
International Journal of Networks and Communications 2012, 2(6): 138-141
DOI: 10.5923/j.ijnc.20120206.01

Analyzing the Order Factor of Query Matrix in Private
Information Retrieval Protocol for Outsourced Databases

Sunil B. Mane1,*, Pradeep K. Sinha2

1Computer Engineering & Information Technology Department, College of Engineering, Pune, M.S., India
2(High Performance Computing), Center for Development & Advance Computing, Pune, M.S., India

Abstract In this paper, we present analysis of non-concurrent model of fast single-database Private Informat ion Retrieval
(PIR) scheme for maintaining data privacy with data confidentiality using encryption algorithm like AES for Outsourced
Database Service (ODBS) Model. In this model encryption method maintains data confidentiality and a utility that help to
create PIR reply which maintains data privacy. Single-database PIR schemes are generally unusable because of its
expensiveness from computational point of view. Th is model suggests use of Graphics Processing Unit (GPU) commodity to
process database. This model will help to achieve practical implementation of single-database PIR scheme which uses
encryption algorithm to maintain data confidentiality as secondary goal and it serves to create database reply to maintain data
privacy as primary goal. Th is paper shows some real time results that proves need of concurrency in PIR algorithms. Our
paper describes the use of lattice based single-database PIR protocol with GPU as a processing unit to achieve high speed-up
and hence, the performance of the system.

Keywords Outsourced Database, Private Informat ion Ret rieval, User Privacy, Data Privacy

1. Introduction
A PIR scheme is a protocol in which user retrieves a

record or set of records out of n records from the database
which has been outsourced by hiding the contents from
service providers or database admin istrators. In order to
preserve data privacy replicas of the database have been
stored at the service provider end. Since service provider
does not know the result of the query has calculated from
which copy of the database. Another way is to allow a user to
retrieve privately an element of a non-replicated database
known as single-database PIR schemes.

In single-database PIR schemes data privacy is related to
the intractability of mathematical problem, instead of being
based on the assumption that different replicas exists and do
not collude against their users[1][2][3] .

PIR schemes usually require the an enormous amount of
computational power, but considering the huge number of
applications these protocols have, it is important to develop
practically implemented protocols that provide acceptable
performances for as many applications as possible[1].

A major issue with single-database PIR schemes is that,
they are computationally expensive. Indeed, in order to
answer a query, the database must process all of its records.

* Corresponding author:
sunilbmane@gmail.com (Sunil B. Mane)
Published online at http://journal.sapub.org/ijnc
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

If in a given protocol, it doesn’t process some set of
records, the database administrator will learn that, the user is
not interested in them. This would reveal to the database
administrator about partial informat ion on which record the
user is interested in, and therefore it is not as private as
downloading the whole database and retrieving locally the
desired entry.

The computational cost for a server replying to a PIR
query is therefore linear on the database size. Moreover,
number-theoretic schemes have a very expensive cost per bit
multip licat ion over a large modulus in the database. This
limits both the database size and the throughput shared by the
users.

2. Overall Design of Proposed Model
In a PIR protocol, when a user wants to retrieve an

element of index i from a database, he will use a PIR query
generation algorithm with input i and send the resulting
query to the database as shown in Figure1. In this paper we
are focusing on the two security issues with respect to
outsourced databases such as data privacy and data
confidentiality. Since PIR protocol involves matrix
operations, the performance of the system is also a major
issue. In order to optimize the performance of the system,
analysis of the existing PIR implementation is required. The
two security issues are described as:

Data privacy: Clients should not get more informat ion
than what they are querying on the server.

139 International Journal of Networks and Communications 2012, 2(6): 138-141

Data confidentiality: Outsiders and even the server’s
operators (database admin istrators) should not be able to see
the outsourced data contents in any case (including when a
client’s query is performed on the server). Usually it is
achieved using encryption of databases.

The model of PIR scheme given in[2],[3] is a lattice
based implementation of PIR. We have added encryption as
an addition to existing method and analysed the order of
query matrix used in PIR algorithms. A reply generation
contains matrix mult iplication operations it handles the data
privacy issue and encryption of the result gives the data
confidentiality. It has been is described in three phases as
shown below:

2.1. Request Generation

The scheme has three global integer parameters: 2N, the
dimension of the lattice and special parameters p and q. The
database is described as a set of n elements, and we note i0
the index of the database element the user is interested in. To
obtain a PIR request, the user will follow:

1) Note l0 = ┌log (n × N) ┐ + 2 and set q as 22×l
0

−1 and p as
a prime larger than 23×l

0.

Figure 1. Proposed model of PIR Protocol

2) Generate M1 and M2, two random matrices over Z/pZ
such that M1 is invertib le, and note M =[M1|M2].

3) For each i ∈ {1 · · ·N} compute a matrix B’i =[B’i, 1|B’i, 2]
by multip lying M to the left by a random invertible matrix Pi.

4) Generate the random scrambling matrix Δ as a 2N × 2N
random invertible matrix over Z/pZ.

5) For each i ∈ {1 · · ·N}\i0 generate the soft noise matrix
Di, a N ×N random matrix over {−1, 1}, and compute the soft
disturbed matrix Bi =[B’i,1|B’i,2 + Di]Δ.

6) Generate Di0, the hard noise matrix, by:
• generating a soft noise matrix,
• multip lying each diagonal term by q.
7) Compute the hard disturbed matrix Bi0 =[B’i0, 1|B’i0, 2

+ Di0] Δ.
8) Send the tuple (B1, · · ·, Bn, p) to the database.

2.2. Answer Encoding

Each element of the database ai (for i ∈ {1, · · ·, n}) is
encoded as an L × N matrix Ai of l0-bit scalars. To answer to
the PIR reply the database follows.

1) Note A =[A1| · · · |An] the column concatenation of the
database element matrices and B =[Bt

1| · · · |Bt
n] t the row

concatenation of the query matrices.
2) Compute R = A × B over Z/pZ.
3) Return R .
The result is a L × 2N matrix over Z/pZ. As a database

element is encoded as a L×N matrix of l0-bit scalars and p is
3l0-b it long, the expansion factor of the reply will be F = 6.

2.3. Information Extraction

In order to simplify the description of the informat ion
extraction protocol we define how to operate for each row
vector of the reply. In practice some of these operations are
aggregated and done over many row vectors at the same time.
To extract the information from a row vector Vx of the
database reply, the client operates in two phases. First it
unscrambles the vector and recovers the noise included in it
(steps 1 and 2 of the protocol), and then he will filter out this
noise to obtain the information (steps 4 and 5). Note that
steps 4 and 5 are not done over Z/pZ, as they correspond to
an Extended Euclid’s division over Z.

1) Unscramble the noisy vector V’x = VxΔ−1
2) Retrieve E = V’x (D) – V’x (U) M1−1M2,

The inserted noise, V’x (U) and Vx (D) being respectively the
undisturbed and disturbed halves of V’x (i.e . the left half and
the right half respectively).

3) For each ex,y in E =[ex,1 · · · ex,N], if ex,y > p/2
compute e'x,y = p − ex,y.

4) For each e’x,y compute e’’x,y = e’x,y − ε
With ε: = e_x,y%q if e’x,y%q < q/2 else

ε := e’x,y%q − q .
5) For each y ∈ {1 · · · n}, compute ai0, x, y = e’’x, yq−1.
Query generation Algorithm creates PIR query fo r the

input index i. The database content for the index i will be
encrypted with AES encryption algorithm and its result is
then converted into equivalent integers, which then will be
converted into integer matrix form. The elements of this
matrix are combined with the PIR query using the reply

 Sunil B. Mane et al.: Analyzing the Order Factor of Query Matrix in Private 140
 Information Retrieval Protocol for Outsourced Databases

generation algorithm. The result is then sent back to the user.
Finally, the user will decode the answer through a reply
decoding algorithm & AES decryption algorithm.

3. Description of the Proposed Scheme
In this section we describe an overview of our proposed

PIR scheme. There are two factors which we have more
focused on in this paper:
• The bottleneck in PIR schemes is reply generation and it

is not reply extraction[1].
• The GPGPU (General-Purpose computation using

Graphics Processing Units) computations will be on the
common operations of Query generation & reply generation
phase[1].

In our proposed scheme the query generation (without
common operation in reply generations) and reply extraction
have been implemented straightforwardly. We describe a
database as a set of n records. Each record ai is split into
l0-bits sub-elements and represented as a matrix A. N and l0
are being two security parameters. Noting down Smax the size
of the largest record in the database, parameter L is set to L =
┌ Smax / (N × l0) ┐. If a record is smaller than (L × N × l0)
then end of the matrix filled up with a standard padding
techniques like filling all the remaining elements of the
matrix as ‘0’s.

Figure 2. Database result in integer matrix form

Figure 3. PIR reply generation

If a user wants to retrieve a record from the database, we
are assuming that he provides the index i in order to analyse
the PIR internals in detail. Then the PIR query generation
algorithm creates a query formed of n matrices B1 . . . Bn, one
for each record in the database. Each matrix is of order N ×
2N with scalars in Z/pZ, p being a 3×l0-bit prime. If the user
wants to retrieve a record ai0 query generation algorithm
generates a query such that the i0th matrix has a special
property that is invisible to the server.

This property ensures that the user will be able to ext ract
the desired record from the server reply. The user sends the
query to the server (service provider) hosting the database to
generate the reply and the server multiplies the column
concatenation of the database record matrices and the row
concatenation of the query matrices. The resulting matrix,
which we have note down as R, is a L × 2N matrix with
3l0-bit scalars (in Z/pZ) and thus, is six times larger than a
database record matrix.

4. Implementation
We have implemented the PIR scheme in non-concurrent

paradigm. As per as practical implementation is concern, it is
very clear that, in this particu lar scenario there is a need of
having parallelis m. Currently we have non-concurrent
version of lib rary which containing all operation needed for
PIR. We have executed all the PIR operation on following
configuration:

Processor: Intel C2D T660 2.2 GHz
RAM: 4 GHz
Operating System: Ubuntu 9.10
Programming Language: Java 6

5. Experimentation and Results
Following Graph 1 plotted against Execution t ime vs.

Value o f dimensioning factor (N). As per the graph if
dimensioning factor N increases linearly then the execution
time T increases exponentially. E.g. suppose the number of
records is 1024 or 512 and when the value of N > 6 execution
time has tremendous increase as shown in the graph. Hence
for high dimensioning value there is need of concurrency.

Graph 1. Time in Sec. Vs. Order of Matrix

0

200

400

600

800

1 2 3 4 5 6

N

time(1024
tuples)
Time(512
tuples)

141 International Journal of Networks and Communications 2012, 2(6): 138-141

6. Reply Generation of GPGPU
The concept of general-purpose computation using

graphics processing units (or GPGPU) has arisen in recent
years. GPGPU applications make use of graphic processing
units (GPU) as massively parallel processors, turned away
from their original purpose but nonetheless highly efficient
in numerous application domains. Combin ing both speed
and bandwidth due to their parallel architecture (and
accessible cost), GPU are an attractive choice for complex
computations compared to trad itional CPU since they exhib it
significant perfo rmance overheads, and are supported by
constantly improving high-level p rogramming language
provided by both GPU vendors and the academic
community.

GPU have now evolved from highly-specialized graphics
processors into powerful, flexib le programmable un its, and
become increasingly popular for a wide range of applications.
All the existing PIR schemes are highly parallelizable.
However, in the classic schemes, the basic operation for
reply generation (per b it on the database) is a mult iplication
over a 1024 or 2048 bit modulus.[1] Our proposed model will
parallelize all common basic operations in reply generation
as well as Query matrix generation phase. The stream
processors that form a GPU are not adapted to do directly
such operations and trying to do a straightforward
parallelization would result in very poor performance. The
correct approach is to use the whole set of stream processors
to split an exponentiation among them. This can be
efficiently encoded through SIMD (Simple Instruction
Multiple Data) instructions, on which GPUs are specialized.
Each of these operations can be executed inside a single
stream processor and the large number of these processors in
modern GPUs results in a significant performance
improvement.

7. Conclusions
Our model of Private Information Retrieval protocol gives

an idea of data privacy as well as data confidentiality with

the help of encryption algorithm like AES algorithm. This
paper shows relation between the value of dimensioning
parameter N & execution time T (in sec.) on non-concurrent
implementation. This paper also propose the use of GPGPU
(General-Purpose computation using Graphics Processing
Units) for implementation to increase speed of execution of
protocol, which will leads to practical usability of PIR
schemes in real world.

REFERENCES
[1] Carlos Aguilar Melchor, “High-Speed Single-Database PIR

Implementation” in 2008.

[2] Carlos Aguilar Melchor, Philippe Gaborit “A Fast Private
Information Retrieval Protocol” in ISIT 2008, Toronto,
Canada, July 6 - 11, 2008.

[3] Carlos Aguilar-Melchor, Philippe Gaborit “A Lattice-Based
Computationally-Efficient Private Information Retrieval
Protocol” in WEWORC paper July 2007.

[4] Ian Goldberg “Improving the Robustness of Private
Information Retrieval” in IEEE Symposium on Security and
Privacy(SP'07) 2007.

[5] Carlos Aguilar Melchor, Philippe Gaborit “Single-Database
Private Information Retrieval Protocols Overview, Usability
and Trends” in march 2007

[6] Thierry P. Berger: “New perspectives for code based public
key Cryptography” Darmstadt, 25 september 2006.

[7] Christian Wieschebrink, “Two NP-complete Problems in
Coding Theory with an Application in Code Based
Cryptography” in ISIT 2006, Seattle, USA, July 9 14, 2006.

[8] Giovanni Di Crescenzoy Tal Malkinz Rafail Ostrovskyx:
“Single Database Private Information Retrieval Implies
Oblivious Transfer” in EUROCRYPT 2000, LNCS 1807, pp.
122-138, 2000.

[9] Benny Chorf Oded Goldreichf Eyal Kushilevitz Madhu
Sudan: “Private Information Retrieval” in 1995 IEEE.

