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Abstract  This investigation provides a review of some methods for estimation of peak outflow from breached dams and 
presents an effective and efficient model for predicting  peak outflow based on artificial neural network (ANN). For this 
reason the case study data on peak outflow discharge were compiled from various sources and reanalyzed using the ANN 
technique to see if better predictions are possible. By employing two important effective parameters namely, height (Hw) and 
volume (Vw) of water behind the dam at failure, four scenarios were addressed. To train the models two different algorithms 
were examined namely, back propagation (BP) and imperialist competitive algorithm (ICA). Among the BP algorithms, 
Levenberg–Marquardt (LM), resilient back propagation (RP), fletcher–reeves update (CGF), and scaled conjugate gradient 
(SCG) were ut ilized. Therefore, 20 different ANN models were developed and compared to each other. Results showed that 
both Hw and Vw parameters are similarly dominant in estimating the peak outflow d ischarge. Among the different training 
functions, LM was the best, because of higher coefficient of determination  (R2=0.87) and lower error (RMSE=9616). 
Comparing the results of ANN and empirical formulas indicated higher ANN performance, so such formulas are better to be 
replaced with superior ANN model. 
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1. Introduction 
Dam failure is a catastrophic phenomenon that can lead to 

large damages to human life and property. Overviewing of 
historical dam failures shows that overtopping and piping 
were the major causes of dam failures. Overtopping is mostly 
dangerous for embankment dams because it washes away or 
erodes very quickly the dam’s materials. In Pip ing, water 
seeps under the dam and gradually erodes the dam materials. 
The extension of this phenomenon may lead to dam collapse. 
The various modes o f b reach  fo rmat ion in embankment 
dams, and the large number o f factors that influence the 
out flow characterist ics, are d ifficu lt  to  describe with 
rigorous ly p recis e mathemat ical fo rmulas. Because of 
complexity and uncertainty resulting from the wide range of 
values of the effective parameters, it is worthwhile to reduce 
the mathematical complexity of the problem and to present 
simple methods to predict the outflow characteristics from 
breached embankment. Pred iction of peak outflow is very 
important because of the emergency action plan  preparation  
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and risk assessment. In some fo rmer investigations, case 
study data were used to develop empirical formula by 
relating peak outflow to the height of water behind the dam 
and/or volume of water behind the dam. Some investigators 
developed single-variable equations[13],[21],[36-38],[42], 
and some others presented mult i-variable equations[10], 
[16],[30],[31],[44]. Hagen[17] introduced “dam factor” as 
the product of height of water and reservoir storage volume 
at the time of failure, and proposed a formula relat ing the 
peak-breach outflow to the dam factor. Some investigators 
applied the dam factor in their p roposed equations[11],[25].  

Although applying empirical equations based on statistical 
regression is simple in practice, they are unable to estimate 
the values of peak outflow accurately. It is felt that this is 
partly due to the complexity of the phenomenon involved 
and low accuracy of data driven from h istorical dam 
failures[14], and partly because of the limitation of the 
analytical tool commonly used by most of the earlier 
investigators namely, tradit ional statistical regression. 
Nowadays, traditional statistical analysis has been replaced 
by newly alternative approaches in many cases. Artificial 
neural networks (ANN) as an alternative approach have 
advantages over statistical models like their data-driven 
nature, model–free form of predict ions, and tolerance to data 
errors[4]. ANN beside its simplicity and generalizing ability 
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has been used widely in hydraulic[3],[5],[7],[24],[40],[41], 
[45]. Most of the studies have been done by feed forward 
back propagation (BP) neural network. The standard back 
propagation algorithm (SBPA) as the training algorithm in 
BP has some problems including the low training 
convergence speed and easy entrapment in a local minimum 
[19]. During last decades, researchers have tried to overcome 
these problems and improve the ANN performance. Ramirez 
et al.[32] proposed the resilient back propagation (RP) 
training function for network training to predict the rainfall 
in Sao Pau lo, Brazil. According to their findings, using RP 
could improve the results. Some other researchers proposed 
Levenberg–Marquardt algorithm (LMA). Noori et al.[28] 
evaluated different t rain ing functions on ANN operation for 
predicting the monthly stream flow and found that fletcher – 
reeves update (CGF) and scaled conjugate gradient (SCG) 
models had the best performance in wet and arid periods, 
respectively. Chau[9] used particle swarm optimization to 
optimize the network weights and biases for predicting water 
level in  Sh ing Mun River. He compared the results with the 
SBPA results and showed the superiority of h is model. 
Rogers et al.[33] p roposed genetic algorithm (GA) instead of 
SBPA.  

Accordingly, the objective of this study is to compile 
previously presented case study data on peak outflow 
discharge from breached embankments, and reanalyze the 
resulting database using the technique of neural networks 
with a v iew towards seeing if better predictions are possible. 
Hereby, d ifferent training functions consisted of RP, CGF, 
SCG, and LMA are examined. Besides, a new evolutionary 

algorithm, imperialist competit ive algorithm (ICA), 
proposed by Atashpaz-Gargari and Lucas[1] is used to 
optimize the network weights and biases. Finally, the results 
are compared to result of empirical formulas. 

2. Material and Methods 
2.1. Data Collection And Empirical Formulas  

Valuable documented information is available from 
historical embankment failu res. Babb and Mermel[6] 
summarized over 600 dam incidents throughout the world; 
however, high quality and detailed information was lacking 
in most cases. Here the data from 93 embankment dam 
failures (Table 1) are co llected from variety of sources[15], 
[16],[30],[35],[39],[43],[44]. During the decades, several 
researchers compiled some data of well-documented case 
studies in efforts to develop predictive relat ions for breach 
peak outflows. Among them, Kirkpatrick[21] proposed a 
formula based on analysis of data from 13 failed 
embankment dams and 6 hypothetical failures:  

( )2.51.268 0.3p wQ H= +            (1) 

where Qp= peak outflow (m3/s); and Hw = height of the water 
behind the dam at failure (m). USBR[42] developed an 
equation using case study data from 21 failed dams including 
several concrete arch and gravity dams: 

( )1.85
19.1p wQ H=               (2) 

Table 1.  Data collected from historical dam failures 

No. Dam name Location Vw Hw Qp Reference 
1 Apishapa United States 22.2 28 6850 [44] 
2 Armando de Salles Oliveira Brazil 25.9 35 7195 [39] 
3 Baldwin Hills, Calif. United States 0.91 12.2 1130 [16] 
4 Banqiao China 607.5 31 78100 [44] 
5 Bayi China 23 28 5000 [44] 
6 Big Bay United States 17.5 13.59 4160 [30] 
7 Boystown United states 0.358 8.96 65.13 [30] 
8 Bradfield England 3.2 28.96 1150 [35] 
9 Break Neck Run United States 0.049 7 9.2 [39] 

10 Buffalo Creek United States 0.48 14.02 1420 [35] 
11 Butler United States 2.38 7.16 810 [43] 
12 Caney Coon Creek United States 1.32 4.57 16.99 [30] 
13 Castlewood United States 6.17 21.6 3570 [44] 
14 Chenying China 5 12 1200 [44] 
15 Cherokee Sandy United States 0.444 5.18 8.5 [30] 
16 Colonial #4 United States 0.0382 9.91 14.16 [30] 
17 Dam Site #8 United States 0.87 4.57 48.99 [30] 
18 Danghe China 10.7 24.5 2500 [44] 
19 Davis Reservior United States 58 11.58 510 [44] 
20 Dells United States 13 18.3 5440 [44] 
21 DMAD United States 19.7 8.8 793 [30] 
22 Dongchuankou China 27 31 21000 [44] 
23 Eigiau England 4.52 10.5 400 [35] 
24 Elk City United States 1.18 9.44 608.79 [39] 
25 Frankfurt Germany 0.352 8.23 79 [44] 
26 Fred Burr United States 0.75 10.2 654 [43] 
27 French Landing United States 3.87 8.53 929 [44] 
28 Frenchman Dam United States 16 10.8 1420 [44] 
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29 Frias Argentina 0.25 15 400 [44] 
30 Goose Creek United States 10.6 1.37 492.7 [39] 
31 Gouhou China 3.18 44 2050 [44] 
32 Grand Rapids United States 0.255 7.5 7.5 [35] 
33 Hatchtown United States 14.8 16.8 3080 [16] 
34 Hatfield United States 12.3 6.8 3400 [44] 
35 Haymaker United States 0.37 4.88 26.9 [30] 
36 Hell Hole United States 30.6 35.1 7360 [44] 
37 Hemet United States 8.63 6.09 1600 [39] 
38 Horse Creek United States 12.8 7.01 3890 [44] 
39 Horse Creek #2 United States 4.8 12.5 311.49 [30] 
40 Huqitang China 0.424 5.1 50 [44] 
41 Ireland No. 5 United States 0.16 3.81 110 [16] 
42 Johnstown United States 18.9 22.25 7079.2 [43] 
43 Kelly Barnes United States 0.777 11.3 680 [44] 
44 Knife Lake United States 9.86 6.096 1098.66 [39] 
45 Kodaganar India 12.3 11.5 1280 [44] 
46 lake Avalon United States 31.5 13.7 2321.9 [39] 
47 Lake Latonka United States 4.09 6.25 290 [44] 
48 Lake Tanglewood United States 4.85 16.76 1351 [30] 
49 Laurel Run United States 0.555 14.1 1050 [16] 
50 Lawn Lake United States 0.798 6.71 510 [43] 
51 Lijiaju China 1.14 25 2950 [44] 
52 Lily Lake United States 0.0925 3.35 71 [16] 
53 Little Deer Creek United States 1.36 22.9 1330 [44] 
54 Little Wewoka United States 0.987 9.45 42.48 [30] 
55 Liujiatai China 40.54 35.9 28000 [44] 
56 Lower Latham United States 7.08 5.79 340 [16] 
57 Lower Reservoir United States 0.604 9.6 157.44 [30] 
58 Lower Two Medicine United States 19.6 11.3 1800 [44] 
59 Mahe China 23.4 19.5 4950 [44] 
60 Mammoth United States 13.6 21.3 2520 [44] 
61 Martin Cooling Pond Dike United States 136 8.53 3115 [44] 
62 Middle Clear Boggy United States 0.444 4.57 36.81 [30] 
63 Mill River United States 2.5 13.1 1645 [43] 
64 Murnion United States 0.321 4.27 17.5 [30] 
65 Nanaksagar Dam India 210 15.85 9709.5 [39] 
66 North Branch United States 0.022 5.49 29.5 [43] 
67 Oros Brazil 660 35.8 9630 [44] 
68 Otto Run United States 0.0074 5.79 60 [35] 
69 Owl Creek United States 0.12 4.88 31.15 [30] 
70 Peter Green United States 0.0197 3.96 4.42 [30] 
71 Prospect United States 3.54 1.68 116 [44] 
72 Puddingstone Dam United States 0.617 15.2 480 [16] 
73 Qielinggou China 0.7 18 2000 [44] 
74 Quail Creek United States 30.8 16.7 3110 [44] 
75 Salles Oliveira Brazil 71.5 38.4 7200 [35] 
76 Sandy Run United States 0.0568 8.53 435 [35] 
77 Schaeffer Reservoir United States 4.44 30.5 4500 [44] 
78 Shimantan China 117 27.4 30000 [44] 
79 Site Y-30–95 United States 0.142 7.47 144.42 [30] 
80 Site Y-36–25 United States 0.0357 9.75 2.12 [30] 
81 Site Y-31 A–5 United States 0.386 9.45 36.98 [30] 
82 Sinker Creek United States 3.33 21.34 926 [39] 
83 South Fork United States 18.9 24.6 8500 [16] 
84 South Fork Tributary United States 0.0037 1.83 122 [30] 
85 Stevens Dam United States 0.0789 4.27 5.92 [30] 
86 Swift United States 37 47.85 24947 [44] 
87 Taum Sauk Reservoir United States 5.39 31.46 7743 [30] 
88 Teton United States 310 77.4 65120 [44] 
89 Upper Clear Boggy United States 0.863 6.1 70.79 [30] 
90 Upper Red Rock United States 0.247 4.57 8.5 [30] 
91 Weatland Number United States 11.6 12.2 566.34 [30] 
92 Zhugou China 18.43 23.5 11200 [44] 
93 Zuocun China 40 35 23600 [44] 
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Singh and Snorrason[37] used some simulated dam 
failures and presented Eq. (3): 

              (3) 

where S= reservoir storage at normal pool (m3). To evaluate 
the applicability of peak outflow relationships as a function 
of reservoir volume, Evans[13] examined several man-made 
and natural dam failu res and proposed a relationship 
described as below equation:  

              (4) 

in which Vw= volume of the water behind the dam at  failu re 
(m3). MacDonald and Langridge-Monopolis[25] co llected 
and analyzed data on a number of historical dam failures and 
developed graphical relat ionships for predicting breach 
characteristics for erosion type breaches. They also 
developed a relationship based on dam factor to estimate the 
peak outflows from dam failures: 

            (5) 

where HwVw= dam factor (m4). Using dam factor, Costa[11] 
analyzed 31 dam failu res and presented a relationship based 
on regression analysis of the case studies: 

           (6) 

Froehlich[16] assembled data from 22 embankment dam 
failures from various sources. The data were used to evaluate 
and compare several empirical equations as well as to obtain 
a new empirical expression for rapidly estimation of peak 
outflow from a breached embankment. The formula was 
derived based on mult iple regression analysis: 

            (7) 

Pierce et al.[30] compiled a database of 87 embankment 
failures including experimental data and performed a 
statistical analysis using mult iple regression technique to 
predict peak outflow discharge as a function of the height 
and volume of water behind the dam:  

           (8) 

2.2. Neural Network Models 

An ANN is a ‘black box’ approach which has great 
capacity in predict ive modeling[22]. It is a proper 
mathematical structure having an inter-connected assembly 
of simple processing elements or nodes. A typical network 
would consist of three layers of neurons namely, input, 
hidden, and output; in which each neuron acting as an 
independent computational element. Neural networks are 
universal approximators[20], and many theoretical and 
experimental works have shown that a single hidden layer is 
sufficient for ANNs to approximate any complex nonlinear 
function[12],[27],[29]. Accordingly, in this study single 
hidden layer ANNs were used. The tangent-sigmoid and 
linear functions were chosen as the activation function 
respectively in the hidden and output layers, and mean 
square error (MSE) was utilized as performance function. To 
check the over-fitting problem in the calibration and testing 
steps, stop training algorithm method was used.  

There are different training functions to optimize the 
network weights and biases in the case of BP algorithm. 
They can be divided into two different categories; the first 
one uses heuristic techniques, while the second one uses 
standard numerical optimizat ion techniques. On the other 
hand, some other algorithms are available which use 
evolutionary optimization techniques (e.g. ICA) for training 
the network. Some details of ICA are availab le in the 
literatures[1,2]. The quick review of the above algorithms is 
as follow: 

Heuristic techniques 
Heuristic techniques were developed from an analysis of 

the performance of the standard steepest descent algorithm. 
Gradient descent, gradient descent with momentum, gradient 
descent which has variable learn ing rate, grad ient descent 
with momentum which has variable learning rate and RP are 
the most famous train ing functions which use heuristic 
techniques to update the network parameters. Because of 
using sigmoid transfer function in the hidden layer of 
multi-layer ANN with BP algorithm, the performance of the 
above training functions except RP can be affected[28]. So, 
in this research just RP is evaluated among the heuristic 
techniques. 

Standard numerical optimization techniques 
The SBPA adjusts the weights in the steepest descent 

direction (negative of the gradient) which the performance 
function is decreasing most rapidly. Although it decreases 
most rapidly along the negative of the gradient, this does not 
necessarily produce the fastest convergence. Conjugate 
gradient algorithms (CGA) are one of the fastest 
optimization techniques. In the CGAs for faster convergence 
than steepest descent directions a search is performed  along 
conjugate directions. All the CGAs start out by searching in 
the steepest descent direction on the first iteration[28]. 
Discussion of CGAs and their application in neural networks 
are availab le in Hagan and Demuth[18]. The CGAs require 
that a line search be performed. Charalambous method, 
which was worked out in the present research, is a hybrid 
search which was designed to be used in combination with a 
CGA for neural network training. It uses a cubic 
interpolation together with a type of sectioning[8]. Various 
algorithms for CGA are available, e.g. CGF, SCG, Po lak – 
Ribiere updates (CGP), and Powell–Beale restarts (CGB). 
Comparison of these algorithms on ANN operation for 
predicting the monthly stream flow has been done by Noori 
et al.[28]. Results indicated that the CGF and SCG were the 
best algorithms with superior performance, so they are 
employed in the present study. 

LMA developed by Levenberg[23] and Marquardt[26] is 
another type of standard numerical optimization techniques. 
LMA provides a numerical solution to the problem of 
minimizing a nonlinear function over a space of parameters 
of the function. These min imization problems arise 
especially in least squares curve fitting and nonlinear 
programming. LMA interpolates between the Gauss – 
Newton algorithm (GNA) and the method of gradient 
descent. LMA is more robust than GNA, which  means that in 

( )0.471.776pQ S=

( )0.530.72p wQ V=

( )0.4121.154p w wQ H V=

( )0.420.763p w wQ H V=

( )1.24 0.2950.607p w wQ H V=

( )1.09 0.4750.038p w wQ H V=
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many cases it finds a solution even if it starts very far off the 
final min imum. LMA is a very popular curve-fitting 
algorithm used in many software applications for solving 
generic curve-fitting problems; however, it finds only a local 
minimum, not a global minimum. 

Imperialist competitive algorithm  
ICA is a new evolutionary algorithm in the evolutionary 

computation field based on the human's socio-political 
evolution. The algorithm starts with an init ial random 
population called countries. Some of the best countries in the 
population be selected as the imperialists and the rest form 
the colonies of these imperialists. In an N d imensional 
optimization problem, a country is a 1 × N array. This array 
is defined as below: 

              (9) 

The cost of each country is found by evaluating the cost 
function f at the variables (p1,p2, . . . ,pn). Then  

     (10) 

The algorithm starts with N in itial countries and the Nimp 
best of them (countries with minimum cost) chosen as the 
imperialists. The remained countries are colonies that   
each of them belongs to an empire. The init ial colonies 
belong to imperialists in convenience with their powers. To  
distribute the colonies among imperialists proportionally,  
the normalized cost of an imperialist is defined as    
follow: 

             (11) 
where, cn is the cost of nth imperialist and Cn is its 
normalized cost. Each imperialist that has more cost value, 
will have less normalized cost value. The power of each 
imperialist is calculated as below and based on that the 
colonies distributed among the imperialist countries: 

             (12) 

On the other hand, the normalized power of an imperialist 
is assessed by its colonies. Then, the initial number of 
colonies of an empire will be: 

            (13) 

where, NCn is init ial number of colonies of nth empire and 
Ncol is the number of all colon ies. To distribute the colonies 
among imperialist, NCn of the colonies are selected randomly 
and assigned to their imperialist. The imperialist countries 
absorb the colonies towards themselves using the absorption 
policy. The absorption policy shown in Fig. 1, makes the 
main core of this algorithm and causes the countries move 
towards to their min imum optima. 

The imperialists absorb these colonies towards themselves 
with respect to their power that described in  Eq. (14). The 
total power of each imperialist is determined by the power of 
its both parts, the empire power p lus percents of its average 
colonies power. 

 
Figure 1.  Moving colonies toward their imperialist 

    (14) 

where TCn is the total cost of the nth empire and ξ is a 
positive number which is considered to be less than one. In 
the absorption policy, the colony moves towards the 
imperialist by x  unit. The d irection of movement is the vector 
from co lony to imperialist, as shown in Fig. 1. In this figure, 
the distance between the imperialist and colony shown by d 
and x is a random variable with uniform distribution.  

              (15) 
where β is greater than 1 and is near to 2. So, in this 
investigation the proper choice is β=2.  

In ICA, to search different points around the imperialist, a 
random amount of deviation is added to the direction of 
colony movement towards the imperialist. In Fig. 1, this 
deflection angle is shown as θ, which is chosen randomly and 
with a uniform distribution. While moving toward the 
imperialist countries, a colony may reach to a better position, 
so the colony position changes according to position of the 
imperialist. 

               (16) 
In our implementation γ is π/4 (Rad). 
In this algorithm, the imperialistic competition has an 

important role. During the imperialistic competition, the 
weak empires will lose their power and their colonies. To 
model this competit ion, firstly we calcu late the probability of 
possessing all the colonies by each empire considering the 
total cost of empire. 

    (17) 

where NTCn is the normalized total cost of nth empire. The 
possession probability of each empire is calculated as below: 

           (18) 

After a while, all the empires except the most powerful 
one will collapse and all the colonies will be under the 
control of this unique empire. ICA had a great performance 
in both convergence rate and better global optima 
achievement[2,34]. In the p resent research, this algorithm is 
also employed in ANN modeling as a training algorithm to 
determine the network’s parameters. 
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3. Results and Discussion 
To evaluate different models, a database containing of 93 

field and experimental dataset was used (Table 1). Out of the 
total input–output pairs, 85% were used for calibration 
(train ing and validation) and the remaining 15% were saved 
for testing. Since it  was needed that the testing data be used 
for evaluating the empirical formulas, these data were 
chosen randomly from the category which had not been used 
in derivation of those formulas. Among the Eqs. 1 to 8, some 
take Hw as the independent variable (Eqs. 1 and 2), some take 
Vw as the independent variable (Eqs. 3 and 4), some take the 
dam factor as the independent variable (Eqs. 5 and 6), and 
the others take both of Hw  and Vw as the independent 
variables (Eqs. 7 and 8). Accordingly, four scenarios were 
defined here and four sets of ANNs were developed in which 
the input variables were different. Furthermore, in o rder to 
evaluate the various training algorithms in each scenario, RP, 
CGF, SCG, LMA, and ICA were examined. So, totally 20 
models were developed and compared to each other. To 
evaluate and compare the results, three statistical measures 
were utilized namely, coefficient of determination (R2); 
mean absolute error (MAE); and root mean square error 
(RMSE). For confidently evaluating the results, each 
modeling procedure, including calibrat ion and testing steps, 
was iterated 50 t imes and the average values of the statistical 
measures were calculated. Therefore the expected values of 
the statistical measures were presented in this research. 

3.1. First scenario’s Results (Considering Hw as the Input 
Variable) 

In the first scenario it was assumed that peak outflow 
discharge (Qp) just relates to Hw. Table 2 shows the 
quantitative results of the ANN models as well as the 
empirical formulas. According to the results, all ANN 
models have moderate R2 value and high error. The RMSE 
for LMA is 14405 in  testing step, which shows a high error. 
The error measures values in Table 2 show a different 
performance in training and testing steps e.g. the MAE 
values in testing steps are almost 3 times more than training 
step’s values. This ratio for RMSE values is almost equal to 2. 
Such results may be due to the below reasons: 

1. The Hw  parameter can’t  be sufficient for a model to 
predict the peak outflow d ischarge, lonely. In  other words, 
some other parameters are important in  peak d ischarge 
prediction and consequently the models developed based on 
just Hw has low efficiency.  

2. The datasets are insufficient, so lower training may be 
happened; however, lack of datasets is a general problem in 
ANN application. It is clear that the more data availab le, the 
more accuracy in ANN modeling.  

3. The method of data derivation in the field or laboratory 
has been inaccurate, and consequently some inaccurate data 
in the database may have been led to such error. Scale effects 
in experimental researches as well as estimation of peak 
outflow discharge from water-mark and stage-discharge 

curves in the field may be the main sources of error in 
recording the data.  

Fig. 2 presents the schematic performance of ANN model 
with ICA train ing function as the best model compared with 
observed values for both calibration and testing steps. As 
most of the values of peak outflow in training and testing 
step aren’t estimated correctly, the model performance isn’t 
satisfactory. Besides, as can be seen in Table 2, the 
Kirkpatrick and USBR formulas have a weak performance. 
The coefficient of determination for Kirkpatrick formula is 
very low (near 0.76) and its RMSE is 11732 which shows 
very high error. The situation is a little better for USBR 
formula but it  is not satisfactory too because of low R2 (=0.74) 
and high error (RMSE =10656). 

Table 2.  Results of ANN model for the first scenario 

Training function 
/Formula  

Statistical indices 

R2 MAE RMSE 

FFBP 

RP 
train 0.84 2973 8839 
test 0.74 7211 15942 

CGF 
train 0.68 3849 8387 
test 0.63 8243 15026 

SCG train 0.69 3351 8141 
test 0.66 8134 14099 

LMA 
train 0.60 2991 8175 

test 0.65 7803 14405 

ICA 
train 0.72 3618 8388 

test 0.80 5704 9346 

Kirkpatrick test 0.76 6590 11732 

USBR test 0.74 6547 10656 

Table 3.  Results of ANN model for the second scenario 

Training function/ 
Formula  

Statistical indices 
R2 MAE RMSE 

FFBP 

RP 
train 0.76 2729 5004 
test 0.84 6236 14740 

CGF 
train 0.91 2189 4284 
test 0.82 5420 11251 

SCG train 0.92 2224 4456 
test 0.80 3718 6737 

LMA 
train 0.89 2181 4273 
test 0.82 5737 12313 

ICA 
train 0.75 3857 7290 

test 0.90 5001 10676 
Singh and 
Snorrason test 0.78 6705 13595 

Evans test 0.79 6381 11977 

Schemat ic comparison between ANN model and 
empirical formulas is available in Fig. 3. Th is figure 
indicates that most of the points are scattered and the 
predicted values are underestimated or overestimated. This 
figure confirmed that Hw can’t be sufficient for effective 
prediction of Qp from breached embankments. 
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3.2. Second Scenario’s Results (Considering Vw as the 
Input Variable) 

In the second scenario the same database was used for 
training and testing steps, but the simulat ion was done with 
Vw instead of Hw  as the input variable. The quantitative 
results are presented in Table 3. The coefficient of 
determination of each ANN model is good in  both steps but 
the error measures are relatively high. Among the models RP 
has the highest RMSE value in the testing step and SCG has 
the lowest one. In  this scenario although ICA has a good R2 
value in testing step, it can’t be effective because of different 
R2 values in train ing and testing steps as well as high RMSE 
value.  

According to Table 3, it can  be inferred  that SCG has the 
best performance. The R2 values of Singh and Snorrason and 
Evans formulas respectively are 0.78 and 0.79, which means 
moderate performance compared to SCG. Fig. 4 shows the 
performance of ANN model compared to observed values. 
Although the results are some better than the first scenario, 
there are some points that aren’t predicted satisfactorily. Fig. 
5 shows the ANN performance compared to empirical 
formulas. It is obvious that all the models underestimate the 
observed values especially extreme values. However the 
situation for SCG is much better, but not satisfactory. 

 
Figure 2.  Results of the best ANN model (ICA) in the first  scenario 

 

Figure 3.  Comparing the ANN results (ICA model) with empirical formulas results in the first scenario 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20 40 60 80 100

Q
 (

m
3/

s)

Sample

Observed

Calibration Testing

R² = 0.766

R² = 0.748

R² = 0.805

0

10000

20000

30000

40000

50000

60000

70000

0 10000

20000

30000

40000

50000

60000

70000
Pr

ed
ic

te
d 

(m
3/

s)

O bserved (m3/s)

Kirkpatrick

USBR

ANN (ICA)



62 Farhad Hooshyaripor et al.:  Comparing the Performance of Neural Networks for Predicting Peak Outflow from Breached  
Embankments when Back Propagation Algorithms meet Evolutionary Algorithms 

 

 
Figure 4.  Results of the best ANN model (SCG) in the second scenario 

  
Figure 5.  Comparing the ANN results (SCG model) with empirical formulas results in the second scenario 

By comparing Tables 2 and 3, it is found that R2 and error 
values for different models in the second scenario are more 
satisfactory. Therefore the models based on Vw parameter 
may  lead  to more reliable results due to extensive range of Vw 
parameter in dam breach database (3700 - 600  m3).  

3.3. Third Scenario’S Results (Considering Dam Factor 
as the Input Variable) 

In the third  scenario, dam factor was employed in ANN 
modeling. Results of the best ANN model is presented in Fig. 
6. It is observed that the predicted values are not so good. In 
some points the prediction values are about two times over 
than the observed values. The quantitive results are prepared 
in Table 4. In this scenario ICA has high R2 value and low 
RMSE in testing, so the ICA can be a good model but not 
exactly an effective model due to difference between the 
model performance in train ing and testing steps. Fig. 6 
shows the results of ICA in calibrat ion and testing steps. 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20 40 60 80 100

Q
 (

m
3/

s)

Sample

Observed

Calibration Testing

R² = 0.778

R² = 0.796

R² = 0.921

0

10000

20000

30000

40000

50000

60000

70000

0 10000

20000

30000

40000

50000

60000

70000
Pr

ed
ic

te
d 

(m
3/

s)

O bserved (m3/s)

Singh and Snorrason 

Evans

610×



 International Journal of Hydraulic Engineering 2012, 1(6): 55-67  63 
 

 

 
Figure 6.  Results of ANN model (ICA) in the third scenario 

 
Figure 7.  Comparing the ANN results (ICA model) with empirical formulas results in the third scenario 

Table 4 is also consisted of quantitative results of two  
empirical formulas which  use dam factor for peak outflow 
estimation. The coefficient of determination for these 
formulas is almost good, but their prediction erro r is very 
high (RMSE ≈ 14000). Therefore, practical using of such 
empirical formulas may lead to high error and undesirable 
effects. The effects may be irrecoverable because of their 
underestimat ion especially for large dams (Fig. 7). 
Comparing Table 2, 3, and 4 indicates that the models in the 
third scenario have better performance than the models in the 
first and second scenario. 

3.4. Fourth Scenario’s Results (Considering Hw and Vw as 
the Input Variables) 

In the last scenario both variables (Hw and Vw) are 
independently used in the ANN modelling. The quantitive 
results are presented in Table 5. As the results show, all the 
ANN models could predict peak outflow values very well 
because of high coefficient of determinations (R2> 0.80). 
Comparing the results indicates that MAE and RMSE values 
of ICA model are lower and its R2 value is higher than the 
other models’ in both training and testing steps.  
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Fig. 8 shows ANN model performance in calibrat ion and 
testing steps separately. It is clear that the model have a good 
so that most of the predictions are approximately coincided 
with their corresponding observed values. As it is illustrated 
in Fig. 8, there are approximately 5 points in the testing step 
and one point in the testing step which aren’t predicted 
satisfactorily. Like to the previous scenarios, most of the 
badly predicted points are corresponding to extreme values 
(large dams). Accordingly, one can strongly conclude that 
insufficient data or lack of h istorical data of large breached 
embankments is the main  reason of lower training of the 
network. 

Table 4.  Results of ANN model for the third scenario 

Training function/ 
Formula  

Statistical indices 

R2 MAE RMSE 

FFBP 

RP 
train 0.84 2135 4086 

test 0.95 5214 12670 

CGF 
train 0.88 1946 3826 

test 0.92 5348 12931 

SCG 
train 0.87 1964 3707 

test 0.81 5896 14906 

LMA 
train 0.86 2563 5422 

test 0.90 5287 11880 

ICA 
train 0.85 3538 6797 

test 0.91 3581 7122 
MacDonald and 

Langridge-Monopolis test 0.78 6484 14245 

Costa test 0.75 6781 15271 

The information on number of nodes, number of epochs 
required to achieve the error goal, and the CPU t ime taken in 
the case of each training scheme has been presented in Table 
6. It is remarkable that the information is the average result 
of 50 iterat ions for each model. A PC having a Pentium IV 
processor (CPU: Core i5, 2.53 GHz), was utilized in this 
study. As a matter of general information, it can be seen that 
ICA t rains the network with fewer epochs compared to the 
other BP algorithms, but in a h igher amount of time. LMA 
trains the network in a more number of epochs but in a 
fraction of the time compared with ICA. The other BP 
algorithms also had similar performance as LMA, which 
indicates their acceptable training efficiency. the results of 
Froehlich and Pierce formulas are presented in Table 5. 

These formulas have relatively weak perfo rmance due to low 
R2 value and high errors.  

Table 5.  Results of ANN model for the fourth scenario 

 Training 
function  

Statistical indices 

R2 MAE RMSE 

FFBP 

RP 
train 0.89 2248 4861 

test 0.80 3650 6900 

CGF 
train 0.89 2212 4979 

test 0.81 3632 6568 

SCG 
train 0.88 1733 3456 

test 0.88 6352 1320 

LMA 
train 0.89 1756 3276 

test 0.89 4449 7331 

ICA 
train 0.88 1838 3497 

test 0.96 2032 3839 

Froehlich test 0.63 4473 9974 

Pierce et al. test 0.72 3938 8236 

Table 6.  Network architecture in the fourth scenario 

 
Algorithms 

RP CGF SCG LM
A ICA 

node 

Input 2 2 2 2 2 

Hidden layer 4 3 3 4 3 

output 1 1 1 1 1 

Epoch No. 254 175 209 215 70 

CPU time (sec) 3 1 1 2 53 

Schemat ic comparison of ANN model with empirical 
formulas is availab le in Fig. 9. It is seen that empirical 
formulas underestimate the observed values, but ANN model 
doesn’t have such problem. Comparing Tab le 5 with Tables 
2-4 shows that fourth scenario is more realistic and reliab le 
than other scenarios due to its better results. Thus, it can be 
concluded that ANN with ICA as the train ing function and 
both Hw and Vw as the inputs is the most effective and 
efficient model. Furthermore, according to  the obtained 
results from all scenarios, it may be concluded that the effect 
of various parameters (i.e. height and volume of water 
behind the dam) on the amount of peak outflow discharge is 
approximately the same.  
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Figure 8.  Results of the best ANN model (ICA) in the fourth scenario 

  
Figure 9.  Comparing the ANN results (ICA model) with empirical formulas results in the fourth scenario 

4. Conclusions 
This investigation focused on evaluating the ANN 

performance for predict ing peak outflow from breached 
embankment dams. In o rder to find an  effect ive model, four 
scenarios were defined. In scenarios I and II, it was assumed 
that Qp related respectively to Hw and Vw. In scenario III it 
was assumed that Qp related to the dam factor, and in 
scenario IV it was assumed that Qp related to the both Hw and 
Vw. Also to train the network, two train ing algorithms were 
employed: ICA and BP. ICA is a new evolutionary  algorithm, 
in the evolutionary computation field, and BP algorithm is a 
common method of teaching ANNs called mult i-stage 
dynamic system optimizat ion method. By considering the 
statistic indices as well as CPU t ime taken, ICA was 

recognized as the best training algorithm in most of the 
scenarios. However, ICA takes a little more CPU t ime taken 
in comparison with the other algorithms. Also among the 
different scenarios, scenario IV was the best. In the scenarios 
I to III all ANN models underestimate the real extreme 
values, because the values related to large dam cases (i.e. 
Hw>15 m and/or Vw>50 mcm) are limited, so ANNs have not 
effectively been calib rated around the extreme values. 
Accordingly, enlarg ing the database by adding the values of 
new breached large dam cases or generating the synthetic 
extreme data may be effective. Moreover, results showed 
that the effect of Hw and Vw on the amount of peak outflow 
discharge was the same. This investigation indicated that 
although empirical formulas were simply applicable in 
practice, they lead to unsatisfactory results due to low R2 
value and high error in their estimat ion especially fo r large 
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breached dams. This is because of limited databases which 
were used in the formulas derivation as well as the low 
flexib ility of the tradit ional method of regression analysis to 
data variation.  
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