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Abstract  The use of Laplace transform and other computational tools allows the study of elementary  inverse problems in 

hydraulics, such as for weirs. Torricelli's Law provides the relat ionship between the notch shape of the weir and the respective 

flow rate. The flow rate function r(h) gives the rate at which the volume of water hits the notch of a particular shape f(y). The 

essence of the direct problem here is to determine the flow rate r(h) from the notch shape f(y). Mathematically, this comes 

down to a computationally stable integration process. However, the corresponding inverse problem, i.e., identificat ion of the 

notch shape f(y) from the flow rate measurements, is ill-posed in a sense that even a small error in the input data can result in 

a substantial inaccuracy in the computed solution. Numerical modelling offers the opportunity to test design parameters over 

large ranges and varieties of shapes. It may detect significant flow patterns and capture the amount of noise that a given 

function can tolerate. The goal of the study is to interpret the produced notch shape functions of the weirs, to discuss 

advantages and disadvantages of weirs' structure, and to present a regularized numerical algorithm for getting a less noisy a nd 

a more stable outcome of the inversion procedure. 
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1. Introduction 

Weirs are the overflow structures of defined shape that are 

built across open channels or streams to measure the flow 

rate[1-3]. There are several standard equations that are 

developed to describe the relations between the shape and 

design of the weir, rates of flow, head, and hydraulic 

conductivity[3]. Every design of the weir can be controlled 

by the depth of water, which in turn can predict how the crest 

elevation that is relative to the upstream head changes with 

discharge[4]. 

There are two types of weirs, sharp-crested and 

broad-crested. Sharp crested weirs can take variety of shapes. 

The most common weir structures that are used for 

measuring irrigation water include rectangular, triangular 

(V-notch), trapezoidal (Cipolletti design), and parabolic 

weirs[4,5]. The designs of some weirs have certain 

advantages over the others. For example, the V-notch is 

designed to have small changes in discharge which results in 

a large change in  depth of water through the notch allowing 

for a more accurate head measurement[6]. While V-notch 

weirs are built to monitor low flow conditions, Cipolletti 

weirs are designed to measure higher flows[1].  
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There exist certain requirements to all sharp-crested weirs 

to assure accuracy of flow measurement. The most important 

ones are: the upstream face and head of the weir p lates 

should be normal to the axis of the channel, the entire weir 

panel should have the same thickness, the edges of the weir 

opening should be straight and sharp, and other more 

technical conditions[4,7,8]. Once the weir is constructed, it 

can be tested and resulting calibrat ions can be compared  with 

standard results. However, depending on the dimensions of 

the design, the weirs can cease to provide accurate 

measurements of the total stream flow during the events of 

prolonged heavy rainfall where the weirs are bypassed and 

the stream over-topped the banks[1]. 

In the work that was done by Hively et.al.[1], the authors 

carried out the in-situ measurements of the range of flows 

through the V-notch and Cipolletti weirs, which  dimensions 

were known. Unfortunately, several factors such as heavy 

rainfall, affected the accuracy of the measurements. In this 

work, the flow rate will be derived from the notch shape and 

vice versa. This method of computational analysis portends 

the outcome of the design, in particular Cipo lletti and 

parabolic weirs, given the amount of relative error that can 

potentially d isrupt the measurements. 

2. Mathematical Background 

The principles of hydraulics serve as one of the branches 

of the flu id dynamics. Torricelli's theorem, which follows 
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immediately from the law of conservation of energy, relates 

the velocity of the fluid flowing out of an e levated irrigation 

canal, fitted with a weir notch, under the force of gravity to 

the height of the water[9,10]. In what fo llows, we consider 

an elevated irrigation canal that is much wider in comparison 

to the weir notch; thus, there is an inconsequential change in 

water level when the sluice gate in the notch is removed. It is 

assumed that the weir notch is symmetric with respect to a 

central vertical axis so that for the non-negative values of x it 

can be characterized by the shape function x=f(y), see Figure 

1. 

 

Figure 1.  A weir notch 

To understand the relationship between the notch shape 

f(y), the height h of the water, and the flow rate r(h) using 

Torricelli's law, one takes into consideration the energy 

losses due to viscosity and turbulence of water as it exits the 

weir[9]. The illustration of this concept can be done by 

considering a thin horizontal slab of water of thickness ∆y 

positioned at height y in the notch. In accordance with 

Torricelli's law, the velocity of this slab as it leaves the notch 

is √2g(h-y), which in other words can be described as 

subtracting a constant from the kinetic energy term due to 

pre-existing viscosity and turbulence conditions. Therefore, 

the volume of water, ∆V, as the water crosses the notch in 

small t ime intervals, ∆t, through a cross-sectional area of the 

slab, 2f(y)∆y, can be approximated as  

       (1) 

Furthermore, the flow rate function, r(h), which is the rate 

at which the volume of water strikes the notch can be 

obtained by summing ∆V/∆t over all horizontal slabs. 

Invoking the usual limit argument, we arrive at the following 

expression for the flow rate: 

     (2) 

Given that the acceleration due to gravity, g, is 32 ft/sec
2
, 

the basic equation that links the notch shape and the flow rate 

attains the form: 

       (3) 

Consequently, the direct problem of determining the flow 

rate function, r(h), from the notch shape, f(y), is 

computationally stable and amounts to fairly straightforward 

integration using equation (3). On the other hand, as seen 

from equation (3), the inverse problem is modelled by 

Volterra's integral equation of the first kind. This problem is 

known to be severely unstable[10] in a sense that even a 

small mistake in the input data has a potential to cause a 

significant error in the corresponding solution. Following 

this fact, the regularized numerical algorithm for getting a 

less noisy and a more stable solution to the weir design 

inverse problem will be incorporated. 

3. Numerical Simulations: Weir Design 

Figure 2 shows the field constructed weirs that are 

typically used in agriculture with Figure 2(a) illustrating the 

Cipolletti design and Figure 2(b) being the parabolic weir. 

The shape functions for the Cipolletti and parabolic 

sharp-crested weirs are numerically fit to determine the 

corresponding flow rates by numerical integration carried 

out for equation (3). 

Figure 3 demonstrates stability of the direct problem 

where the Cipolletti weir with the shape function, f(y) 

 
generates the flow rate r(h) of  

 
and H is the height of the weir. The orig inal shape data f(y) is 

perturbed with random noise of various amplitudes to show 

the range of fau lt the computed flow rate r(h) can withstand 

before deviating from the model solution. Figure 3(a) 

illustrates the numerical simulation fo r the Cipo lletti weir 

with height of 60 feet. As one can see, the model and the 

noise-free computed solutions of the direct problem are 

almost identical. If the shape data f(y) is perturbed with 

random noise of about 100%, which can be caused by the 

friction or the capillary effects of the water as it passes 

through the weir, the flow rate r(h) does not deviate from the 

exact solution significantly. Even when the relative noise 

increases to about 300%, the shape of the flow rate function 

can still be reconstructed. Figure 3(b) shows numerical 

outcomes for the Cipolletti shaped weir that is 100 feet high. 

The increase in noise levels produces similar results for the 

taller weir as for the shorter one. Hence the process of 

solving the direct problem is computationally stable, though 

the error in the computed flow rate does increase as the weir 

takes on higher value of height. 

The water flow through a parabolic sharp-crested weir can 

also be determined numerically by using equation (3). If the 

shape of the weir is defined as f(y)=√y, the corresponding 

solution for the flow rate that the weir is generating is r(h) = 

2πh
2
. Figure 4 shows how stable the solution to the direct 

problem is even under a very high perturbation of the data. 

Similar to the case of Cipolletti weir, the noise-free 

computed flow rate for the parabolic weir notch has the same 

outcome as the model solution for both 60 and 100 feet 
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inheight. Once a random noise higher than 100% or even 300% 

is added to the system, the flow rate can still be distinguished 

fairly easy, as Figure 4(a) and Figure 4(b) suggest. 

Analogous to the previous example, parabolic weir 

experiences great stability at short ranges of height. However, 

the flow function starts to deviate (slowly) from the model 

solution as the height becomes greater. 

 

Figure 2.  Weir types - field constructed - that are commonly used in 

agriculture: (a) Cipolletti design that corresponds to the computational 

results in Figure 3, (b) parabolic weir corresponding to the numerical 

demonstration displayed in Figure 4 

From theoretical standpoint, these results are fully  

justified. Indeed, allow f and g  to be notch shapes satisfying   

|f(y) − g(y)| <ɛ for all y ∈[0, H]. Suppose that rfand rgare the 

flow rate functions corresponding to f and g, respectively. 

According to equation (3), the upper bound for the d ifference 

in the flow rates is |rf(h) − rg(h)| ≤ (32/3) H
3/2ɛ. This estimate 

demonstrates that the forward solver is stable, especially for 

a small H, length of the interval on which the flow rate 

function is to be approximated. At the same time, the error 

grows as H increases, and the computed solution moves 

away from exact solution at the right end of the interval. 

Considering the fact  that in some cases the shape of the 

weir might be unknown, there are several computational 

techniques that can be used to solve for the shape given the 

flow rate of the water in the canal or stream. And while the 

direct problem can  be solved by a straightforward  integration, 

the inverse problem is not that trivial. One way to solve it  is 

by applying the Laplace transform, which allows to reduce 

an integral equation for the unknown function to the 

algebraic equation for its Lap lace transform. This technique 

is particularly useful in  solving convolution type linear 

integral equations, such as equation (3) for finding the weir 

notch shape that accounts for a certain flow rate function. 

The transformation of equation (3) with the use of Lap lace 

transform and the convolution theorem gives  

 
and 

              (4) 

If one takes, fo r example, the parabolic flow rate r(h)= 

2πh
2
(as shown in Figure 4), then it follows from the above 

that the corresponding weir notch shape is, indeed, f(y)=√y. 

 

Figure 3.  Numerical demonstration of stability of the direct problem 

where the flow rate is 

reconstructed from the shape  Both exact 

shape data and shape data that is perturbed with random noise of various 
amplitudes were considered 

Further applicat ions of Laplace transform along with the 

convolution theorem allow to obtain an explicit formula for 

the weir notch shape[10]. The second identity in equation (4) 

yields 

 
and 
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Figure 4.  Numerical demonstration of stability of the direct problem 

where the flow function r(h)= 2πh2
is reconstructed from the weir notch 

shape f(y)=√y. Both exact shape data and shape data that is perturbed with 

random noise of various amplitudes were considered 

Since r(0) is obviously 0, the first equality in (5) implies 

that  and, therefore, r (́0)=0. From the 

second equality in (5) along with the property r(0)=r  ́(0)=0, 

one concludes 

           (6) 

Explicit formula (6) for the notch shape f(y) hints to 

ill-posedness of the inverse problem and it won’t give an 

accurate outcome due to a well-known fact that 

differentiation of noisy functions is an unstable procedure. 

To illustrate what it means in practice, Figure 5(a) shows 

numerical results for the inverse problem obtained by 

discretising original equation (3) and solving the 

corresponding linear system with a triangular matrix A. 

While the noise-free reconstruction is still accurate, even a 

very small relat ive noise in the flow rate r(h), considerably 

less than 1%, causes a substantial error in the computed weir 

shape function f(y). Th is is hardly  surprising. As one can 

easily verify, the relationship between the relative erro r on 

the computed solution and the relative error on the data is 

given by the following estimate : 

 

 

Figure 5.  (a) Illustrates f(y)= √y/(2π) reconstructed from r(h)=h2, 

cond(A)≈1050. (b) Illustrates f(y)= √y/(2π) reconstructed from r(h)=h
2
. 

For=0.1, cond(A+I)≈69. (c) Illustrates f(y)= √y/(2π) reconstructed from 

r(h)=h2. For=0.5, cond(A+I)≈16 

where the product ||A|| ||A
-1

|| is called the condition number of 

A, cond(A); r(f)is a perturbed right-hand side (solution), 

and re(fe)is the exact right-hand side (solution). In the 
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experiment above, the matrix Ais severely ill-conditioned 

with cond(A) ≈ 1050. Therefore even a small amount of 

noise quickly perturbs the shape function even for extremely 

low heights of the weir. Similar (poor) reconstructions of f(y) 

have been obtained with explicit formula (6).  

To overcome this instability, we employ a special 

technique called regularization, which allows to strike a 

balance between accuracy and stability in a computational 

algorithm[11].The causal structure of the original Volterra 

problem suggests the use of Lavrentiev’s regularizat ion in 

the form (A+ I) f = r, where > 0is the regularization 

parameter introduced to bring the conditioning of A down. 

As Figure 5(b) demonstrates, Lavrentiev’s regularization 

with  = 0.1 improves the outcome of the shape of the weir. 

For the relat ive noise 5.95 × 10
-3

% in the data, the shape 

function f(y) is nearly perfect for the large values of the 

height while it d iverges from the model at the bottom o f the 

weir. For a higher noise, 3.17× 10
-2

%, the shape function 

follows the model solution then starts to randomly deviate 

from it  as the height of the weir increases. Overall, we see a 

huge improvement compared to unregularized simulations 

presented in Figure 5(a). Figure 5(c), where  = 0.5, 

illustrates the overregularization phenomena. Notice that for 

 = 0.1, the condition number of A+ I drops to 69, while for 

 = 0.5 it decreases even more, i.e . to about 16. 

4. Applications 

The design dimensions, specifications, placement 

locations, and other applications of various weir structures 

should be taken into consideration before the construction. 

The weirs were developed and subsequently applied to 

maintain the flow through the channel or stream in order to 

withstand floods, to protect stream banks from erosion by 

redirecting  the flow, to  enable sediment transport and 

deposition along the stream banks, to control flow direction 

in order to provide diversion of water for agricultural needs, 

and to maintain fish habitat and river stability[3,8]. 

The numerical models of the parabolic weir (or 

Cross-Vane structure) and trapezo idal weir (Cipolletti design) 

that are illustrated on Figure 3 and Figure 4 can be 

manipulated to satisfy the requirements of the project before 

the actual construction. The Cross -Vane and Cipolletti 

structures have very beneficial aspects. Both Cross -Vane and 

Cipolletti weir designs can be used to maintain base level in 

the channels or streams and to reduce bank erosion by 

guiding the direct ion of the water flow to an angle orthogonal 

to the downstream weir face [3,8]. Another important aspect 

of parabolic and trapezoidal structures is the irrigation 

diversions. The structure is designed to create head 

differences at every point of the curve that enables the 

delivery o f the water to the head gate at low flow rates. The 

construction of the sluice gate is considered as a part of the 

weir design in order to maintain the sediment delivery back 

to the channel which will reduce the relative erro r when 

deriving the expression for the flow rate from the notch shape 

function. Another application of the Cross -Vane with 

parabolic design is for the bridge and channel/stream 

stability. If there is a bridge constructed over the channel, 

then over time, high flow rates can cause bank erosion which 

can potentially occur at the support walls of the bridge. This 

problem can be reduced by construction a Cross -Vane in the 

upstream that will act as an offset[8]. 

Although, the weirs are fairly beneficial and have variety 

of applications, their structures arelimited. There are 

maximum and minimum head, flow rate, angle, dimension 

restrictions that are considered to be standards when 

constructing a weir. The physical parameters restrain the use 

of the weirs in the channels or streams with extremely high 

flow rates, high heads, and/or wide areas of discharge. 

5. Conclusions 

Several standard equations have been considered to 

describe the relations between the shape of the weir, rate of 

flow through a particular notch, head, and hydraulic 

conductivity. The use of Laplace transform, convolution 

theorem, and other computational tools allows the study of 

forward and inverse problems in irrigation theory. The flow 

rate r(h) can be determined from the notch shape f(y) through 

straightforward integration of equation (3), which is a very 

stable procedure and can withstand significant perturbation. 

On the other hand, the process of solving for the shape of the 

weir from known flow rate is unstable in a sense that even a 

small error in  the input data can result in  a substantial error in 

the computed solution. That is where the regularized 

numerical algorithm for getting a more stable product of the 

inverse problem comes into play. Thus, the method of 

computational analysis can predict the outcome of the 

constructed weir, in particu lar Cipolletti and parabolic weirs, 

given the amount of relative error that can potentially disrupt 

the measurements. 
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