
International Journal of Information Science 2013, 3(1): 13-23
DOI: 10.5923/j.ijis.20130301.03

Leveraging Framework Documentation Solutions for
Intermediate Users in Knowledge Acquisition

Sin-Ban Ho1,*, Ian Chai2, Chuie-Hong Tan1

1Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100, Cyberjaya, Selangor, Malaysia
2Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100, Cyberjaya, Selangor, Malaysia

Abstract Frameworks are increasingly employed as a useful way to enable object-oriented reuse. However,
understanding frameworks is not easy due to their size and complexity. Prev ious work concentrated on different ways to
document frameworks, but it was unclear which ones actually were better. Th is paper presents a novel way of investigating
the different philosophies for framework documentation. The philosophies include minimalist, patterns-style and extended
javadoc (Jdoc) documentation. Using a survey of 90 intermediate users engaged in Command and Adaptor design patterns
coding work, this exp loratory study discovered that minimalist documentation has positive impacts in encouraging
knowledge acquisition, significantly in terms of the framework functional workings. This concludes that documentation
solutions with the min imalist principle can lead intermediate users to faster growth in learning two of the design patterns.

Keywords Framework Documentation, Knowledge Acquisition, Patterns

1. Introduction
One of the key challenges to object-oriented frameworks

is introducing the design patterns to intermediate users.
Intermediate users are those who have already had some
experience with the framework in question but not yet
experts, i.e. they are between the novice and advanced levels.
The subjects would perform the coding details of a particular
portion of the code while the instructor ensures that the
coding exercise is being followed with the help from the
check-point time made availab le in the documentation.

This paper reports and discusses results from an empirical
study on framework documentation. Th is practice populates
a documentation model with the necessary technical and
development how-to’s to get the task done[1]. The general
problem of how to document framework is large. The scope
of this research work is to tackle intermediate user
documentation or tutorials.

2. Motivations of the Study
One of the earliest works on empirical study in software

env ironments is the goal/quest ion /metric (GQM) goal
template proposed by Basili and Rombach[2]. There are
tendencies where instantiated goals show certain similarities.
The purpose of using GQM paradigm is to refine the goals

* Corresponding author:
sbho@mmu.edu.my (Sin-Ban Ho)
Published online at http://journal.sapub.org/ijis
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

into quantifiab le, reducing complexity and putting in
knowledge learned from previous experiments. Basili et al.
[3] provide the fo llowing five parameters in a GQM goal
template:

(a) Object of study: a process, product or any other
experience model.

(b) Purpose: to characterize (what is it?), evaluate (is it
good?), predict (can one estimate something in the future?),
control (can one manipulate events?), improve (can one
improve events?)

(c) Focus: model aimed at viewing the aspect of the object
of study that is of interest, such as reliability of the p roduct,
defect detection/prevention of the process, accuracy of the
cost model.

(d) Point of view: the perspective of the person needing
the information, e.g. in theory testing the point of view is
usually the researcher trying to gain some knowledge.

(e) Context : models aimed at describing the environment
in which the measurement is taken.

Selecting a particu lar type of process for study, the GQM
template then becomes: Analyse framework documenting
techniques to evaluate their effectiveness on a product from
the point of view of the knowledge builder in the context of a
particular domain. For some widely -used frameworks like
Swing[4], educators may write more easily-understood
documentation to teach less-experienced programmers.

Studies in pedagogical documentation show that the
behaviour in organising a programming guide is a domain
that has been used to describe the manner how beginners
learn how to use a framework. For some time, studies have
reported behaviour differences in pedagogical framework
documentation. The three philosophies being evaluated in

14 Sin-Ban Ho et al.: Leveraging Framework Documentation Solutions for Intermediate Users in Knowledge Acquisition

this study include minimalist[5], patterns-style[6,7] and
extended javadoc documentation[8,9]. Each is compatib le
with the idea of mixing texts, examples and diagrams.

John Carro ll’s innovation, minimalist documentation, is
based on the idea that people do not want information
irrelevant to the task at hand. This idea attempts to give the
reader the minimal amount of informat ion to get the task
done, and arrange it in short pages or index cards of
informat ion so that users can read in whatever order suits
them[5]. As each min imalist page or card contains litt le
informat ion, they often refer to other pages or cards. Hence,
they lend themselves well to hypertext presentations like the
Web. Carro ll gives these guidelines for minimalist
documentation:
● Train ing on real tasks: people are more motivated to

do an exercise when it relates directly to something useful
they want to do.
● Getting started fast: if there is too much to read before

readers get to typing something on the computer, they will
lose interest and miss things.
● Reading in any order: topics are brief and allow

readers to choose whatever order seems best to them.
● Coordinating system and training: instead of giving all

the detailed steps, let the learner interact with the system.
● Supporting error recognition and recovery: instead of

giving step-by-step instructions that assume readers will
repeat flawlessly, expect them to fail and give them the
resources to understand how to recover.

● Explo iting prior knowledge: instead of using insider
jargon, use analogies to readers’ prior experience to help
them understand.
● Using the situation: take advantage of the expectations

learners bring to the situation.
Most documentation focuses on specific computer

software. These sources typically tell how people are
supposed to perform tasks, not what they actually do[10]. In
conjunction with this purpose, one of the objectives of a
pattern is to get readers to understand some of the rationale
for the solution, so that they can decide when to apply the
pattern. A definition commonly used at Pattern Languages of
Programs (PLoP) conferences for patterns is:

A pattern is a proven successful solution to a recurring
problem in a context.

Patterns lend themselves well to hypertext presentations
such as those found on the Web, since they refer to other
patterns when a problem or its solution is too big to discuss
in one sitting. Meszaros and Doble[11] said that patterns
should have these elements:
● Pattern Name: so that people can refer to the pattern.
● Problem: a lengthy description of the problem it

solves.
● Solution: there may be different solutions to the same

problem depending on the context. A prescription for how it
works.
● Context: the circumstances of the problem impose

constraints on the solution.
● Forces: often contradictory considerations that must

be taken into account when choosing a solution to a problem.
Clements et al.[12] said that the patterns style should

consist of partial design solutions found repeatedly in actual
practice. As mentioned above, patterns also provide
background informat ion (the context) and not just the raw
solution. We present this background information first,
before the how does it work section, where the readers may
follow to apply the solution to an actual system. Patterns
style addresses the application-specific problem in a specific
context. It proposes a development solution that can serve as
the basis for teaching intermediate users how to reuse
components available within a framework.

Jdoc incorporates the HTML documentation generated by
the javadoc tool. The class informat ion, such as inheritance
and subclasses are provided at the top of the Jdoc. Th is is
followed by a textual description of the class, constructors
and methods, which contain their pseudo code with
hypertext links to the particular steps. Erik Berglund[8]
centred much of his library communication work on the Java
programming language domain and javadoc tool that
provides automatic generation of reference documentation
from Java source files. The javadoc tool represents the state
of the art in automated documentation generation and online
reference documentation.

The minimalist documentation only provides the
informat ion directly relevant to the task at hand. The patterns
documentation in addition provides background information
that exp lains the context in which the solution should be
applied. The Jdoc documentation provides classes,
inheritance and methods informat ion, which are not found in
both min imalist and patterns documentation.

Table 1 summarizes some key points of the documentation
philosophies. Each of these philosophies sounds reasonable
from their description. Each documentation philosophy is
compatible with the idea of testing one’s documentation on
end-users and making changes based on their reactions. Each
of them is open to the idea of mixing text, examples, and
diagrams.

Table 1. The overview of documentation philosophies

Doc. Philosophies
Background
information
description

Level of
background
information

Minimalist doc. Let user figure out Low
Patterns documentation Give problem context Medium
Extended javadoc (Jdoc) Class information High

What is data in guiding decision making? Data is raw
informat ion where collections of fact must be gathered and
processed to be meaningful. Associating facts in a given
context derives information. Knowledge associates
informat ion obtained within one context with other
informat ion obtained within a different context[1]. As such,
wisdom takes place when disparate knowledge derives
generalized principles. The wisdom view to acquire
knowledge can be represented schematically in Figure 1,
which gives an overview of the work perfo rmed in Visual
Basic (VB) and Swing experiments[13]. Software

 International Journal of Information Science 2013, 3(1): 13-23 15

practitioners are concerned with systems that process
knowledge. Information gathered from experiments is
connected to build a body of fact that is referred as
knowledge. The ability to associate information from various
sources forms the key to provide one with some distinct
advantages.

Figure 1. Information spectrum of a knowledge acquisition model

Andrew Forward[14] did a case study using the IBM
Eclipse project architecture[15] and found that, to achieve
good documentation relevance, one needs to find ways to
increase its power, simplicity or preferably both. Lethbridge
et al.[16] conducted three studies to see how software
engineers use and update documentation. They found that
out-of-date software documentation remains useful in many
circumstances. Andrew Forward and Timothy C.
Lethbridge[17] also compiled ev idence that software
engineers value technologies such as the javadoc. This is
because the automation of the documentation process
facilitates its maintenance. In short, Forward and Lethbridge
surveyed the usefulness of documentation during
maintenance by software engineers.

This paper takes a different approach. Our main research
question is to empirically test whether min imalist, patterns
documentation or Jdoc presentation would give better
performance in teaching intermediate users how to use
design patterns. This question is indeed the main concern
that is being challenged. In this paper, we use the Command
and Adaptor design patterns[18] as the basis of study on the
impact of the documentation philosophies.

3. Experiment Description
This research work used an exercise-based research

typically used in empirical software engineering. One o f the
main components of the research methodology is
exercise-based investigation, which was preceded with the
presentation of a certain documentation set. Overall, it
consists of the following four act ivities:

● Activity I: Forming the research question and
formulat ing hypotheses based on the relevant literature.
● Activi ty II: Developing the documentation sets to test

the hypotheses.
● Activi ty III: Building the exercise instrument and the

collection of data through exercises.

● Activi ty IV: Analysis of the data collected as part of
Activity III.

The formulated hypotheses were used to design the
documentation sets and the respective exercise, which were
pre-tested for usability, soundness, and readability before it
was rolled out for collecting data from the field. The data
collected were then statistically analysed using suitable data
analysis techniques.

3.1. Documentation Procedure

The documentation procedure of Figure 2 is composed of
five steps. In the first step, we manually identify which
tutorial that would correspond to the work task d iscussed in
the textbook[19]. The textbook provides the rationale for the
work task, supporting the scenario in demonstrating the
Command and Adaptor (CmdAdp) design patterns.

Figure 2. An overview of the documentation procedure

The second step of the documentation is to build
minimalist documentation by formulat ing step-by-step
instructions. The instructions are grouped into minimalist
documentation. There are two important observations from
this step. Firstly, it is less chaotic in writing the tradit ional
steps in one web page before segregating the steps into
multip le web pages. Next, instead of merely instructions,
some of the steps provide short exercises. The subjects
would need to figure out some parameters and code. With
this, the subjects have a chance to apply what they learn thus
far based on some of the similar previous steps. The content
is structured into four work tasks, so that the complet ion time
for each check po int could be recorded. The four work tasks
include What components to be put into the content pane first

16 Sin-Ban Ho et al.: Leveraging Framework Documentation Solutions for Intermediate Users in Knowledge Acquisition

for your simple Command DP program, How to implement
commands to demonstrate action objects, How to create and
show the MapAdaptorTest object, and Writing an adaptor to
adapt a Map and populating a SortedMap with the key/value
pairs.

The third step of the documentation is to formulate the
patterns style and Jdoc documentation. By adding the
background information context to the top of each piece, we
could include the respective class diagram, with its
description, into the patterns style. Meanwhile, the classes,
inheritance and methods information, which are obtained
from running the javadoc tool, are added on top of the Jdoc
documentation. Four work tasks focus on the Intermediate
topics where these web pages provide links to the related
steps in the previous experiment documents. The patterns
style and Jdoc examples are therefore deemed sound for
testing when putting up the exercise for the case study at
hand and it is sufficient to account for gathering dependent,
controlled and independent variables through questions on
the tutorial identified in step 1. The questionnaire consists of
mainly close-ended multiple-choice questions, with an
open-ended question at the end. For the close-ended
multip le-choice questions, statistical analysis is perfo rmed
on the available data. Meanwhile, the open-ended questions
provide a further dimension in capturing some additional
informat ion from the respondents which is not captured in
the close-ended questions.

The last step is to conduct a test on the documentation
before the actual experiment runs. This includes verifying
the correctness of the identified steps by undergoing human
trials with at least two testers, at a high level of abstraction,
against the exercise on the work task. This step involves the
presence of both the author and the tester, as it requires one
to understand why the changes were made and verify that the
tester can follow the instructional steps. Should there be any
shortcomings, the steps are to be noted and changed
accordingly prior to the actual experiment. Th is conforms to
the intent of the identified tutorial.

So, what exact ly are the participants to do? The
participants should follow the documentation and create java
source code that import the main Swing package i.e.
javax.swing.* and two AWT packages i.e. java.awt.event.*
and java.awt.*. The expected result from these tasks is to
have an outcome of running Command and Adaptor
(CmdAdp) programs. Figure 3 shows an example of the
CmdAdp documentation, which is organised into pieces to
formulate the minimalist documentation. The background
informat ion section is added to the top of each piece in order
to form the patterns style (see Figure 4). For Jdoc, the
background information is replaced by the output of the
javadoc tool, which comprises of the extracted information
from the source code about interfaces, methods and
data-fields, as shown in Figure 5.

To provide a picture of the relative total length of the
documentation, the documentation size is measured in
kilobytes, as proposed by Beizer[20]. Through this approach,
we can quantitatively characterize the documents. Table 2

gives quantitative information about the character of the
documents used in this experiment.

Writing code to implement COMMAND design pattern (DP)
1. Create a java source code file with the name of
“GreetingAction.java”. Notice your filename must start with
uppercase ‘G’. This is to correspond to the class name, which begins
with uppercase letter.
Class: ‘GreetingAction’
//GreetingAction.java
import javax.swing.*; // provide JTextArea
import java.awt.event.*; // provide AbstractAction

public class GreetingAction extends AbstractAction
{
 //To continue with subsequent declaration & methods
} // end class

The AbstractAction class implements the Action
interface type. This GreetingAction class extends the
AbstractAction class, rather than implement the Action
interface type.

2. At the first line in the GreetingAction class, declare two private
instance variables to store the string and text area for the greeting. You
may copy and paste only the boldfaced code to the respective class.
Class: ‘GreetingAction’
 public class GreetingAction extends AbstractAction
 {
 private String greeting; // string for the text area
 private JTextArea textArea; // text area for the greeting
 }
/* ..continued with the subsequent steps in the Swing Intermediate
Topics documentation*/

5. Within the GreetingAction class, include two methods to set the
state of an action. The Action interface type extends the ActionListener
interface type. Thus, you specify the command action in an
actionPerformed method.
Class: ‘GreetingAction’ – Method Summary
//Task1: Set the opposite action
 public void setOpposite(Action action)
 { // action to be enabled after this action was carried out
 oppositeAction = action;
 }
//Task2: Specify the command action in an actionPerformed method
 public void actionPerformed(ActionEvent event)
 {
 textArea.append(greeting);
 textArea.append("\n");
 if (oppositeAction != null)
 { // setEnabled method to enable or disable an action
 setEnabled(false);

 International Journal of Information Science 2013, 3(1): 13-23 17

 oppositeAction.setEnabled(true);
 } // end if
 } // end method actionPerformed

Figure 3. Examples of the documentation fragment which was presented
in all the three documentation groups

How to use Swing library to implement COMMANDS that can be
enabled / disabled
Table of Contents
 Background Information
 How does this work?
 What next?
Background Information

This action places a greeting into a text
field, and afterwards disables itself and
enables its opposite action.
The AbstractAction class implement the
Action interface type. The AbstractAction
class would be extended rather than
implement the Action interface type. The
above figure shows how this goal can be
achieved.

This application demonstrates action objects
where two actions insert greetings into a text
area. Each action can be triggered by a menu
item or toolbar button. When an action is
carried out, the opposite action becomes
enabled. This GreetingAction class would
contain two sub-tasks, namely constructing
a greeting action, and setting the opposite
action.

How does this work?
/* … continued with the subsequent steps in implementing the
Command design pattern (DP) */

Figure 4. Example of the documentation fragment that is available in the
patterns style documentation, but not available in the minimalist and Jdoc
documentation

Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO
FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD
DETAIL: FIELD | CONSTR | METHOD

Class GreetingAction
java.lang.Object
 |
 +--javax.swing.AbstractAction
 |
 +--GreetingAction
All Implemented Interfaces:
javax.swing.Action, java.awt.event.ActionListener,
java.lang.Cloneable, java.util.EventListener, java.io.Serializable

public class GreetingAction
extends javax.swing.AbstractAction
About this program: This action places a greeting into a text field and

afterwards disables itself and enables its opposite action.
/* ..continued with the field summary information in the Jdoc
documentation*/

Constructor Summary
GreetingAction(java.lang.String greeting,
 javax.swing.JTextArea textArea)
 Constructs a greeting action.

Method Summary
void actionPerformed

 (java.awt.event.ActionEvent event)
 3-2-5: Specify the command action.

void setOpposite(javax.swing.Action action)
 3-2-5: Sets the opposite action.

/* ..continued with the methods inheritance detail information */

Constructor Detail

GreetingAction
public GreetingAction(java.lang.String greeting,
 javax.swing.JTextArea textArea)
Constructs a greeting action.
3-2-3: Provide two arguments with data type String and JTextArea.

Parameters:
greeting - the string to add to the text area
textArea - the text area to which to add the greeting

Method Detail

setO pposite
public void setO pposite(javax.swing.Action action)
3-2-5: Sets the opposite action.

actionPerformed
public void actionPerformed (java.awt.event.ActionEvent event)
3-2-5: Specify the command action.

/* ..continued with the subsequent steps in the documentation */

What next?
1. Proceed to the next program to implement the Adaptor design
pattern. The goal is to write an adapter that adapts a Map to an
AbstractTableModel.
2. Populate a SortedMap with key/value pairs and show the map
inside a JTable.

Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO
FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD
DETAIL: FIELD | CONSTR | METHOD

Figure 5. Example of the documentation fragment that is available in the
Jdoc documentation, but not available in the minimalist and patterns style
documentation

18 Sin-Ban Ho et al.: Leveraging Framework Documentation Solutions for Intermediate Users in Knowledge Acquisition

Table 2. Characterize the relative documentation quantitatively

Quantitative characterization Minimalist Patterns Jdoc
1. Relative total length (in kilobytes) 244 KB 293 KB 340 KB

2. Information that is relatively available Short overview list of work tasks Background information
Classes, method and interface
information

3. Number of document files 10 files 13 files 22 files
4. Total sections in the documentation 9 sections 14 sections 11 sections
5. Total paragraphs in the documentation 17 paragraphs 27 paragraphs 24 paragraphs

In summary, the ultimate objective is to put the theoretical
inference to the test: the hypothesis may be proven true or
may be different from the actual result gathered during the
observation process. As supported by Kallakuri and
Elbaum[21], the subsequent empirical experiment run is
characterized by investigation through gathering data and
performing analyses. This is to determine the mean ing of the
data, and encompasses the following case study strategies:
● The experiment would provide the investigator with

control over some of the conditions in which the study takes
place by manipulating independent factors to elicit responses
from the dependent factors.
● The observation through case study, which

investigates real-life phenomena in the context of a current
model.
● A demonstration of documentation strategy on the

subjects.

3.2. Hypotheses

Standard significance testing is used to clearly specify the
effects of the three documentation philosophies. The null
hypotheses are stated as follows.

E1H0 - There will be no difference between patterns and
minimalist documentation for the intermediate users in doing
the same exercise.

E2H0 – There will be no difference between patterns and
Jdoc documentation for the intermediate users in doing the
same exercise.

E3H0 – There will be no difference between min imalist
and Jdoc documentation for the intermediate users in doing
the same exercise.

The interpretations of the experiment are derived from the
rejection or non-rejection of these hypotheses for each
expectation.

3.3. Participants

There are 90 participants in this study. 33 (36.7%) are
female and 57 (63.3%) are male, with the mean years in the
university of 2.97, and SD of 0.436, a minimum 2 years and
maximum 4 years in the university. Part icipants are all
informat ion technology undergraduates who undergo the
object-oriented programming course at the university. The
normal age of the students at this level is 22 years old.

To be able to test the hypotheses of our experiment, three
different groups of the CmdAdp documentation are required.

We arrange the participants into three different groups,
according to their tutorial sections. Table 3 shows more
detailed information about the groups.

Table 3. The detailed information of years in the university (year) and
previous achievement of C Language course (CLang), C++ (CPP), Data
Structures and Algorithms (DataStruct) grades, and CGPA

Documentation philosophies Minimalist Patterns Jdoc
N (participants) 26 26 38

Mean (year) 3.08 2.92 2.92
Std. dev. (year) 0.077 0.110 0.058
Mean (CLang) 3.16 2.95 3.16
Mean (CPP) 3.08 3.08 3.17

Mean (DataStruct) 3.04 1.58 1.74
Mean (CGPA) 3.12 3.08 3.20

During the lectures, the students are taught basic
object-oriented programming (OOP) princip les. The lectures
are supplemented by practical tutorial sessions where the
students have the opportunity to make use of what they have
learned through the completion of various java coding
exercises using the assigned on-line documentation. Prio r to
this experiment, the preliminary stage of the on-line
documentation presents the Swing framework. The second
stage discusses five of the design patterns[13]. This
experiment focuses on the third stage of the intermediate
users learning, which is on the CmdAdp design patterns, as
summarized in Figure 6. The participants in this experiment
are regarded as intermediate users since they have attempted
the prior two stages. They are not advanced users since they
have not completed the OOP course yet.

Figure 6. Overview of the content structure. The grey boxes are UML
diagrams

 International Journal of Information Science 2013, 3(1): 13-23 19

3.4. Procedure (Tasks)

The pedagogical documents are developed on a
workstation using an html editor such as Dreamweaver.
These documents are subsequently uploaded to a web server
so that the users can access the on-line documentation.
Before the experiment begins, a digital clock is displayed on
the projector for the subjects’ common reference.

Our method of observation consists of a survey with two
sections. The subjects receive this survey printed on paper.
The first section requests the subjects to record their
complet ion time after each task, while the second section
includes eleven post mortem questions of various types
including mult iple-choice, ratings and free-form question.
The responses to this free-form question raised by more than
two subjects are recorded as qualitative findings. These
responses are delivered in handwriting. However, the overall
amount of the text written is small, so handwriting speed is
not a limit ing factor.

3.5. Experimental Design

Our experimental design uses one independent variable
(factor) and six dependent variables. The independent
variable consists of the documentation group. The dependent
variables are the complet ion time, number of difficulties
faced, semi completion t ime, workings and comprehension
(understanding of the exercise).

Independent variables:
Documentation type : We use three documentation

philosophies, as described in section 1, each with a similar
purpose: to complete the given work task.

Dependent variables:
Semi Completion time: Time taken for the subjects to do

their first compilation.
Completion time: The t ime taken to finish the entire

exercise.
Comprehension: The subjects have to identify the

method, procedure, line of the code, and constants that
perform the given task. There are a number of questions to
test their understanding of the code.

Workings: This is to test how well the subjects are able to
follow the instructions for assigning default settings to the
CmdAdp components.

Number of di fficulties faced : Instead of giving all the
detailed steps, some parts of the documentation let the
learners interact with the system. The subjects are to record
and accumulate the number of problems they encounter.

Appendix A provides the exercise of the experiment. This
gives a more specific description on what the exercise ask for
the dependent variables and how they are measured. The data
collected from this experiment is discrete, either right or
wrong for a particular question. This evaluation approach is a
kind of examination or exercise, not a survey of opinions.
Thus, factor analysis for convergent validity is not required
for these direct observable variables[22,23]. The validation
of these variables is well supported with their propositional
discrete nature[24], i.e . the exact total of correct answers and

factual nature, such as the exact completion time of various
tasks.

3.6. Validi ty

Internal validity is the degree to which conclusions can be
drawn about the casual effect of independent variables on the
dependent variable. To see whether the groups differ
significantly, we perfo rm ANOVA tests on the three groups
of participants. In Table 4, with all the p-values > 0.05,
except for the Data Structures and Algorithms course that
they took in the prior semester, there is no major significant
difference detected. The random assignments of the three
tutorial groups are balanced in terms of their years in the
university, the courses like C and C++ language, and
Cumulat ive Grade Point Average (CGPA).

Table 4. The ANOVA tests results on years in the university, C language
(CLang), C++ (CPP), Data Structures and Algorithms (DataStruct) grades,
and CGPA for the three documentation groups

Categories: F-values p-values
Years in the university 1.175 0.314

CLang 1.015 0.367
CPP 1.101 0.337

DataStruct 7.843 0.001**
CGPA 0.499 0.609

Note: ** Statistically significant at 0.05 level

Furthermore, the total complet ion time of the participants
shows an almost perfectly symmetric distribution. Thus,
there is no evidence that slower participants hurried because
of others having finished before them, in spite of the
particular part icipant group working in the same laboratory
at the same time. A final consideration is the precision and
accuracy of time stamps recorded by the participants.
Although the participants are informed that they have at most
two hours to complete the work task, by cross checking, we
discover that their responses in the time stamp to be highly
accurate and reliable.

External validity is the degree to which the results of the
research can be generalised to the population under study
and other situation settings. We have identified two possible
external threats. Firstly, the part icipants who take part in the
experiment may be not the full representatives of software
learners. Due to the constraint in tutorial sections
arrangement, all the part icipants are FIT (Faculty of
Information Technology) undergraduates. None are from
other faculties, such as management, psychology etc.

4. Data Analysis, Results and Discussion
4.1. Statistical Analysis on the Results

Statistical analyses are conducted using Statistical
Package for Social Science (SPSS). The results are based on
the sample of 90 responses. The data is analysed to see if one
of the documentation sets let the participants compile
(Semi-Completion) and finish the fastest (Completion)
with the number of difficulties recorded by the subject at

20 Sin-Ban Ho et al.: Leveraging Framework Documentation Solutions for Intermediate Users in Knowledge Acquisition

these intervals (Number of difficul ties), as well as
understand the most (Comprehension). We also check for
test scores on how well their knowledge in the inner
workings of the framework (Workings). Since we do not
want to rely on the assumption of normal distribution, we test
for the normality of the dependent variables. From the
normality test in Tab le 5, we discover that all dependent
variables except Number of difficul ties are normally
distributed for each participant group. Thus, for this
dependent variable, medians will be used as the expected
values, rather than the means, as shown in Table 6 and Table
7. There exists a small outlier and we have checked that the
results are resilient to the removal o f the outlier.

Table 5. Results of normality test

Category Kolmogorov-Smirnov
(Dependent variable) Z
1. Semi-Completion time 1.100
2. Completion time 1.047
3. Comprehension 1.328
4. Workings 1.270
5. Number of difficulties 2.070**

Note: ** Significant at 0.01 level

Table 6. The means and standard deviations of all categories

Category Mean
(Dependent variable) Min. Pat. Jdoc
1. Semi-Completion (hh:mm:ss) 0:31:06 0:33:59 0:36:56
2. Completion Time (hh:mm:ss) 0:58:11 1:04:29 1:07:03
3. Comprehension (Scale: 0-18) 14.69 13.31 14.08
4. Workings (Scale: 0-4) 3.42 2.81 2.87

Table 7. The mean rank, medians and standard deviations of the number
of difficulties

Documentation type Minimalist Patterns Jdoc
Sample size, n 26 26 38
Median 1.00 1.00 0.00
Mean rank 46.44 39.21 49.16
Standard deviation 2.765 1.531 3.184
Removal of invalid cases* 7 5 12

Note: Those subjects who did not answer the number of di ffi culties they faced
are considered invalid cases.

Table 8. Multivariate effects of the documentation type on Semi-
Completion time, Completion time, Comprehension, and Workings

Category F Significance
1. Semi-Completion time 1.657 0.197

2. Completion time 2.305 0.106
3. Comprehension 1.077 0.345

4. Workings 4.639 0.012**

Note: ** Statistically significant at 0.05 level;
* Statistically significant at 0.10 level.

In order to determine whether any of the categories
differed on any of the scales for the dependent variables,
mean scores (and standard deviations) are computed for each
category on each scale. Using the documentation type as the
independent variable and the four dependent measures, the
data are subjected to an analysis of variance. Tab le 8 presents
the results of the separate multivariate tests. Multivariate
F-tests are conducted to determine which of the dependent
variables differ across the various categories. These values

are obtained via tests of between-subjects effects using
Multivariate Analysis of Variance (MANOVA) with a
Scheffe test adjustment[25]. We choose this test to examine
the sample sizes, since the three documentation groups in
this experiment are unequal. From these results, we observe
that one out of four independent variables is significant.

In terms of Semi-Completion and Completion in Table 6,
the subjects who use minimalist documentation complete
their first compilation and complete the experiment faster
than the ones using the other two documentation styles.
When looking for the standard significance level of 0.05 (i.e.
95% probability) in Table 8, there is evidence that the
patterns group are not significantly slower. Therefore, we
conclude that there is no significant difference between
patterns and the other two documentation styles as to how
long it takes the subjects to complete the experiment.
Subjects using minimalist are faster than both of the others
perhaps because there is less text to read, while subjects
using patterns style are faster than subjects using Jdoc
perhaps because it is not cluttered with too much class
informat ion such as inheritance and subclasses.

As for Comprehension, there is no significant difference
between how well the subjects understand the materials. This
might be because the students are still ab le to understand the
CmdAdp code in the end, irrespective of the document styles.
Their learn ing may reach a maturat ion effect[26] after going
through the four work tasks of documentation. Furthermore,
this can be due to the experiment being conducted at the end
of the semester. The participants learn enough from the prior
eleven weeks of tutorials and lectures on object-oriented
programming to bias their performance in the final stage of
the experimental run.

Regarding Workings, the subjects in the min imalist
documentation group exh ibit significantly better workings
scores than the other documentation styles at the 5 per cent
level. Interestingly, this indicates that the E1H0, E2H0 and
E3H0 hypothesis in section 3.2 are rejected. These rejections
show that the patterns documentation and the other two
styles are not the same in teaching the subjects about
complet ing the work tasks with the designated settings.
Spending more t ime in d irect ly instructing the coding of the
CmdAdp can be more beneficial in having the defau lt result
rather than flooding the intermediate users with too much
background information. Too much background information
may mot ivate intermediate users to try something different.
They are more confident to differ since they are equipped
with the additional background.

Table 9. Kruskal-Wallis test on the number of difficulties
Chi-square Degree of freedom (DF) Asymptotic significance

2.502 2 0.286

Since the Number of di fficulties is not normally
distributed over the comparison of the three groups, we use
the Kruskal Wallis test[27,28]. With the two-sided
asymptotic significant value in Table 9 more than 0.05, the
number of difficult ies faced by the subjects has no
significant difference among the three groups. The

 International Journal of Information Science 2013, 3(1): 13-23 21

participants might not record fully the number of difficulties
they have solved the task. Looking at the results in Tab le 7,
many part icipants have been removed because they do not
answer the questions. In summary, among the strong proxies
that confirm minimalist advantages include the fastest semi
complet ion time, the fastest completion time, the highest
comprehension and workings scores. Hence, we conclude
that minimalist documentation is relatively superior to others
in encouraging the positive knowledge transfer strategies of
intermediate users.

4.2. Regression Model for Future Prediction

In order to further validate the various points, let us build
the regression model[29]. We extract the models to predict
future data trends for continuous valued functions[30] with
the assumption that the determinant is linearly related to the
factors. The proposed model for regression testing is
explained by Greene[31] and Gujarati[32], which can be
denoted by the following basic form:

M = c + a1x1 + a2x2 + … + aixi + e (1)
where M is the determinant, xi denotes factor, c and ai are
parameters to be estimated, and e is the error term.

We further explore the data of Table 8 to analyse many
more factors with the various dependent variables. Based on
the regression analysis, we obtain the following regressions.

COMPREHENSION = 14.066 – 0.278 (Gender) – 0.037
(DataStruct) – 0.516 (CPP) + 0.507 (CLang) + 1.526

(CGPA) – 1.327 (Year) – 0.186 (BgInfo) (2)
WORKINGS = 1.208 – 0.226 (Gender) – 0.012 (DataStruct)

+ 0.071 (CPP) – 0.064 (CLang) + 0.280 (CGPA) + 0.403
(Year) + 0.015 (BgInfo) (3)

SEMI-COMPLETION TIME = 3596.17 + 163.93 (Gender)
– 17.94 (DataStruct) – 15.48 (CPP) + 10.69 (CLang) –

293.97 (CGPA) – 185.08 (Year) – 120.92 (BgInfo) (4)
COMPLETION TIME = 6064.24 + 398.32 (Gender) –
9.254 (DataStruct) – 96.889 (CPP) + 87.59 (CLang) –

584.10 (CGPA) – 211.62 (Year) – 136.31 (BgInfo) (5)
In addition, the regressions indicate that all the mentioned

factors, i.e. gender, the three programming grades, CGPA,
years in the university and the level of background
informat ion reasonably explain the variat ions (refer to the
R-square values), e.g. 10% in comprehension, 8% in
workings, 7% in semi-complet ion time, and 15% in
complet ion time. To obtain the level of background
informat ion, we assigned level one for min imalist, level two
for patterns-style and level three for Jdoc. The higher the
level, the more background informat ion is provided. In Eq.
(2), (4) and (5), the background informat ion variable has
negative coefficients. Thus, the amount of comprehension,
semi-completion t ime and completion time inversely relate
to the level of background informat ion. For Eq. (3), we
discover that the background informat ion with positive
coefficient. Therefore, the workings increase with the level
of background information. These results support that less
background information helps achieving faster
semi-completion t ime, faster completion t ime, and increases
the scores of comprehension. Thus, the use of minimalist

documentation can be beneficial to the users for a simple task
such involving only two of the design patterns.

5. Conclusions
In this work, a set of philosophies for organizing

pedagogical textual and graphical information on the
CmdAdp documentation has been proposed. This work
reveals the missing salient variable in the recent indiv idual
differences study by Graff[33], i.e. the time users spent at
each page of hypertext. From the results, we realize that the
effects of the patterns style documentation are not supreme
all the time. Perhaps, for intermediate users, patterns are not
always the best. Furthermore, Pressman[1] suggested that
patterns are not suitable fo r every situation. Interestingly,
minimalist documentation shows an overwhelming
advantage in terms of the intermediate users' completion
speed and comprehension in fulfilling requirements.

The quantitative results show that min imalist
documentation did not have a significant impact on the time
and comprehension that it took to perform the programming
tasks. Nevertheless, in terms of the functional workings of
the framework, minimalist documentation had a practically
and significantly positive impact, in spite of the fact that the
participants were not experts in applying design patterns into
programming tasks. The aim of using the most effective
documentation is to provide intermediate users with a good
process that will lead to faster growth in learning the
CmdAdp design patterns. All these results demonstrate the
behaviours of CmdAdp intermediate users in using
pedagogical framework documentation.

ACKNOWLEDGEMENTS
The study described in this paper would not be possible

without the cooperation and willingness of the experimental
subjects and course tutors. The authors also thank the
anonymous reviewers for their valuable suggestions that
improved the paper.

APPENDIX
the exercise items
Note: (Qn) refers to the original question number in the

exercise. The dependent variables are numbered with prefix
‘Y’, while the demographic characteristics are numbered
with prefix ‘X’.

Section 1. Documentation on the Command and
Adaptor Program
Y0 to Y2, Y5: Check point time, Completion time and the
Number of Difficulties
Please record time as ‘hh:mm:ss’:

 Record Start T ime: _____________

Y5.1: Number of difficulties faced: _____________

22 Sin-Ban Ho et al.: Leveraging Framework Documentation Solutions for Intermediate Users in Knowledge Acquisition

 Y0a: Command Quarter end time: _____________

Y5.2: Number of difficulties faced: _____________

 Y1: Command Semi end time: _____________

Y5.3: Number of difficulties faced: _____________

 Y0b: Adaptor 2nd Quarter end time: _____________

Y5.4: Number of difficulties faced: _____________
 Y2: Congratulations! Completion T ime: _________

Section 2. Tutorial Exercise on the Command and
Adaptor Program
Y3: Comprehension (Understanding of the exercise)
Y3.1: In Command DP code, indicate the respective
package that provides the listed class/interface. Answer
with numbering: 1. javax.s wing.*, 2. java.awt.* or 3.
java.awt.event.*

No
. Class Package

(Pkg.)
No
. Class Pkg.

Eg
. Action 1.

javax.swing.* 5. JFrame

1. JTextArea 6. Container
2. ActionEvent 7. JMenu
3. JMenuBar 8. JToolBar
4. AbstractAction 9. ImageIcon

Y3.2: In Adaptor DP code, indicate the respective
package that provides the particu lar class . Answer with
respective numbering: 1. javax.s wing.*, 2. java.awt.* 3.
java.util.* or 4. javax.s wing.table .*

No. Class Package (Pkg.)
Eg0. TableModel 4. javax.swing.table.*
1. TreeMap
2. Set
3. Map
4. JTable
5. BorderLayout
6. JScrollPane
7. SortedMap
8. AbstractTableModel
9. JPanel

Variables Correct solutions Discrete

scale

Y3.1 (Q5)

01. 1. javax.swing.*; 02. 3. java.awt.event.*;
03. 1. javax.swing.*; 04. 1. javax.swing.*;
05. 1. javax.swing.*; 06. 2. java.awt.*;
07. 1. javax.swing.*; 08. 1. javax.swing.*;
09. 1. javax.swing.*

(0 to 9)

Y3.2 (Q9)

01. 3. java.util.*; 02. 3. java.util.*;
03. 3. java.util.*; 04. 1. javax.swing.*;
05. 2. java.awt.*; 06. 1. javax.swing.*;
07. 3. java.util.*; 08. 4. javax.swing.table.*;
09. 1. javax.swing.*

(0 to 9)

Y4: Workings
Y4.1: In CommandTest code, the text appears when
goodbyeAction is selected: ________________

Y4.2: In your CommandTest program, indicate the title
name o f the window: ________________
Y4.3: Initially, size set for MapAdaptorTest frame : x:
_______ pixels; y: ________ pixels
Y4.4: The code to suit MapAdaptorTest frame into its
components’ size: ____________________

Variables Correct solutions Discrete scale
Y4.1 (Q2) Goodbye, Departing… (0 or 1)
Y4.2 (Q3) A simple Command program (0 or 1)
Y4.3 (Q6) 200 pixels; 150 pixels (0 or 1)
Y4.4 (Q7) test.pack() (0 or 1)

FX: Demographic Characteristics
X1: Gender*: Male / Female
 Legend: * Please circle one of the items above.
X2 to X4: What grade did you obtain for the following
subjects: (state your answer as far you can recall)

X2: Data Structures A+/A A- B+ B B-
and Algorithm C+ C F None
X3: Computer Pro- A+/A A- B+ B B-
gramming II (C++) C+ C F None
X4: Computer Pro- A+/A A- B+ B B-
gramming I (C) C+ C F None

X5: Indicate your CGPA thus far: _______________

Variables (Original question number)
X1 (Header); X2 (Q1-i); X3 (Q1-ii); X4 (Q1-iii); X5 (Q2)

REFERENCES
[1] R.S. Pressman, Software Engineering: A Practitioner's

Approach, 7th ed., McGraw Hill, New York, NY, USA, ,
p.347-354, p.835-837, 2010.

[2] V.R. Basili, and H.D. Rombach, "The TAME Project:
Towards Improvement-Oriented Software Environments",
IEEE Transactions on Software Engineering, vol. 14, no. 6,
pp.758-773, 1988.

[3] V.R. Basili, F. Shull, and F. Lanubile, “Building knowledge
through families of experiments”, IEEE Transactions on
Software Engineering, vol. 25, no. 4, pp.456-473, 1999.

[4] A. Goncalves, Beginning JavaTM EE 6 Platform with
GlassFishTM 3: From Novice to Professional, Springer-Verlag,
New York, NY, USA, p.261-267, 2009.

[5] J.M. Carroll, “Minimalism beyond the Nurnberg Funnel”,
MIT Press, Cambridge, MA, USA, 1998.

[6] I. Chai, “Pedagogical framework documentation: how to
document object-oriented frameworks: an empirical study”,
PhD dissertation, University of Illinois at Urbana-Champaign,
IL, USA, http://www.cs.uiuc.edu/research/techreports.php?
report=UIUCDCS-R-99-2077, 2000.

[7] R. Johnson, “Documenting frameworks using patterns”, in:
Proceedings of ACM Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA’92), ACM

 International Journal of Information Science 2013, 3(1): 13-23 23

Press, Vancouver, British Columbia, Canada, pp.63-76,
October, 1992.

[8] E. Berglund, “Designing electronic reference documentation
for software component libraries”, Elsevier, Journal of
Systems and Software, vol. 68, no. 1, pp.65-75, 2003.

[9] A. Cockburn, “Supporting tailorable program visualisation
through literate programming and fisheye views”, Elsevier,
Information and Software Technology, vol. 43, no. 13,
pp.745-758, 2001.

[10] A. Dix, J. Finlay, G.D. Abowd, and R. Beale, Human
computer interaction, 3rd ed., Pearson Prentice Hall, Essex,
England, U.K., p.532-533, 2004.

[11] G. Meszaros, and J. Doble, “MetaPatterns: a pattern language
for pattern writing”, in: Proceedings of Int’l Conf. Pattern
Languages of Programs (PLoP 96), The Hillside Group, Inc.,
Allerton Park, Illinois, USA, 4-6 September 1996,
http://www.cs.wustl.edu/~schmidt/PLoP-96/meszaros.ps.gz.

[12] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Little, R. Nord, and J. Stafford, Documenting Software
Architectures: Views and Beyonds, Pearson Addison-Wesley,
Boston, MA, USA, p. 24–29, 2003.

[13] S.B. Ho, “Framework documentation with patterns: an
empirical study”, PhD thesis, Multimedia University,
Cyberjaya, Malaysia, 2008.

[14] A. Forward, “Software documentation: building and
maintaining artifacts of communication”, Master’s thesis,
School of Information Technology and Engineering,
University of Ottawa, Canada,
http://www.site.uottawa.ca/~tcl/gradtheses/ aforward/, 2002.

[15] Eclipse Website, The Eclipse project information, Online
Available: http://www.eclipse.org/.

[16] T.C. Lethbridge, J. Singer, and A. Forward, “How software
engineers use documentation: the state of the practice”, IEEE
Computer Society, Los Alamitos, CA, USA, IEEE Software
vol. 20, vol. 6, pp.35-39, November-December, 2003.

[17] A. Forward, and T.C. Lethbridge, “The relevance of software
documentation, tools and technologies: a survey”, in
Proceedings of the 2002 ACM Symposium on Document
Engineering (DocEng’02), ACM Press, McLean, Virginia,
USA, pp.26-33, 8–9 November 2002.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Pearson Addison-Wesley, Reading, MA, USA, 1994.
(Commonly called the “Gang of Four” or “GoF” book).

[19] R. Horstman, Object-Oriented Design and Patterns, 2nd ed.,
John Wiley and Sons, Hoboken, NJ, USA, 2006.

[20] B. Beizer, “Software is different”, in Comparative Studies of
Engineering Approaches for Software Engineering, eds. D.
Patel, and Y. Wang, Baltzer Science Publishers, Norwell,
MA, USA, Vol. 10, pp.293-310, 2000.

[21] P. Kallakuri, and S. Elbaum, Experimental studies in
empirical software engineering, 2005,
http://www.acm.org/crossroads/xrds7-4/empirical.html.

[22] C.D. Gray, and P.R. Kinnear, IBM SPSS Statistics 19 Made
Simple, Psychology Press, Taylor and Francis Group, Hove
and New York, USA, p.85-90, p.387-398, 2012.

[23] S.B. Green, N.J. Salkind, and T.M. Akey, Using SPSS for
Windows: Analyzing and Understanding Data, 2nd ed.,
Prentice Hall, Upper Saddle River, NJ, USA, p.292-294,
2000.

[24] R. Johnsonbaugh, Discrete Mathematics, 6th ed., Pearson
Prentice Hall, Upper Saddle River, NJ, USA, p.2-7, 2005.

[25] J. Neter, M.H. Kutner, C.J. Nachtsheim, and W. Wasserman,
Applied Linear Statistical Models, McGraw Hill, Boston,
MA,USA, 1996.

[26] L.C. Briand, C. Bunse, and J.W. Daly, “An experimental
evaluation of quality guidelines on the maintainability of
object-oriented design documents”, in ACM Proceedings of
7th Workshop on Empirical Studies of Programmers, ACM
Press, Alexandria, VA, USA, pp.1-19, 1–3 October, 1997.

[27] A. Field, Discovering Statistics Using SPSS, 3rd ed., SAGE
Publications Ltd, London, U.K., p.560-567, 2011.

[28] A.G. Bluman, Elementary Statistics: A Step by Step
Approach, McGraw-Hill International Edition, New York,
USA, 2004.

[29] G. Antoniol, G. Canfora, and G. Casazza, Recovering
traceability links between code and documentation, IEEE
Transactions on Software Engineering, vol. 28, no. 10,
pp.970-983, 2002.

[30] J. Han, and M. Kamber, Data Mining: Concepts and
Techniques, Academic Press, Morgan Kaufmann Publishers,
San Diego, CA, USA, p.284-296, p.319-326, 2001.

[31] W.H. Greene, Econometric Analysis, 6th ed., Pearson
Prentice Hall, Upper Saddle River, New Jersey, p,8-18, 2008.

[32] D.N. Gujarati, Basic Econometrics, 3rd ed., McGraw-Hill,
Singapore, p.332-335, 1995.

[33] M. Graff, “Individual differences in hypertext browsing
strategies”, Elsevier, Behaviour and Information Technology,
vol. 24, no. 2, pp.93-99, 2005.

	1. Introduction
	2. Motivations of the Study
	3. Experiment Description
	3.1. Documentation Procedure
	3.2. Hypotheses
	3.3. Participants
	3.4. Procedure (Tasks)
	3.5. Experimental Design
	3.6. Validity

	4. Data Analysis, Results and Discussion
	4.1. Statistical Analysis on the Results
	4.2. Regression Model for Future Prediction

	5. Conclusions
	APPENDIX
	REFERENCES

