Rayleigh Prior

The Rayleigh prior is assumed to be:

( ) o @’ /b?
plojecwe »>0b>0
Where ¢ b’ is hyper-parameter.

The posterior distribution under Ray leigh prior is:
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7. Bayesian Analysis under the ntk I
Assumption of Chi Prior R(@p,)=2

n 1 B 1
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The chiprior is assumed to be: 2(21:)(1. + 2) F[M)[Zx? +1j
k-1 _@?/2 = 2 ="' 2
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Where “ k* is hyper-parameter.
The posterior distribution under chi prior is:

8. Bayesian Analysis under the

, t Assumption of Normal Prior
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B r n+k The normal prior is assumed to be:
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9. Bayesian Credible Intervals under
Different Priors

The Bayesian credible intervals, as discussed by Saleem
and Raza[7], under uniform, Jeffreys, Maxwell, Rayleigh,
chi and normal priors are respectively constructed in the

following.
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10. Simulation Study

Simu lation study has been carried out using

n = 50, 100, 200 and 300 for € (1,2,3,4,5,6);
however, the results are presented for @ =1. While, the
discussions have been made for all W € (1, 2,3,4,5,6).
Different values of the hyper-parameters have been used and
the results for the values giving better convergence and the
minimum risks have been presented. In order to have more
precise estimates, the results have been replicated
sufficiently. The risks associated with Bayes estimates have
been underlined in the tables. Similarly, the differences
between lower and upper limits of credible intervals have
been underlined.

Table 1. Bayes estimates and risks under uniform prior

Loss Functions
B SELF QLF ELF PLF
138112 135350 136738 1.38790
>0 0.01879 0.01015 0.00503 0.01357
1.15111 1.13960 1.14537 1.15396
100 0.00657 0.00504 0.00250 0.00570
1.00946 1.00441 1.00693 1.01071
200 0.00254 0.00251 0.00124 0.00251
300 1.00377 1.00043 1.00210 1.00461
0.00167 0.00167 0.00083 0.00167
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Table 2. Bayes estimates andrisks under Jeffreys prior of parametric value. In comparison of non-informative priors
Loss Functions the uniform prior gives the better estimates as the
i SELF QLF ELF PLF corresponding risks are smaller for each loss function. While
50 136738 133948 1.35349 137423 in case of informative priors the Maxwell prior for QLF and
001879 001036 0.00513 001371 ELF, Chi prior for SELF and Rayleigh prior for PLF provide
100 1.14537 1.13380 1.13960 1.14824 the best results. Similarly, estimates under entropy loss
0.00658 0.00509 0.00252 0.00574 function give the minimum risks among all loss functions for
200 100693 1.00187 1.00441 1.00819 each prior. It can also be assessed that the performance of
0.00254 0.00252 0.00125 0.00252 estimates under informative priors is better than those under
300 100210 099875 1.00043 1.00294 non-informative priors. Some prior elicitation technique may
0.00168 0.00168 0.00083 0.00167 .
further strengthen this argument. Hence, the use of Maxwell
Table 3. Bayes estimates and risks under Maxwell prior prior under entropy loss function can be preferred to estimate
- the parameter of the error function distribution using a
n Loss Punctions Bayesian frame work
SELF QLF ELF PLF X . . . .
131254 128730 129998 131874 I.n case qf interval e§t1mat10n, the credible intervals under
50 004914 000975 000484 001241 un}fbrm prior ?fre again nar.rowe;lth.an tholse un(;ler J}::.ffre.ys
10 113302 112191 112747 113577 E;ozaljisnmg III: orr.na.tlve pI’lO.I'S, the mtervals un .er c. 1 prior
001877 0.00493 000245 0.00550 “having the minimum width. So for. Bayes@n mterval
o0 100432 099935 100184 100556 32?2?:1)1? ofthe pa;r)ametetr~ ofedrror function distribution, the
0.00747 000248 000123 000248 prior can be preferred.
300 1.00042 099711 0.99877 1.00125 Table 6. Bayes estimates andrisks under normal prior
0.00496 0.00166 0.00082 0.00165 -
Loss Functions
Table 4. Bayes estimates and risks under Rayleigh prior ! SELF QLF ELF PLF
Loss Functions 50 128730 126155 1.27449 1.29362
! SELF QLF ELF e 0.01632 001015 0.00503 001265
122224 119827 121032 122813 100 1.12191 1.11069 1.11631 1.12469
01 004344 | 000995 0.00493 001178 0.00624 0.00504 0.00250 0.00556
110025 108936 109482 110295 200 | 0993 0.99435 0.99685 100059
100 01788 0.00499 0.00247 0.00540 0.00249 0.00251 000124 0.00249
099200 098707 098954 099323 300 099711 0.99379 0.99545 0.99794
20001 600732 0.00250 0.00124 0.00246 0.00165 0.00167 0.00083 0.00166
300 099222 098893 099058 099304 Table 7. 95% credible intervals under uniform and Jeffreys priors
0.00490 0.00167 0.00083 0.00164 - - -
Uniform Prior JeffreysPrior
Table 5. Bayes estimates and risks under chi prior B lower Limit | Upper Limit lower Limit | Upper Limit
Loss Fanctions " 0.57460 101838 0.56071 1.00824
n SELF QLF ELF PLF 044378 044754
s 136911 134226 135575 137571 1o 238t | 101017 05841 | 102189
0.01829 0.00995 0.00493 0.01320 042986 043648
0 1 14927 113789 14360 115200 2o 081254 | 120248 081624 | 120915
0.00653 0.00499 0.00247 0.00564 0.38994 039290
200 1.00941 1.00439 1.00690 1.01066 300 0.85001 | 1.16999 0.85244 | 1.17460
0.00253 0.00250 0.00124 0.00250 031999 032216
300 100376 100043 100210 100459 Table 8. 95% credible intervals under Maxwell and Rayleigh priors
0.00167 0.00167 0.00083 0.00166
Maxwell Prior Rayleigh Prior
Fromthe above study it can be seen that by increasing the 1 lower Limit | Upper Limit | lower Limit | Upper Limit
sample size the estimated value of the parameter converges 50 055633 1.02635 046709 1.01495
to the true value of the parameter and magnitude of risk 047001 0.54786
associated with each estimate decreases. The increasing 100 060046 | 103955 063598 | 110403
values of the parameter impose a negative impact on rate of 043908 046805
convergence under each prior; similarly, the performance of 200 082161 | 121354 084176 | 124451
squared error loss function and precautionary loss function is 0.39193 040275
badly affected. However, the performance of quadratic loss 300 085652 | 117645 087033 | 119668
0.31993 0.32636

function and entropy loss function is independent of choice
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Table 9. 95% credible intervals under chi and normal priors

Chi Prior NormalPrior

i lower Limit | Upper Limit | lower Limit | Upper Limit

5o 057225 1.00888 051969 1.01900
043662 049931

Lo 058289 | 101186 061092 | 106344
042897 045253

500 081299 [ 120197 082906 | 122693
038898 039787

s00 | 08543 | 116933 086141 | 1.18569
031890 032428

11. Conclusions and Recommendations

The study has been conducted to estimate the parameter of
the error function distribution using four different loss
functions and under six informative and non-informative
priors. The study indicates that for Bayesian point estimation,
the use of entropy loss function under Maxwell prior can be
preferred. While for interval estimation, the chi prior can
affectively be employed.

The study can be extended by using more priors and loss
functions. Some censoring procedures and finite mixture of
components of error function distribution can also be used.
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