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Abstract  Many studies discussed different numerical representations of DNA sequences. In this paper, we discussed the 

cluster analysis of the first, second, third and fourth eigenvalues of variance covariance matrix of Fast Fourier Transform 

(FFT) for numerical values representation of DNA sequences of five organisms, Human, E. coli, Rat, Wheat and Grasshopper. 

The analysis is based on the Ward’s method of clustering. It should be noted that it is the first time that the variance 

covariance matrix eigenvalues of Fast Fourier Transform (FFT) for numerical values representation of DNA sequences, is 

used in an analysis like this and related analyzes. 
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1. Introduction  

In the process of developing the technology, many 

possible interesting adaptations became apparent: One of the 

most interesting directions was the use of the technology in 

the analysis of long DNA sequences. A benefit of the 

techniques was that it combined rigorous statistical analysis 

with modern computer power to quickly search for 

diagnostic patterns within long DNA sequences. Briefly, a 

DNA strand can be viewed as a long string of linked 

nucleotides. Each nucleotide is composed of a nitrogenous 

base, a five carbon sugar, and a phosphate group. There are 

four different bases that can be grouped by size, the 

pyrimidines, thymine (T) and cytosine (C), and the purines, 

adenine (A) and guanine (G). The nucleotides are linked 

together by a backbone of alternating sugar and phosphate 

groups with the 5/  carbon of one sugar linked to the 3/ 

carbon of the next, giving the string direction. DNA 

molecules occur naturally as a double helix composed of 

polynucleotide strands with the bases facing inward. The two 

strands are complementary, so it is sufficient to represent a 

DNA molecule by a sequence of bases on a single strand; 

refer to Fig. 1. Thus, a strand of DNA can be represented as  

a sequence  𝑋𝑡 ;  𝑡 = 1,2, … , 𝑛  of letters, termed base pairs 

(bp), from the finite alphabet  𝐴, 𝐶, 𝐺, 𝑇 .1 The order of the  
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nucleotides contains the genetic information specific to the 

organism. Expression of information stored in these 

molecules is a complex multistage process. One important 

task is to translate the information stored in the 

protein-coding sequences (CDS) of the DNA[Stoffer (2012]. 

 

Figure 1.  The general structure of DNA and its bases 

A common problem in analyzing long DNA sequence data 

is in identifying CDS that are dispersed throughout the 

sequence and separated by regions of noncoding (which 

makes up most of the DNA). Another problem of interest 

that we will address here is that of matching two DNA 

sequences, say 𝑋1𝑡   and 𝑋2𝑡  . The background behind the 

problem is discussed in detail in the study by Waterman and 

Vingron (1994). For example, every new DNA or protein 

sequence is compared with one or more sequence databases 

to find similar or homologous sequences that have already 
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been studied, and there are numerous examples of important 

discoveries resulting from these database searches. 

One naive approach for exploring the nature of a DNA 

sequence is to assign numerical values (or scales) to the 

nucleotides and then proceed with standard time series 

methods. It is clear, however, that the analysis will depend 

on the particular assignment of numerical values. Consider 

the artificial sequence ACGTACGTACGT. . . Then, setting 

A = G = 0 and C = T = 1, yields the numerical sequence 

010101010101. . . , or one cycle every two base pairs (i.e., a 

frequency of oscillation of 𝜔 = 1/2 Cycle/bp, or a period 

of oscillation of length 1/𝜔 = 2 bp=cycle). Another 

interesting scaling is A = 1, C = 2, G = 3, and T = 4, which 

results in the sequence 123412341234. . . , or one cycle every 

four bp (𝜔 = 1/4). In this example, both scalings of the 

nucleotides are interesting and bring out different properties 

of the sequence. It is clear, then, that one does not want to 

focus on only one scaling. Instead, the focus should be on 

finding all possible scalings that bring our interesting 

features of the data. Rather than choose values arbitrarily,  

the spectral envelope approach selects scales that help 

emphasize any periodic feature that exists in a DNA 

sequence of virtually any length in a quick and automated 

fashion. In addition, the technique can determine whether a 

sequence is merely a random assignment of letters [Stoffer 

(2012)]. 

Fourier analysis has been applied successfully in DNA 

analysis; McLachlan and Stewart (1976) and Eisenberg et al. 

(1994) studied the periodicity in proteins using Fourier 

analysis.  

Stoffer et al. (1993) proposed the spectral envelope as a 

general technique for analyzing categorical-valued time 

series in the frequency domain. The basic technique is 

similar to the methods established by Tavar é and Giddings 

(1989) and Viari et al. (1990), however, there are some 

differences. The main difference is that the spectral envelope 

methodology is developed in a statistical setting to allow the 

investigator to distinguish between significant results and 

those results that can be attributed to chance. 

The article authored by Marhon and Kremer 2011, 

partitions the identification of protein-coding regions into 

four discrete steps. Based on this partitioning, digital signal 

processing DSP techniques can be easily described and 

compared based on their unique implementations of the 

processing steps. They compared the approaches, and 

discussed strengths and weaknesses of each in the context of 

different applications. Their work provides an accessible 

introduction and comparative review of DSP methods for the 

identification of protein-coding regions. Additionally, by 

breaking down the approaches into four steps, they 

suggested new combinations that may be worthy of future 

studies. A new methodology for the analysis of DNA/RNA 

and protein sequences is presented by Bajic in 2000. It is 

based on a combined application of spectral analysis and 

artificial neural networks for extraction of common spectral 

characterization of a group of sequences that have the same 

or similar biological functions. The method does not rely on 

homology comparison and provides a novel insight into the 

inherent structural features of a functional group of 

biological sequences. The nature of the method allows 

possible applications to a number of relevant problems such 

as recognition of membership of a particular sequence to a 

specific functional group or localization of an unknown 

sequence of a specific functional group within a longer 

sequence. The results are of general nature and represent   

an attempt to introduce a new methodology to the field of 

biocomputing. Fourier transform infrared (FTIR) 

spectroscopy has been considered by Han et al. in 2018 as a 

powerful tool for analysing the characteristics of DNA 

sequence. This work investigated the key factors in FTIR 

spectroscopic analysis of DNA and explored the influence  

of FTIR acquisition parameters, including FTIR sampling 

techniques, pretreatment temperature, and sample 

concentration, on calf thymus DNA. The results showed that 

the FTIR sampling techniques had a significant influence on 

the spectral characteristics, spectral quality, and sampling 

efficiency. A novel clustering method is proposed by Hoang 

et al. in 2015 to classify genes and genomes. For a given 

DNA sequence, a binary indicator sequence of each 

nucleotide is constructed, and Discrete Fourier Transform is 

applied on these four sequences to attain respective power 

spectra. Mathematical moments are built from these  

spectra, and multidimensional vectors of real numbers    

are constructed from these moments. Cluster analysis is   

then performed in order to determine the evolutionary 

relationship between DNA sequences. The novelty of this 

method is that sequences with different lengths can be 

compared easily via the use of power spectra and moments. 

Experimental results on various datasets show that the 

proposed method provides an efficient tool to classify genes 

and genomes. It not only gives comparable results but also is 

remarkably faster than other multiple sequence alignment 

and alignment-free methods. One challenge of GSP is how to 

minimize the error of detection of the protein coding region 

in a specified DNA sequence with a minimum processing 

time. Since the type of numerical representation of a DNA 

sequence extremely affects the prediction accuracy and 

precision, by this study Mabrouk in 2017 aimed to compare 

different DNA numerical representations by measuring the 

sensitivity, specificity, correlation coefficient (CC) and the 

processing time for the protein coding region detection. The 

proposed technique based on digital filters was used to 

read-out the period 3 components and to eliminate the 

unwanted noise from DNA sequence. This method applied to 

20 human genes demonstrated that the maximum accuracy 

and minimum processing time are for the 2-bit binary 

representation method comparing to the other used 

representation methods. Results suggest that using 2-bit 

binary representation method significantly enhanced the 

accuracy of detection and efficiency of the prediction of 

coding regions using digital filters. Identification and 

analysis of hidden features of coding and non-coding regions 

of DNA sequence is a challenging problem in the area of 

genomics. The objective of the paper authored by Roy and 

Barman in 2011 is to estimate and compare spectral content 
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of coding and non-coding segments of DNA sequence both 

by Parametric and Nonparametric methods. Consequently, 

an attempt has been made so that some hidden internal 

properties of the DNA sequence can be brought into light in 

order to identify coding regions from non-coding ones. In 

this approach the DNA sequence from various Homo Sapien 

genes have been identified for sample test and assigned 

numerical values based on weak-strong hydrogen bonding 

(WSHB) before application of digital signal analysis 

techniques. The statistical methodology applied for 

computation of Spectral content are simple and the Spectrum 

plots obtained show satisfactory results. Spectral analysis 

can be applied to study base-base correlation in DNA 

sequences. A key role is played by the mapping between 

nucleotides and real/complex numbers. In 2006, Galleani 

and Garello presented a new approach where the mapping   

is not kept fixed: it is allowed to vary aiming to minimize  

the spectrum entropy, thus detecting the main hidden 

periodicities. The new technique is first introduced and 

discussed through a number of case studies, then extended to 

encompass time-frequency analysis. 

For analyzing periodicities in categorical valued time 

series, the concept of the spectral envelope was introduced 

by Stoffer et al., 1993 as a computationally simple and 

general statistical methodology for the harmonic analysis 

and scaling of non-numeric sequences. However, The 

spectral envelope methodology is computationally fast and 

simple because it is based on the fast Fourier transform and is 

nonparametric (i.e., it is model independent). This makes the 

methodology ideal for the analysis of long DNA sequences. 

Fourier analysis has been used in the analysis of correlated 

data (time series) since the turn of the century. Of 

fundamental interest in the use of Fourier techniques is the 

discovery of hidden periodicities or regularities in the data. 

Although Fourier analysis and related signal processing are 

well established in the physical sciences and engineering, 

they have only recently been applied in molecular    

biology. Since a DNA sequence can be regarded as a 

categorical-valued time series it is of interest to discover 

ways in which time series methodologies based on Fourier 

(or spectral) analysis can be applied to discover patterns in a 

long DNA sequence or similar patterns in two long 

sequences. Actually, the spectral envelope is an extension of 

spectral analysis when the data are categorical valued such as 

DNA sequences.  

An algorithm for estimating the spectral envelope and the 

optimal scalings given a particular DNA sequence with 

alphabet =  𝑏1, 𝑏2, … , 𝑏𝑟+1 , is as follows [Stoffer (2012]. 

1.  Given a DNA sequence of length 𝑛 , from the        

𝑟𝘹1  vectors 𝒀𝑡 , 𝑡 = 1,2, …𝑛;  namely, for 𝑗 =
1,2, … , 𝑟, 𝒀𝑡 = 𝒆𝑗  if 𝑋𝑡 = 𝑏𝑗  where 𝒆𝑗  is a 𝑟𝘹1 

vector with a 1 in the jth position as zeros elsewhere, 

and 𝒀𝑡 = 𝟎 if 𝑋𝑡 = 𝑏𝑗+1. 

2.  Calculate the Fast Fourier Transform FFT of the data, 

 𝑗 𝑛  =  𝒀𝑡  𝑒𝑥𝑝 −2𝜋𝑖𝑡𝑗 𝑛   𝑛 𝑛
𝑡=1 . 

Note that 𝒅 𝑗 𝑛   is a 𝑟𝘹1 complex-valued vector. 

Calculate the periodogram, 

𝑓 (𝑗 𝑛) = 𝑑(𝑗  𝑛) 𝑑∗(𝑗  𝑛),  for = 1,2, … ,  𝑛/2 , 

and retain only the real part, say 𝑓 𝑟𝑒 (𝑗 𝑛) . 

3.  Smooth the real part of the periodogram as preferred 

to obtain 𝑓 𝑟𝑒 (𝑗 𝑛) , a consistent estimator of the real 

part of the spectral matrix.  

4.  Calculate the 𝑟𝘹𝑟 variance–covariance matrix of the 

data, =   𝒀𝑡 − 𝒀  𝑛
𝑡=1  𝒀𝑡 − 𝒀  ′ 𝑛 , where 𝒀  is the 

sample mean of the data. 

5.  For each ω=𝑗  𝑛, 𝑗 = 1,2, … ,  𝑛/2 , determine the 

largest eigenvalue and the corresponding eigenvector 

of the matrix 2𝑆−1/2𝑓 𝑟𝑒 (𝜔𝑗 ) 𝑆−1/2 𝑛 .  

6.  The sample spectral envelope 𝜆  𝜔𝑗   is the 

eigenvalue obtained in the previous step. 

7.  The optimal sample scaling is 𝛽  𝜔𝑗  = 𝑆−1/2𝒗 𝜔𝑗   , 

where 𝒗 𝜔𝑗   is the eigenvector obtained in the 

previous step. 

In this paper, we discussed the cluster analysis of the first, 

second, third and fourth variance- covariance matrix 

eigenvalues of Fast Fourier Transform (FFT) for numerical 

values representation of DNA sequences of five organisms, 

Human, E. coli, Rat, Wheat and Grasshopper. The analysis is 

based on Ward’s method of clustering. It should be noted 

that it is the first time that the variance covariance matrix 

eigenvalues of Fast Fourier Transform (FFT) for numerical 

values representation of DNA sequences, is used in an 

analysis like this and related analyzes. 

2. Ward’s Method of Clustering 

Data clustering is a method of creating groups of objects, 

or clusters, in such a way that objects in one cluster are very 

similar and objects in different clusters are quite distinct. 

Data clustering is often confused with classification, in 

which objects are assigned to predefined classes. In data 

clustering, the classes are also to be defined. 

Cluster analysis is widely used in biological analyzes, 

including DNA analysis. Some of the relevant scientific 

literatures are as follows.  

Jiang et al. in 2004 divided cluster analysis for gene 

expression data into three categories. Then, they presented 

specific challenges pertinent to each clustering category and 

introduce several representative approaches. They also 

discuss the problem of cluster validation in three aspects and 

review various methods to assess the quality and reliability 

of clustering results.  

Polovinkin et al. in 2016 deal with the problem of 

diagnosis of oncological diseases based on the analysis of 

DNA methylation data using algorithms of cluster analysis 

and supervised learning. The groups of genes are identified, 

methylation patterns of which significantly change when 

cancer appears. High accuracy is achieved in classification  

of patients impacted by different cancer types and in 

identification if the cell taken from a certain tissue is aberrant 

or normal. With method of cluster analysis two cancer types 
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are highlighted for which the hypothesis was confirmed 

stating that among the people affected by certain cancer 

types there are groups with principally different methylation 

pattern.  

James et al. in 2018 adapted the mean shift algorithm, an 

unsupervised machine-learning algorithm, which has been 

used successfully thousands of times in fields such as image 

processing and computer vision. They described the first 

application of the mean shift algorithm to clustering DNA 

sequences. They also applied supervised machine learning to 

predict the identity score produced by global alignment using 

alignment-free methods. They demonstrate MeShClust's 

ability to cluster DNA sequences with high accuracy even 

when the sequence similarity parameter provided by the user 

is not very accurate. 

Wu et al. in 2003 described a genetic K-means clustering 

algorithm, called GKMCA, for clustering in gene expression 

datasets. The superiority of the GKMCA over other 

clustering algorithms is demonstrated for two real gene 

expression datasets. 

In many biological applications it is necessary to cluster 

DNA sequences into groups that represent underlying 

organismal units, such as named species or genera. In 

metagenomics this grouping needs typically to be achieved 

on the basis of relatively short sequences which contain 

different types of errors, making the use of a statistical 

modeling approach desirable. Jaaskinen et al. in 2014 

introduced a novel method for this purpose by developing a 

stochastic partition model that clusters Markov chains of a 

given order. The model is based on a Dirichlet process  

prior and they use conjugate priors for the Markov chain 

parameters which enables an analytical expression for 

comparing the marginal likelihoods of any two partitions. To 

find a good candidate for the posterior mode in the partition 

space, they use a hybrid computational approach which 

combines the EM-algorithm with a greedy search. 

Guntur in 2007 in his thesis of compared among few 

Clustering algorithms such as: K means, Hierarchical,   

Self Organization Map(SOM), and Cluster A±nity Search 

Technique(CAST) with proposed algorithm called CAST+ 

for Gene Expression data. Results show that Proposed 

Algorithm is efficient in comparison with other Clustering 

algorithms mentioned above. The Clustering algorithms are 

compared on the basis of few Evaluation Indices such as 

Homogeneity Vs separation, and Silhouette width. 

Liu et al. in 2018 applied comprehensive analyses of 

RNA-seq and CAGE-seq (cap analysis of gene expression 

and sequencing) to characterize the dynamic changes in 

lncRNA expression in rhesus macaque (Macaca mulatta) 

brain in four representative age groups. They identified    

18 anatomically diverse lncRNA modules and 14 mRNA 

modules representing spatial, age, and sex specificities. 

Spatiotemporal- and sex-biased changes in lncRNA 

expression were generally higher than those observed in 

mRNA expression. A negative correlation between lncRNA 

and mRNA expression in cerebral cortex was observed and 

functionally validated. Their findings offer a fresh insight 

into spatial-, age-, and sex-biased changes in lncRNA 

expression in macaque brain and suggest that the changes 

represent a previously unappreciated regulatory system that 

potentially contributes to brain development and aging. 

Ruiz et al. in 2018 proposed a novel approach for 

performing cluster analysis of DNA sequences that is based 

on the use of GSP methods and the K-means algorithm. They 

also proposed a visualization method that facilitates the easy 

inspection and analysis of the results and possible hidden 

behaviors. Their results support the feasibility of employing 

the proposed method to find and easily visualize interesting 

features of sets of DNA data. 

Hard clustering algorithms are subdivided into 

hierarchical algorithms and partitional algorithms. 

A partitional algorithm divides a data set into a single 

partition, whereas a hierarchical algorithm divides a data set 

into a sequence of nested partitions. Hierarchical algorithms 

are subdivided into agglomerative hierarchical algorithms 

and divisive hierarchical algorithms. Agglomerative 

hierarchical clustering starts with every single object in a 

single cluster. Then it repeats merging the closest pair of 

clusters according to some similarity criteria until all of the 

data are in one cluster. 

The choice of distances is important for applications. The 

squared Euclidean distance is probably the most common 

distance we have ever used for numerical data. For two data 

points 𝒙  and 𝒚  in d-dimensional space, the squared 

Euclidean distance between them is defined to be, 𝑑𝑖𝑗
2 =

𝑑(𝒙, 𝒚) = (𝒙 − 𝒚)(𝒙 − 𝒚)𝑇 =   𝑥𝑙 − 𝑦𝑙 
2𝑑

𝑙=1 . 

According to different distance measures between groups, 

agglomerative hierarchical methods can be subdivided into 

graph methods and geometric methods. Ward’s method is 

one of geometric methods. The Ward’s method is one of the 

most popular method.  

Ward (1963) and Ward and Hook (1963) proposed a 

hierarchical clustering procedure seeking to form the 

partitions 𝑃𝑛 , 𝑃𝑛−1, … , 𝑃1  in a manner that minimizes the 

loss of information associated with each merging. Usually, 

the information loss is quantified in terms of an error sum of 

squares (ESS) criterion, so Ward’s method is often referred 

to as the “minimum variance” method.  

Given a group of data points C, the ESS associated with C 

is given by, 

𝐸𝑆𝑆(𝐶) =  𝘹𝘹𝑇
𝘹∈𝐶 −  𝐶  𝜇(𝐶) 𝜇(𝐶)𝑇 , 

Where, 𝜇(𝐶)  =   𝘹𝘹𝑇
𝘹∈𝐶 |𝐶| . 

Suppose there are k groups 𝐶1, 𝐶2, … , 𝐶𝑘  in one level of 

the clustering, then the information loss is represented by the 

sum of ESSs given by, =  𝐸𝑆𝑆(𝐶𝑖)
𝑘
𝑖=1 , which is the total 

within-group ESS.  

At each step of Ward’s method, the union of every 

possible pair of groups is considered and two groups whose 

fusion results in the minimum increase in loss of information 

are merged. If the squared Euclidean distance is used to 

compute the dissimilarity matrix, then the dissimilarity 

matrix can be updated by the Lance-Williams formula during 

the process of clustering as follows (Wishart, 1969): 
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𝐷(𝐶𝑘 , 𝐶𝑖 ∪ 𝐶𝑘) =    𝐶𝑘  +  𝐶𝑖  𝐷 𝐶𝑘 , 𝐶𝑖 

+   𝐶𝑘 +  𝐶𝑗   𝐷 𝐶𝑘 , 𝐶𝑗  

− |𝐶𝑘 |𝐷(𝐶𝑖 , 𝐶𝑗 ) /𝛾 

Where, 𝛾 =  𝐶𝑘  + |𝐶𝑖| + |𝐶𝑗 |. 

To justify this, we suppose 𝐶𝑖  and 𝐶𝑗  are chosen to be 

merged and the resulting cluster is denoted by 𝐶𝑡 = 𝐶𝑖 ∪ 𝐶𝑗 . 

Then the increase in ESS is, 

∆𝐸𝑆𝑆𝑖𝑗 = 𝐸𝑆𝑆(𝐶𝑡) − 𝐸𝑆𝑆(𝐶𝑖) − 𝐸𝑆𝑆(𝐶𝑗 ) 

= |𝐶𝑖|𝜇𝑖𝜇𝑖
𝑇 + |𝐶𝑗 |𝜇𝑗𝜇𝑗

𝑇 − |𝐶𝑡|𝜇𝑡𝜇𝑡
𝑇 , 

Where, 𝜇𝑡 , 𝜇𝑗  and 𝜇𝑡  are the means of clusters 𝐶𝑖 , 𝐶𝑗  

and 𝐶𝑡  respectively. 

After simple mathematical operations, we get[ ], 

∆𝐸𝑆𝑆𝑖𝑗 =
|𝐶𝑖| |𝐶𝑗 | 

|𝐶𝑖| + |𝐶𝑗 |
 𝜇𝑖 − 𝜇𝑗   𝜇𝑖 − 𝜇𝑗  

𝑇
. 

Now, considering the increase in 𝐸𝑆𝑆 that would result 

from the potential fusion of groups 𝐶𝑘  and 𝐶𝑡 , from the 

above equation, we have, 

∆𝐸𝑆𝑆𝑘𝑡 =   |𝐶𝑘 | + |𝐶𝑖| ∆𝐸𝑆𝑆𝑘𝑖 +  |𝐶𝑘 | + |𝐶𝑗 | ∆𝐸𝑆𝑆𝑘𝑗

− |𝐶𝑘 |∆𝐸𝑆𝑆𝑖𝑗  / |𝐶𝑘 | + |𝐶𝑡  

If we compute the dissimilarity matrix for a data set 

𝐷 =  𝑥1, 𝑥2, … , 𝑥𝑛  using the squared Euclidean distance, 

then the entry (𝑖, 𝑗) of the dissimilarity matrix is, 

𝑑𝑖𝑗
2 = 𝑑(𝒙𝒊, 𝒙𝒋) = (𝒙𝒊 − 𝒙𝒋)(𝒙𝒊 − 𝒙𝒋)

𝑇  

=   𝑥𝑖𝑙 − 𝑥𝑗𝑙  
2𝑑

𝑙=1 ,  

Where d is the dimensionality of the data set D. 

If 𝐶𝑖 =  𝒙𝒊  and 𝐶𝑗 =  𝒙𝒋 , then the increase in ESS 

that results from the fusion of 𝒙𝒊 and 𝒙𝒋 is, 

∆𝐸𝑆𝑆𝑖𝑗 = 𝑑𝑖𝑗
2 /2. 

Since the objective of Ward’s method is to find at each 

stage those two groups whose fusion gives the minimum 

increase in the total within-group ESS, the two points with 

minimum squared Euclidean distance will be merged at the 

first stage. Suppose 𝒙𝒊  and 𝒙𝒋  have minimum squared 

Euclidean distance. Then 𝐶𝑖 =  𝒙𝒊  and 𝐶𝑗 =  𝒙𝒋  will be 

merged. After 𝐶𝑖  and 𝐶𝑗  are merged, the distances 

between 𝐶𝑖 ∪ 𝐶𝑗  and other points must be updated.  

Now, let 𝐶𝑘 =  𝒙𝒌  be any other group. If we update the 

dissimilarity matrix during the process of clustering, then the 

two groups with minimum distance will be merged. Then  

the increase in ESS that would result from the potential 

fusion of 𝐶𝑘  and 𝐶𝑖 ∪ 𝐶𝑗  can be calculated as, ∆𝐸𝑆𝑆𝑘(𝑖𝑗 ) =

𝐷(𝐶𝑘 , 𝐶𝑖 ∪ 𝐶𝑗 )/2. 

A hierarchical clustering can be represented by either a 

picture or a list of abstract symbols. A picture of a 

hierarchical clustering is much easier for humans to interpret. 

A list of abstract symbols of a hierarchical clustering may be 

used internally to improve the performance of the algorithm. 

Some common representations of hierarchical clusterings are 

summarized below, 

 

1. Dendogram: The best way to view the output of a 

cluster analysis is usually by looking at the Dendogram 

Working from the bottom up, the dendogram shows the 

sequence of joins that were made between clusters. Lines are 

drawn connecting the clustered that are joined at each step, 

while the vertical axis displays the distance between the 

clusters when they were joined. In the other words a 

Dendogram or valued tree is used to visualize the results of   

a hierarchical clustering algorithm (Gordon 1996). A 

dendrogram is an n-tree in which each internal node is 

associated with a height satisfying the condition ℎ(𝐴) ≤
ℎ(𝐵) ⇔ 𝐴 ⊆ 𝐵 for all subsets of data points 𝐴 and 𝐵 if 

𝐴 ∩ 𝐵 ≠ ∅, 

Where, ℎ(𝐴) and ℎ(𝐵) denote the heights of 𝐴 and 𝐵 

respectively. The heights in the dendrogram satisfy the 

following ultrametric conditions (Johnson, 1967), 

ℎ𝑖𝑗 ≤ 𝑚𝑎𝑥 ℎ𝑖𝑘ℎ𝑗𝑘   , ∀𝑖, 𝑗, 𝑘 ∈  1,2, … , 𝑛  

In fact, the above ultrametric condition (7.1) is also a 

necessary and sufficient condition for a dendrogram (Gordon, 

1987). Mathematically, a dendrogram can be represented by 

a function 𝑐: [0, ∞) → 𝐸(𝐷) that satisfies (Sibson, 1973), 

𝑐(ℎ) ⊆ 𝑐(ℎ′) 𝑖𝑓 ℎ ≤ ℎ′ , 

𝑐(ℎ) is eventually in D𝙭D, 

𝑐(ℎ + 𝛿) = 𝑐(ℎ) for some small 𝛿 > 0, 

where D is a given data set and E(D) is the set of equivalence 

relations on D. 

2. Icicle Plot: The Icicle Plot displays a schematic 

diagram showing members of the clusters at each stage of the 

algorithm. It is most useful when the number of items is 

small; Under each Number of Clusters is a row of X’s. Any 

items connected by contiguous X’s are contained in the same 

cluster. 

An icicle plot, proposed by Kruskal and Landwehr (1983), 

is another method for presenting a hierarchical clustering. It 

can be constructed from a dendrogram. The major advantage 

of an icicle plot is that it is easy to read off which objects are 

in a cluster during a live process of data analysis. 

In an icicle plot, the height and the hierarchical level are 

represented along the vertical axis; each object is assigned a 

vertical line and labeled by a code that is repeated with 

separators (such as “&”) along the line from top to bottom 

until truncated at the level where it first joins a cluster, and 

objects in the same cluster are joined by the symbol “=” 

between two objects. 

3. Agglomeration Schedule: The Agglomeration 

Schedule provides a summary of each step in an 

agglomerative clustering algorithm. It is shows the amount 

of error created at each clustering stage when two different 

objects – cases in the first instance and then clusters of cases 

– are brought together to create a new cluster. A large jump 

in the value of the error term indicates that two different 

things have been brought together and that there is a 

significant typology at that level of fusion. 
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3. An Empirical Study 

The following algorithm steps is performed to achieve our 

aim, 

1.  Generate the DNA sequence for five organisms, 

Human, E. coli, Rat, Wheat and Grasshopper with 

corresponding information in table (1). 

Table (1).  Relative proportions (%) of Bases in DNA 

Organisms A T G C 

Human 30.9 29.4 19.9 19.8 

E. coli 26.0 23.9 24.9 25.2 

Rat 28.6 28.4 21.4 21.5 

Wheat 27.3 27.1 22.7 22.8 

Grasshopper 29.3 29.3 20.5 20.7 

2.  The sequence size is n=500 and run size is k=203. 

3.  Transform DNA sequence to numerical values by 

setting one to the base that appears and zero to the 

other bases. 

4.  Transform the sequence of numerical values to the 

corresponding FFT values. 

5.  Calculate the eigenvalues for each run results, and 

then we get 205 fourth order vectors of eigenvalues for 

each organism. Each vector contains the four 

eigenvalues, rank from the largest one to the smallest. 

Ward’s method of clustering has been applied of the first, 

second, third and fourth variance- covariance matrix 

eigenvalues of Fast Fourier Transform (FFT) for numerical 

values representation of DNA sequences of five organisms, 

Human, E. coli, Rat, Wheat and Grasshopper. The analysis is 

based on Ward’s method of clustering. It should be noted 

that it is the first time that the variance covariance matrix 

eigenvalues of Fast Fourier Transform (FFT) for numerical 

values representation of DNA sequences, is used in an 

analysis like this and related analyzes. 

For convenient, in the following discussions, we will refer 

to the organism by the first letter of his name. The number 

following the letter will be indicating to the order of 

eigenvalue (first, second, third or fourth). 

3.1. For the First Eigenvalue 

Ward’s method of clustering has created one cluster from 

the 203 points supplied. The clusters are groups of variables 

with similar characteristics. To form the clusters, the 

procedure began with each variable in a separate group. It 

then combined the two variables which were closest together 

to form a new group. After recomputing the distance 

between the groups, the two groups then closest together 

were combined. This process was repeated until only one 

group remained. The following Icicle Plot shows how the 

one cluster were formed. Each column of the plot shows how 

the variables were divided into a specific number of clusters. 

In that column, an unbroken string of X's connects all 

members of a cluster. A row without an X indicates a break 

between two clusters. Working from the right of this table, 

you can determine how the variables were combined. 

 

Number of Clusters 

Variable Column 12345 

---------- ------ ----- 

e1 1 XXXX 

  XXXX 

w1 5 XXXX 

  X 

h1 2 XXX 

  XXX 

g1 4 XXX 

  XX 

r1 3 XX 

Figure 2.  The icicle plot according to the first eigenvalue of each of five 

organisms 

The icicle plot in fig.2, shows how the one cluster were 

formed. Each column of the plot shows how the variables 

were divided into a specific number of clusters. In that 

column, an unbroken string of X's connects all members of a 

cluster. A row without an X indicates a break between two 

clusters. Working from the right of this table, you can 

determine how the variables were combined. 

The agglomeration schedule in table (2), shows which 

variables were combined at each stage of the clustering 

process. For example, in the first stage, variable 1 was 

combined with variable 5. The distance between the groups 

when combined was 10457.8. It also shows that the next 

stage at which this combined group was further combined 

with another cluster was stage 4. 

The dendrogram in fig.3, shows the hierarchical clustering 

structure of five organisms, Human, E. coli, Rat, Wheat and 

Grasshopper based on the first eigenvalue of variance- 

covariance matrix of Fast Fourier Transform (FFT) for 

numerical values representation of DNA sequences. 

Table (2).  Agglomeration Schedule for the first eigenvalue of each of five organisms 

 Combined Combined  Previous Stage Previous Stage Next 

Stage Cluster 1 Cluster 2 Distance Cluster 1 Cluster 2 Stage 

1 1 5 10457.8 0 0 4 

2 2 4 22524.0 0 0 3 

3 2 3 37585.5 2 0 4 

4 1 2 75696.8 1 3 0 
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Figure 3.  Dendrogram according to the first eigenvalue of each of five 

organisms 

As a result, cluster analysis based on the first eigenvalue 

shows that the first connection is between E. coli and Wheat. 

The second connection is between Human and Grasshopper. 

The third connection is between Human and Grasshopper 

from the first hand and Rat on the other. The fourth 

connection is between Human, Grasshopper and Rat from 

the first hand and E. coli and Wheat on the other.  

3.2. For the Second Eigenvalue 

The agglomeration schedule in table (3), shows which 

variables were combined at each stage of the clustering 

process. For example, in the first stage, variable 1 was 

combined with variable 5. The distance between the groups 

when combined was 5622.44. It also shows that the next 

stage at which this combined group was further combined 

with another cluster was stage 3. 

Table (3).  Agglomeration Schedule for the second eigenvalue of each of five organisms 

 Combined Combined  Previous Stage Previous Stage Next 

Stage Cluster 1 Cluster 2 Distance Cluster 1 Cluster 2 Stage 

1 1 5 5622.44 0 0 3 

2 2 4 17131.5 0 0 4 

3 1 3 28770.7 1 0 4 

4 1 2 58746.4 3 2 0 

 

As a result, cluster analysis based on the second 

eigenvalue shows that the first connection is between E. coli 

and Wheat. The second connection is between Human and 

Grasshopper. The third connection is between E. coli and 

Wheat from the first hand and Rat on the other. The fourth 

connection is between E. coli, Wheat and Rat from the first 

hand and Human and Grasshopper on the other. Table (3) 

and figures 4 and 5 explain what we stated above. 

It is clear that the clustering process based on the second 

eigenvalue differ slightly, from the connection aspect, 

compared with clustering process based on the first 

eigenvalue. 

 

  Number of Clusters 

Variable Column 12345 

---------- ------ ----- 

e2 1 XXXX 

  XXXX 

w2 5 XXXX 

  XX 

r2 3 XX 

  X 

h2 2 XXX 

  XXX 

g2 4 XXX 

Figure 4.  The icicle plot according to the second eigenvalue of each of five 

organisms 

 

Figure 5.  Dendrogram according to the second eigenvalue of each of five 

organisms 

3.3. For the Third Eigenvalue 

The agglomeration schedule in table (4), shows which 

variables were combined at each stage of the clustering 

process. For example, in the first stage, variable 1 was 

combined with variable 5. The distance between the groups 

when combined was 5851.37. It also shows that the next 

stage at which this combined group was further combined 

with another cluster was stage 4. 
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Table (4).  Agglomeration Schedule for the third eigenvalue of each of five organisms 

 Combined Combined  Previous Stage Previous Stage Next 

Stage Cluster 1 Cluster 2 Distance Cluster 1 Cluster 2 Stage 

1 1 5 5851.37 0 0 4 

2 3 4 16777.1 0 0 3 

3 2 3 30263.7 0 2 4 

4 1 2 57922.0 1 3 0 

 

As a result, cluster analysis based on the third eigenvalue 

shows that the first connection is between E. coli and Wheat. 

The second connection is between Rat and Grasshopper. The 

third connection is between Rat and Grasshopper from the 

first hand and Human on the other. The fourth connection is 

between Rat and Grasshopper and Human from the first hand 

and E. coli and Wheat on the other. Table (4) and figures 6 

and 7 explain what we stated above. 

It is clear that the clustering process based on the third 

eigenvalue differ, from the connection aspect, compared 

with clustering process based on the first and second 

eigenvalues. 

  Number of Clusters 

Variable Column 12345 

---------- ------ ----- 

e3 1 XXXX 

  XXXX 

w3 5 XXXX 

  X 

h3 2 XX 

  XX 

r3 3 XXX 

  XXX 

g3 4 XXX 

Figure 6.  The icicle plot according to the third eigenvalue of each of five 

organisms 

 

Figure 7.  Dendrogram according to the third eigenvalue of each of five 

organisms 

3.4. For the Fourth Eigenvalue 

The agglomeration schedule in table (5), shows which 

variables were combined at each stage of the clustering 

process. For example, in the first stage, variable 2 was 

combined with variable 4. The distance between the groups 

when combined was 7858.37. It also shows that the next 

stage at which this combined group was further combined 

with another cluster was stage 3. 

Table (5).  Agglomeration Schedule for the fourth eigenvalue of each of five organisms 

 Combined Combined  Previous Stage Previous Stage Next 

Stage Cluster 1 Cluster 2 Distance Cluster 1 Cluster 2 Stage 

1 2 4 7858.37 0 0 3 

2 1 5 17501.9 0 0 4 

3 2 3 30579.2 1 0 4 

4 1 2 61990.9 2 3 0 

 

As a result, cluster analysis based on the fourth eigenvalue 

shows that the first connection is between E. coli and Wheat. 

The second connection is between Human and Grasshopper. 

The third connection is between Human and Grasshopper 

from the first hand and Rat on the other. The fourth 

connection is between Human and Grasshopper and Rat 

from the first hand and E. coli and Wheat on the other. Table 

(5) and figures 8 and 9 explain what we stated above. 

It is clear that the clustering process based on the third 

eigenvalue differ, from the connection aspect, compared 

with clustering process based on the first, second and third 

eigenvalues. 

We concluded that, the clustering process is different 

relatively depending on each one of the eigenvalues to the 

other, both in terms of the connection or in terms of distances 

values calculated for this purpose. This is a source of power 

of this research, as it will increase the necessary tests to 

distinguish between organisms according to the criteria 

under consideration and then increase the robustness of 

decision. 
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  Number of Clusters 

Variable Column 12345 

---------- ------ ----- 

e4 1 XXX 

  XXX 

w4 5 XXX 

  X 

h4 2 XXXX 

  XXXX 

g4 4 XXXX 

  XX 

r4 3 XX 

Figure 8.  The icicle plot according to the fourth eigenvalue of each of five 

organisms 

 

Figure 9.  Dendrogram according to the fourth eigenvalue of each of five 

organisms 

As further studies in future and next related research, 

another empirical studies should be done for other organisms 

and statistical methods by using the point of view adopted 

here. In addition, aspects stated here must be used for applied 

situations for DNA sequences discrimination. 
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