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Abstract  Two so far partially used alternative basic sets – algebraic relations and central laws – are completed and 
related with the standard differential equations. The senses and ranges of validities of all the equations are examined. The 
dual conception of the two fields is gradually transferred into the scientific system of radial – static, transverse – kinetic, 
and longitudinal – dynamic elementary forces, dependent on mutual distance, simultaneous motion and acceleration of 
interacting charges. The extended EM theory, more systematic than its standard presentations, is obtained and affirmed. 
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1. Introduction 
Between various physical quantities, the three main pairs 

of them are used as the basic notions of physics: length & 
time – as the kinematical, mass & charge – as substantial, 
and force & energy – as interactive quantities. A particular 
physical discipline mathematically relates these quantities – 
by respective laws. The necessary and sufficient number of 
mutually independent laws represents the basic set, as the 
formal basis of the theory. Apart from their own internal 
consistencies and empirical evidences, these equations are 
expected to obey some operative advantages, convenient for 
consistent methodical foundation, transparent exposition and 
convincing acceptance of the theory. A minimal number of – 
as simple as possible – equations, directly presenting 
fundamental physical relations, is wanted. 

Apart from Maxwell’s equations and gauge conditions – 
in the differential forms, some EM quantities are related 
algebraically. On the other hand, central laws determine 
directly elementary interactions of two punctual charges, in 
the functions of their kinematical relations: mutual position, 
simultaneous motion and acceleration of at least one of them. 
However, some equations of the two latter basic sets have 
not been so far formulated in general, nor the ranges of their 
application were precisely determined. Though do not obey 
perfectly all the operative advantages, Maxwell’s equations 
play the role of the basic set. In spite of their wide successful 
application, a number of nearly forgotten empirical results 
are still waiting for adequate explanations.  

In the aim of the final formulation and further elaboration 
of the two incomplete basic sets, they are here consistently 
derived and convincingly explained. The ranges of their  
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successful applications are also determined. On their bases, 
the interpretation of some of the mentioned problematic 
empirical results are finally obtained. All this is achieved 
systematically, by mutual relation and support in derivation 
of the three basic sets. After constitution of the theory, a way 
of a simple introduction of the algebraic set is presented. 
They support the derivation of central laws, and these ones – 
of differential equations. Apart from thus enabled systematic 
foundation and exposition of the theory, the three basic sets – 
supplementing each other in applications, give many-sided 
insight into the physical relations. 

2. Scientific Methodology  
Physical science, as the conscious image of reality, relies 

its development on the two pairs of the sources or criteria of 
cognition: empirical & formal – as objective, and rational & 
intuitive – as subjective. Apart from passive observation, the 
empirical phase consists of some experimental procedures, 
performed by respective instruments. In the formal phase, 
the empirical facts are classified and mutually related by the 
verbal, logical or mathematical expressions. In the sense of 
further confirmation of the formal results, their convenient 
rational interpretations demand sufficiently clear visions of 
the physical processes. Of course, this phase is founded on 
the analogies with the former knowledge and experience. 
Some intuitive ideas of the researches enable their own 
orientation in the process of investigation. 

With respect to the sensory and mental limitations, the two 
former sources are usually supported by respective technical 
equipments. Their results are thus regarded as objective, as if 
independent of the human arbitrariness. However, in spite of 
this respect, these results are nearly senseless without some 
rational interpretations. In addition, the scientific procedures 
are inevitably directed by the personal intuitive expectations. 
Unfortunately, in the opposition to the mentioned objective 
supports, and also – in possible relation with them, the two 
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subjective criteria are in the same ratio suppressed. Instead of 
them, the non-scientific criterion of authority of the former 
scientists and their texts is crucial in the modern physics. 
Actual deficit of the subjective criteria is tried to compensate 
by the long lists of cited references. 

Each of the four criteria may be the primary source, which 
result must not contradict to anyone of them. Consulting the 
subjective criteria, inductive elaboration of a theory starts by 
the two objective sources, from natural phenomena, towards 
their deeper essences. If the theory disobeys at least one of 
the criteria, its origins must be re-examined. Otherwise, it 
may be accepted as adequate. With respect to the imperfect 
sources or criteria, some readiness for its re-examination 
must be kept. Of course, the order of the criteria application 
need not be inductive. Convincing presentation of a theory 
demands its deductive exposition, starting from the achieved 
or expected its essence, towards practical applications. The 
deductive procedures may correct possible inconsistencies or 
mistakes of the inductive elaboration. 

These general conditions and respective procedures are at 
least implicitly applied and thus presented in this systematic 
foundation of the fundamentals of EM theory. The inductive 
elaboration of the three basic sets is exposed in the sections 
3-6, from EM phenomena – towards their relation and 
explanation. It is also related with the former investigation of 
this topic, by formal derivation and rational interpretation of 
the known ideas and results, but without wider theoretical 
implications. Starting from the essence of EM phenomena, in 
the form of the convenient analogies, the inverse deductive 
exposition of thus advanced theory is consistently presented 
in the sections 7-10. With convincing confirmation of the 
main algebraic relations, their elementary applications are 
briefly presented in the sections 11-14.  

3. Constitution of EM Theory 
3.1. Introduction of EM Fields 

Two EM fields, electric ( E ) and magnetic ( B ), were 
initially noticed as the actions upon respective dipoles: p  & 
m . Each of the fields exclusively affects its own dipole, by 
some torque and/or force difference: 

e  = ×t p E , eδ  = ⋅∇f p E ;           (1) 

m  = ×t m B , mδ  = ⋅∇f m B .          (2) 

The two dipoles, as the objects, can be induced by these 
fields, on respective material scrapings. The torques direct 
the dipoles into the field courses, and the forces draw them 
into the domains of the stronger fields. These two pairs of 
interactions mathematically express the primary introduction 
of the two EM fields. Thus symmetric, electric and magnetic 
phenomena seemed to be mutually independent. 

This symmetry is disturbed in the experience. Unlike an 
electric dipole, q=p r , constituted of the two opposite poles 
– structurally connected on some mutual distance ( ),r  the 

magnetic moment cannot be split into separate poles. Instead, 
it can be obtained by rotation of an electric dipole around one 
of its two poles: q= ×m r v . The two EM dipoles are thus 
mutually related and reduced to electricity, as a bipolar 
substance – in respective kinematical states. 

3.2. Rational Fields 
The field carriers and their objects are expressed by the 

substantial field of electricity, /Q q v= ∂ ∂ , as some volume 
density of one of its two polarities, unlike electric charge, as 
the difference of the two polarities. On the other hand, the 
kinematical fields – of a distance, speed and acceleration – 
represent these three quantities in the functions of their 
position in space. Algebraic combination of the two field 
types gives the derived – rational fields. Apart from the 
current field, Q=J V , as a moving electric polarity, volume 
densities of respective dipoles represent the two material 
fields, polarization and magnetization: 

 Q=P R ,  = ×M P V .             (3) 

The two kinematical fields (  & )R V  here represent the 
arranged sets of respective elementary quantities. However, 
the initial dipoles cause the two mutually opposite reactions 
of the surrounding media: = −d p  & =h m . Their volume 
densities form the two associated fields:  & D H . These two 
fields continue respective material causes, in the opposite or 
circular directions, respectively. In fact, they represent some 
medium disturbances and their motion. 

3.3. Force Fields 
With respect to electricity, as the common objective bases, 

the two above mentioned force fields should be redefined. 
Unlike the general force field, / v= ∂ ∂F f , as some volume 
density of many elementary forces, the specific force fields – 
electric ( )E  and magnetic ( )B  – express their own actions 
upon respective unit punctual objects: 

e  q=f E , m  q= ×f v B .            (4) 

Electricity and its motion are the new objects. Of course, 
these two relations are accommodated with the two EM 
fields being already introduced. The latter of them is applied 
to moving electricity, as the object. The electric forces are 
collinear with respective field, but the cross product points to 
the transverse direction of the magnetic forces – to both, 
object speed and respective field. The former symmetry is 
disturbed by the united objective basis. 

3.4. Constitutive Relations 

The similar fields in the two pairs of definitions – rational 
associated to (3) and force fields (4) – are mutually related in 
practice, by respective EM constants: 

o ε  ε= + =D E P E ,               (5a) 

o μ ( )  μ= + =B H M H .             (5b) 

Apart from the medium features, the constants determine 
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the quantities and units. These two roles are separated by the 
factorization: o rε ε ε= , o rμ μ μ= . The two vacuum 
factors harmonize the quantities and units, and relative ones 
express the intrinsic features of the present material media. 
The cross classification of the two field pairs is thus obtained. 
Namely, the two vacuum components (  & )E H  cause 
respective two total fields (  & )D B  – at material media. 

EM processes take part in the four structural layers of the 
complex material media: vacuum, dielectric, magnetic and 
conducting ones. First of them concerns the free space and 
vacuum fields. Two next layers are substrata of respective 
two material components: polarization and magnetization. 
The asymmetric relations (5) point to the distinct structural 
levels of the two EM forces. As if, electric forces act from 
vacuum only, but magnetic ones concern the material layer 
too. Dimensional equalling of respective fields, by the unit 
vacuum factors – expressed in natural units, turns these two 
equations into formally symmetric shapes.  

4. Algebraic Relations  
4.1. Convective Relations  

The associated total fields, moving in common with their 
carriers, produce respective dissimilar vacuum fields. The 
two convective relations, describing these processes, were 
initially emphasized by J. J. Thomson: 

 = ×H V D ,  = ×E B U .           (6) 

Here V  is speed of electric, and U  – of magnetic fields; 
(6a) obviously follows from (3b), and (6b) – from experience. 
These relations may be also commonly verbally expressed: 
transverse motion of one, produces the other EM field. The 
field symmetry, as if reaffirmed by these two equations, will 
be disturbed in the further consideration. 

With respect to the cross-products, the speeds transverse 
to respective field lines are understood. However, there are 
also some asymmetric restrictions of the two relations (6). 
The differential treatment points that respective motion is 
effective only along the field gradient. Unlike a non-vortical 
moving field, generally inhomogeneous in any direction, the 
gradient of a vortical field is usually restricted to the field 
line planes. A static (non-vortical) electric field, in principle 
moving in (6a), is producing the vortical magnetic field. This 
field itself moving in the field line planes would produce the 
dynamic (vortical) electric field (6b). 

The simplest technical basis, convenient for measurement 
and consideration, is the motion and mutual affection of 
current carrying line conductors. Transverse motion of such 
a conductor, in the magnetic field line planes, causes some 
longitudinal induction (6b). The moving field gradient 
changes the field in the observed locations, with respective 
inductive reaction of the medium. The similar effect arises 
around a variable current, as the accelerated electricity, 
causing respective circular magnetic field, expanding or 
shrinking radially. These transverse field contractions cause 

respective longitudinal inductions, in all parallel conductors, 
including the carrying conductor itself. 

4.2. Relative Relations 

The obtained fields (6) interact with similar present fields. 
As if, the present fields act directly onto moving dissimilar 
objects, by some equivalent fields, according to following – 
relative algebraic relations: 

eq = ×E v B , eq = ×H D u .            (7) 

The field carriers from (6) are here treated as the moving 
objects. Therefore, here v  is the speed of electricity, and u  
– of the magnet or respective current carrying conductor. 
Substituted magnetic, by equivalent electric force (4) gives 
(7a), with analogous relation (7b). The equivalent fields just 
represent the two dissimilar forces: (7a) magnetic and (7b) 
electric. The former force is collinear, and tatter transverse, 
to respective equivalent field. In the absence of free magnetic 
poles, (7a) only is usually used. 

Unlike the relation (6b), restricted to motion in the field 
line planes, the object speed in (7a) is effective in the both 
directions in relation to magnetization current, as the field 
cause: longitudinal motion produces transverse induction, 
and vice versa. By respective transverse forces, two parallel 
current carrying conductors attract, and anti-parallel ones – 
repel each other. Consequently, by such interactions of their 
perpendicular legs, two crosswise conductors tend to the 
same courses of their two currents. And finally, a free 
moving charge is compelled to the circular motion around so 
called tubes of the present magnetic field. 

4.3. Mutual Relations  

Irrespective of the force natures, nominally similar fields 
from (6) & (7) formally add, giving the effective interactions 
of the two dissimilar moving entities: 

ef  ( )= − ×E v U B ,                 (8a) 

ef  ( )= − ×H V u D .                 (8b) 

In fact, these two equations describe the same pair of 
dissimilar forces; only the roles of the carrier and object are 
opposite. The former of them is usually used. With respect to 
the mutual (object-field) speed, the principle of relativity is 
understood [1]. However, owing to restricted validity of the 
convective component, this principle must be restricted to 
the motion in the field line planes. In fact, the two distinct 
(magnetic and electric) – mutually opposite – interactions are 
superimposed in this particular case. 

The motion perpendicular to the field line planes can be 
practically tested by the known Faraday’s experiments, in 
the simple form consisting of a rotational conducting disc 
and permanent magnet [2]. An instrument is connected by 
sliding contacts between the centre and rim of the conducting 
disc, rotating in the front of cylindrical magnet, around their 
common axis. The implicit magnetization current, flowing 
on the magnet cover, interacts with free electricity of the disc, 
rotating in parallel. The kinetic interaction of the two parallel 
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currents looks as some radial induction in the disc, expressed 
by the equivalent electric field (7a). 

However, the same or simultaneous rotation of the magnet 
does not produce any inductive effect, thus confirming the 
restriction of the relativity principle. For the sake of this 
principle, some physicists believe that the circular motion of 
the magnetic field – perpendicularly to the field line planes – 
would produce respective static field, according to (6b). In 
other words, a magnetization or conduction current, moving 
with the carrier – in its own direction, would produce some 
electric charge. In the observed case, however, the two 
circuit parts (disc radius and external cable) would suffer the 
two opposite thus assumed inductions. 

The same signal in the circuit arises after reconnection of 
the sliding contacts to the rotating magnet itself. In fact, the 
magnet now takes over the former role of the disc. Its moving 
free electrons interact kinetically with magnetization current 
– on the magnet cover, in the same manner as at the separate 
rotating disc. Also in this case, the assumed induced charge 
and respective non-vortical field could not cause any circular 
current in the observed electric circuit. 

5. Central Laws 
5.1. Static Laws  

Elementary EM interactions are caused by the presence, 
motion and acceleration of punctual charges. First of all, in 
analogy with gravitation, a charge affects all other charges in 
accord with the static (Coulomb’s) law: 

2
s o o /εμ  cn n= =f r r , 2

1 2 1 2 /4 ,n q q r= µ π .       (9) 

The factor n simplifies the equations and enables their 
comparison. Radial integration of this force gives the energy, 
expressed by the alternative static law, with the new factor 
m nr= , as the mutual or proper mass: 

2 /  cw m m= εµ = , 2 μ /4m q r= π .       (10) 

The alternative law, by its form – at least, represents the 
well-known Einstein’s equation. As the condition of the two 
laws (9a) & (10a) equivalence, the relation (10b) was the 
basis for calculation of the ‘classical’ electron radius. This 
relation thus expresses the proper mass of a single charged 
particle, where r  is the particle radius, as the distance of the 
surface charge from its own centre. 

The mutual and proper masses are in fact the elementary 
factors of induction and self-induction, respectively. With 
respect to (10b), a lesser charged particle is of the greater 
proper mass and energy, and vice versa. This fact points that 
the mass and energy are located in the surrounding fields. If 
this one be equivalent with inertial mass, a complex globally 
neutral body, as the structural multi-pole, will manifest the 
resultant summary mass of all its constituent charge particles. 
Owing to cancelation of the distant fields of the opposite 
poles in the multi-pole, this sum is slightly defected. There is 
difficult to believe that really exists some another cause of 

the inertial mass and respective forces. 

5.2. Field Motion  

Apart from the above static interactions of the present 
electric charges, two moving charges interact by additional – 
kinetic forces. In this sense, the substitution of (6a) into (7a) 
gives the following equivalent field: 

eq  μ[( ) ( ) ]= ⋅ − ⋅E v D V v V D .            (11) 

Thus obtained field consists of the two components: the 
former – axial, and latter – radial. Though both satisfy the 
force symmetry, i. e. ( ) ( ),− = −E r E r  the axial interaction 
would form some torque on a moving dipole, even in the case 
of a fixed mutual position of the two interacting charges, at 

=V v . Not only that this formal result calls in question the 
action-reaction symmetry, but the predicted torque has not 
been noticed in Trouton-Noble experiment. Therefore, the 
equation (11) must be re-examined. In fact, the above made 
substitution implicitly understood the resting magnetic field 
around a moving charge, what cannot be even imagined. 
Instead of the application of (7a), some inevitable motion of 
this field is taken into account by the application of (8a), thus 
obtaining the effective electric field: 

ef   μ [( ) ] μ[( ) ]= − ⋅ − − ⋅E v U D V v U V D .    (12) 

However, there arises the question of the speed U  of the 
magnetic field (25b) around a moving charge. Apart from 
unacceptable field rest, its longitudinal motion, together with 
the two commonly moving interacting charges, would annul 
their interaction (12). There remains the supposition of some 
transverse field motion. At a common speed of the carrier 
and object ( ),=V v  the condition of zero axial interaction 
and its torque (in the former term) gives: 

 0V cos Usinθ θ− = ,  U V cotθ= .     (13) 

Here θ  is the polar angle. Magnetic field lines spread in 
the front, and shrink behind a moving charge. As this speed 
is independent of the object motion, the result (13) is general. 
With respect to the transverse speed direction, the remaining 
(latter) term of (12) turns into the central form (17a). In the 
case of the different speeds of the two particles, when one of 
them overtakes the other, some torque may be expected. In 
fact, this would be a rotational motion of the ‘dipole’, with 
acceleration or deceleration of its poles. 

The infinite speed value – at the zero polar angle – can be 
explained by the following interpretation of the magnetic 
field and its motion. A static central potential (26a), moving 
along -x axis, is changing convectively – in direction y . 

With respect to the circle equation, 2 2 2x y r+ = , and to its 

derivative, / /y x x y∂ ∂ = − , there follows: 

     y y xU V Vcot
yt x t
x θ∂ ∂ ∂= = − = =

∂ ∂ ∂
.      (14) 

With respect to (27b), transverse gradient of the kinetic 
potential (26b) is nothing else than magnetic field (25b). This 
field is not a substantial quantity, but the formal feature of 
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the potential. This may be generalized to all fields. 

5.3. Kinetic Laws 

In the interesting simpler case – of the two parallel speeds, 
the substitution of the transverse speed (14) into (12) gives 
the transverse magnetic, and longitudinal electric forces, of 
the kinetic and dynamic fields (49), respectively: 

t l k d ( )  ( )nV v sin Vcos qθ θ= − + = +f i i E E .   (15) 

The former force component represents the known kinetic 
interaction of two moving charges, as the parallel convection 
currents. Apart from the carrier, it depends on the motion of 
the object or respective field detector.  

The latter force component, as the dynamic field directed 
towards the moving charge – from both its axial sides, does 
not depend on the object motion ( v ). In other words, it is 
invariant of the reference frame (connected to the detector). 
Affecting all present charges, it looks as an associated wave 
period. Subtracted from the static field (25a) – extracted 
from (9), it causes the ellipsoidal field deformation. This 
effect was somehow predicted by H. A. Lorentz [3], but 
without a needed causal explanation. 

Radial integration of the forces (15) gives mutual kinetic 
energy. In such ellipsoidal – axially symmetric – form, this 
energy depends on the angle of integration: 

2 2 ( )w mV v sin Vcosθ θ= − + .           (16) 

In the case of the equal speeds of the field carrier and its 
object ( ),=V v  the force (15) and energy (16) reduce into 
respective centrally symmetric forms: 

o ( )n= − ⋅f V v r ,  w m= − ⋅V v .        (17) 

Apart from the force symmetry, this case also satisfies the 
zero torque on a moving dipole. The comparison with (9a & 
10a) identifies the static laws as the particular cases of these 
two kinetic laws, at the speed ic  – of all the particles. This 
analogy points to a common motion along temporal axis, 
possibly related with cosmic expansion. The imaginary unit 
points to some circulation in -tr planes. 

5.4. Mass Function  
Affecting – in return – the carrier itself (at =V v  thus 

understood), the combined central force (17a) is subtracted 
from the static force (9). Thus obtained total force is evenly 
distributed about the particle surface: 

2 2 2 2 2 2 2
tot  (c )  c (1 /c )  cf n v n v n g= − = − = .   (18) 

The factor n  depends on the radius, and g  – on speed. 

Tending to zero approaching the speed c , from 2
o ocf n=  , 

where o o( )n n r=  – at rest, this force strives to expand the 
particle. Therefore, it must be opposed by supposed constant 
external pressure, the same as at rest. The balance ( of f= ) 
gives the two following relations: 

o r r g= , o /m m g= .              (19) 

The latter of them is nothing else than Lorentz’ mass 
function [3], estimated on empirical bases. It is here derived 
directly, by the simple theoretical procedure. Thus dependent 
on speed, mass is minimal when resting in a preferred frame, 
as the reference of the speed determination. 

The constant external pressure on the particle surface can 
be ascribed to the vacuum medium pressure, similar to that in 
the usual material fluids. In the same sense, the dynamic 
force in (15) may be interpreted as some acceleration and 
compression of the medium – in the front, and the opposite 
processes – behind a moving charge. 

The mass function further confirms the above reduction of 
the inertia to induction. As such, it was the known basis for 
initial indirect derivation of Einstein’s equation (10a). With 
respect to the mass differential, 2 2/(c )m mv v v∂ = ∂ −  or 

2 2c m mv v v m∂ = ∂ + ∂ , there follows the proper kinetic 
energy of a moving (charged) particle: 

k    ( )w p t vf t v mv∂ = ∂ = ∂ = ∂ ,           (20a) 

2 2( )    cv mv mv v v m m∂ = ∂ + ∂ = ∂ ;         (20b) 

2
k o o  ( )cw w w m m= − = − ,            (20c) 

2
o o (1/ 1/ )/4πεw w q r r− = − .           (20d) 

Assuming the constant mass ( 0)m∂ = , with annulment of 
the latter term in (20b), the former term integral gives the 
classical kinetic energy 2( /2 ).mv  The complete integration 
of (20a,b) gives (20c). The substitution of (10b) relates the 
kinetic energy with that of the static field between the two 
radii, of the moving and resting particle.  

5.5. Dynamic Law  
Variation in time of the kinetic energy is caused by some 

acceleration or deceleration of the carrier. In this sense, time 
derivative of (17b), partially – per ,mV  gives the power of 
the energy transfer – on the left of (21a). Though mutually 
equal, the two speeds of the same particle concern its two 
roles: of the carrier ( )qV  and object ( )qv . 

d( )  t k tw m∂ = ⋅∂ = − ⋅v V v f ,       (21a) 

d ( )t m= − ∂f V .                 (21b) 

On the other hand, the same power equals to the negative 
scalar product of the object speed and reactive dynamic force 
– in the continuation of (21a). The reduction finally gives the 
force action law (21b), in the function of the variable mass 
and its linear and/or transverse acceleration. 

Taking into account (19b), the dynamic force (21b) can be 
further elaborated, by derivation of the linear momentum, as 
the product of the three following factors: 

o o o o( )  t t t tmv v m m v mv∂ = ∂ + ∂ + ∂v v v v .     (22) 

Here v  is the speed modulus, and ov  – unit vector. With 

the mass derivative, 2 2/ /(c )m v mv v∂ ∂ = − , the two former 
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terms give inertial, and latter one – centrifugal forces: 

i o o o2  
m v v m v

v m
v t t tg

∂ ∂ ∂ ∂
= − − = −

∂ ∂ ∂ ∂
f v v v ,    (23a) 

2
o o

c o     
s mv

mv mv
t s t r

∂ ∂ ∂
= − = − =

∂ ∂ ∂

v v
f r .    (23b) 

Here or=r r  is the path curvature radius. Both forces are 
additionally scaled – by the variable mass. Instead of the two 
different masses estimated empirically [3], there are the two 
distinct functions of the same variable mass.  

The former force changes the energy of the moving body, 
and latter one strives to the strait motion. The former of them 
may be understood as the difference of two opposite dynamic 
forces from (15), being unequal at acceleration. In this sense, 
the transverse direction of the centrifugal force (23b) and its 
independence of the linear acceleration, point to its kinetic 
(magnetic) nature. The terms ‘static, kinetic & dynamic’ are 
here used in the relative senses, dependent on the observed 
object and respective level of consideration. 

6. Differential Equations 
6.1. Maxwell’s Equations 

By gradual generalization of the central fields – extracted 
from respective laws, the three relevant Maxwell’s equations 
– static, kinetic and dynamic – are obtained: 

 Q∇⋅ =D ,                    (24a) 

 t∇× = + ∂H J D ,                (24b) 

 t∇× = − ∂E B .                  (24c) 

The current field in (24b) consists of the convection and 
conduction components – in the former, and displacement 
one – in the latter terms. The remaining (trivial) Maxwell’s 
equation, 0∇⋅ =B , only speaks against existence of free 
magnetic poles and their non-vortical fields, possibly 
predicted in advance. Let us now announce the procedures 
for derivation of the three relevant equations (24), starting 
from respective central forces or fields. 

The static law (9) is resolved into electric field definition 
(4a) and its central distribution in the space around punctual 
carrying charge (25a). Obviously, this field is evenly 
distributed about each concentric sphere, with the full field 
flux through each such sphere, just equal to the charge q . 
As Gaussian theorem, this equality is generalized to each 
closed surface embracing some distributed charge. Further 
generalized mathematically by Maxwell, this theorem is ex-
pressed in the differential form (24a). 

2 /4π  εD q r E= = ,               (25a) 

2 /4π  /μH qV sin r Bθ= = .           (25b) 

With respect to relation (6a), the moving central electric 

(25a), gives the circular magnetic field (25b). This result is 
well-known as Ampere’s theorem. Convenient integration of 
the sequence of such fields along an infinite line conductor 
gives the magnetic field distribution: /2πH I ρ= , where 

/I q t= ∂ ∂  denotes the line current or respective flux, and ρ  
– cylindrical radius. The field integral along a closed contour 
embracing the current just gives (24b). 

Magnetic field is thus determined by electric current, as 
some motion of electricity. Therefore, the increasing field 
understands accelerated motion. With respect to the dynamic 
law (21b) and mass-charge relation (10b), this acceleration is 
opposed by the inertial forces, as dynamic field described by 
(24c). Otherwise, this equation is introduced on the empirical 
bases, as Faraday’s ‘static’ induction. 

With respect to the formal senses of div & curl operations, 
there may seem that (24a) concerns the static, and (24c) – 
dynamic components only, in the non-vortical and vortical 
forms, respectively, irrespective of the applied symbols, as 
the total electric field: s dε ε( )= = +D E E E . However, with 
respect to its physical sense, the displacement current ( )t∂ D  
in (24b) concerns both field components. 

6.2. Gauge Conditions 

The integration of the forces (9a&17a) gave the energies 
(10a&17b) respectively. Alike the fields – as specific forces, 
the two potentials – static and kinetic – as specific energies, 
are extracted from the obtained energies: 

 /4πεq rΦ = ,   μ /4πq r=A V .         (26) 

At least the two former of the three gauge conditions (27) 
obey the comparison of the central fields (25) and respective 
EM potentials (26). Really, the negative radial derivative of 
(26a) directly gives (25a). In the similar way, transverse 
derivative of the unidirectional kinetic potential (26b) gives 
the magnetic field (25b). Its direct substitution into (24c), 
with conditional cancelation of the curl-operators, finally 
gives the dynamic gauge condition (27c). 

s  Φ= − ∇E ,                (27a) 

 = ∇×B A ,               (27b) 

d  t= − ∂E A .              (27c) 

The origins of the two electric fields are distinct, and so 
their symbols demand respective indexes. Instead of the 
above confirmations, the three equations (27) were at least 
tacitly postulated as the gauge conditions. 

The comparison of the two potentials (26) relates them 
algebraically (28a). Respective continuity equation (28b) 
was formulated intuitively by L. Lorentz.  

 Φ= εµA V ,  tΦ∇⋅ = − εµ∂A .       (28) 

Alike the field relation (6a), (28a) similarly expresses the 
kinetic, by motion of static potentials. Each of the equations 
(28), and both in common, point to possible fluid-mechanical 
interpretation of all EM phenomena [4].  
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7. Static Relations 
With respect to above indications, let a subtle omnipresent 

medium – compressible, super-fluidic and inert – be taken as 
the substantial essence of space, including the particles, as its 
disturbances. Say that this medium is denser around positive, 
and sparser around negative poles. Tending to the medium 
homogeneity, two equipolar particles mutually repel, and 
opposite ones attract each other.  

The compressibility ( ε ) of the medium is the basis of the 
static effects, dependent on the distances of interacting poles. 
The super-fluidity and mass density ( μ ) maintain continual 
fluid flows, with kinetic and dynamic effects, dependent on 
their motion and acceleration. The product of the elasticity, 
density and pressure disturbance gives the disturbed density 
(εμ )Φ , and its motion forms linear momentum density ( )A . 
In analogy with material media, the two constants determine 
the known speed of wave propagation, 2c 1/εμ= , otherwise 
obtained from the wave equation.  

Irrespective of its cause, permanently disturbed pressure 
of a fluid is possible in a closed volume only. In free space, 
however, it would diffuse into surroundings. Therefore, the 
compressible fluid is to be substituted by the solid, dielectric, 
non-resistive and reactive medium, with respective roles of 
the three new features. In balance with the opposite structural 
forces, the medium polarization is elastically restricted. The 
non-resistance enables the smooth displacement of the static 
quantities through the medium, with the kinetic and dynamic 
effects. The reactivity – as the basis of induction – is indeed a 
more general notion than the inertia itself. 

The strain of the polarized medium, as the static potential, 
is in direct relation with electric energy density. Each of such 
central disturbances, as an elementary potential, provides the 
energy for all other such disturbances, as the objects. This 
potential directly determines the static field (29a), and this 
field itself – carrying charge (29b): 

s Φ∇ = − E ,  Q∇⋅ =D .          (29) 

Each new member of the three electrical quantities is the 
formal feature of the preceding one. The static field is the 
gradient of respective potential. The field line beginnings are 
considered as positive, and the terminals – negative charges. 
The static field mediates the relation of electricity and its 
potential. Thus introduced static quantities are the bases for 
the following definition of kinetic ones. 

8. Kinetic Relations 
8.1. Convective Relations  

Medium non-resistance enables the smooth displacement 
of the static quantities through space. In parallel with the 
current field (30b), respective motion of the static potential, 
as the pressure disturbance, forms the kinetic potential (30a), 
similar to linear momentum density: 

 Φ= εµA V ,  Q=J V .           (30) 

The product of elasticity, reactivity and strain disturbance, 
gives the equivalent density disturbance. Moving charges 
and their potentials form the two collinear kinetic quantities, 
the potential and electric current. At motion of the negative 
static quantities, the kinetic ones are opposite. 

The kinetic is determined by motion of static potentials. 
Let us now strictly derive their differential relation. Namely, 
div-operation applied to (30a) gives the condition (28b), via 
the sum of the two terms in the middle: 

 εμ ( )  εμ tΦ Φ Φ∇⋅ = ∇⋅ + ⋅∇ = − ∂A V V .   (31) 

The dilatation and convection of the static, form kinetic 
potentials. Following its own elementary carriers, the static 
potential behaves as a rigid structure, of homogeneous speed. 
The former term thus annuls, with the convective derivative, 

t⋅∇ = −∂V , in the latter term. Of course, this derivative is 
opposite to the moving field gradient. 

In analogy to Bernoulli’s effect, two parallel flows interact 
by the transverse kinetic forces, and crosswise ones – by the 
torques. These interactions, determined by the transverse 
gradient or curl of the linear momentum density (30a), are 
represented by magnetic field (32a). On the other hand, its 
own curl will be soon identified as total current field (32b), 
in the three electrical structural layers. 

 ∇× =A B ,  t∇× = + ∂H J D .        (32) 

The latter term in (32b), as displacement current, concerns 
the derivatives of both, static and dynamic field components. 
Magnetic field, as the intermediate quantity, is perpendicular 
to the other two, collinear kinetic quantities. 

Alike the pair (30) relating the potentials or carriers, the 
two fields, as intermediate quantities, can be similarly related. 
The substitution of (30a) into (32a) gives: 

 εμ ( )Φ Φ= ∇× − ×∇B V V ,  = ×H V D .    (33) 

At rectilinear motion of the rigid static potential, the 
former term in (33a) annuls. In accord with (29a), the latter 
term gives the kinetic convective relation (33b). A moving 
electric, produces magnetic field, causing transverse kinetic 
forces. In the inverse sense, curl applied to (33b), excluding 
the derivatives of the field speed, gives (32b): 

  t∇× = ∇⋅ − ⋅∇ = + ∂H V D V D J D .     (34) 

Here Q∇⋅ = =V D V J  is convection and/or conduction 
electric current, and ( ) t⋅∇ = ⋅∇ = −∂V D V D D  – convective 
derivative of the field, or displacement current. 

8.2. Relative Relations 

Apart from the carrier, the kinetic forces also depend on 
object motion, and thus demand the relative relations. The 
interaction of two kinetic potentials or respective currents, at 
least in their parallel position, may be expressed by the two 
equivalent (nominally static, but in fact – kinetic) quantities, 
the potential and respective charge: 

kΦ = − ⋅v A , k  εμQ = − ⋅v J .         (35) 
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These two relations concern the parallel flows, but speak 
nothing about the torque between two crosswise currents. 
This pair is formally inverse to (30), with the opposite signs 
and the product εμ  consequently replaced. Negative signs 
point to the transverse attraction of the parallel flows. Grad 
applied to (35a), without spatial derivatives of the object 
speed, gives the equivalent electric field: 

k   = ×∇× + ⋅∇ = ×E v A v A v B .      (36) 

Longitudinal gradient – in the latter term – equals to the 
divergence. In the case of two moving charges, with the 
divergence (31) of the kinetic potential, this term tends to 
equalize the two speeds. This is the cause of the torque acting 
on a dipole consisting of two interacting charges moving at 
different speeds. In the case of a line electric current, with 
longitudinal homogeneity of the kinetic potential ( 0∇⋅ =A ), 
the latter middle term of (36) annuls.  

At transverse object speed, when ∇ = ∇× =A A B , the 
two terms cancel each other, in accord with defective sense 
of (35). Thus, the latter term must be missed. Div applied to 
the former term gives respective charge: 

k k ε( )εQ ∇⋅ = ⋅∇× − ⋅∇×= E B v v B .        (37) 

The zero equivalent charge – at right side, points to the 
rotational motion of a free object charge around a magnetic 
field tube, here expressed by the curl of the object speed – in 
the former term. At rectilinear motion this term annuls, and 
the letter term gives (35b). This effect is also manifest as the 
torque between two crosswise currents (in the pairs of their 
adjacent legs), tending to the same courses. 

9. Dynamic Relations 
Due to the reactive medium, time derivative of the linear 

momentum density gives some dynamic forces, represented 
by respective electric field: 

d t∂ = −A E ,      t∂ = −∇×B E .         (38) 

Curl applied to (38a), with respect to (32a), gives (38b). 
Since s∇× =E 0 , index is excessive in (38b). Div applied to 
(32a) gives the trivial equation: 0∇⋅ =B . 

The potential A  and field B  are the two perpendicular 
vortical fields, with gradient perpendicular to the common 
surface. The motion in this direction convectively varies the 
potential at a resting point, and – with respect to (38a) – 
produces the longitudinal dynamic field: 

   t= − ∂ = ⋅∇ = ×E A U A B U  .          (39) 

Here U  is the transverse speed of the field and potential, 
restricted to the field line plains, where ∇ = ∇× =A A B . 
Really, in the inverse mathematical sense, curl applied to the 
external equality of (39) gives (38b): 

   t∇× = ⋅∇ − ∇⋅ = − ∂E U B U B B  .       (40) 

The speed derivatives of the rigid field – stably oriented in 
space – are missed. There is the known result: magnetic field 

moving in its own field line planes induces dynamic forces, 
represented by respective electric field. 

With respect to (35), a punctual charge moving along a 
current carrying conductor, suffers transverse kinetic forces 
(36). Irrespective of (39), this conductor moving in its own 
direction does not cause any inductive effect.  

The kinetic (33) and dynamic (39) relations just represent 
the convective Thomson’s pair (6). With respect to the above 
procedures, neglecting spatial derivatives of the field speeds, 
this pair is restricted to the uniform rectilinear motion. These 
two relations thus seemed to be problematic. In spite of their 
simple forms and practical evidences, they have so far been 
tacitly missed from the standard EM theory. 

10. Field Tensor 
The static and kinetic equations (24a,b) in componential 

forms represent the set of the four partial differential 
equations. With the general ordinal indexation, this set is 
expressed by the following tensor equation: 

n n mn mR J∂ =Σ .                  (41) 

Here 0 1 2 3m , , ,=  is the ordinal number of the equations, 
with the summation of their terms per the index n m≠ . The 
electric charge carried by the known cosmic expansion along 
temporal axis forms respective current component ( 0J ). The 
rational field components ( mnR D,H= ) are identified by the 
following tensor, as a bi-vector: 

0

0

0

0

 

x y z

x z y
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y z x

z y x

D D D

D H H
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D H H

D H H

 

+ + +

− + −

− − +

− + −

 
 
 
 
 
  

= .       (42) 

This tensor expresses the field vortices of all components, 
and affirms 4D space, as the ambient of EM quantities. The 
six term pairs accord to the six planes, as the field locations. 
The first row and column concern the ‘longitudinal’ planes 
( tx , ty , tz ), with electric field. The remaining sub-tensor 
accords to ‘transverse’ planes ( xy , yz , zx ), with magnetic 
field. EM potentials, as 4D vector, belong to the four axes: 
static to t , and kinetic to x , y , z . The field carriers, as a 
tri-vector, belong to respective three 3D subspaces. The 
projection into 3D space ( )xyz  reduces temporal axis into 
the usual scalar time, and respective electric quantities (from 

-tr planes) lose this one dimension. 
A similar tensor equation is obtained from the trivial and 

dynamic Maxwell’s equations. In absence of free magnetic 
poles, this equation lacks in the free term. The tensor now 
consists of the two force fields ( mnF E,B= ). It concerns the 
magnetic level of observation or – of respective medium 
structure, with magnetic field in the longitudinal, and electric 
– in transverse planes of 4D space.  

Apart from the three relevant Maxwell’s equations (24), 
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relating the fields with their carriers, and the three respective 
gauge conditions (27) – relating the potentials with the fields, 
– as the successive ranks of EM quantities, the carriers and 
potentials can be related directly, by the two Riemannian, 
second order differential equations:  

2 2εμ /εt QΦ Φ∂ −∇ = ,              (43a) 

2 2εμ μt∂ − ∇ =A A J .                (43b) 

With respect to the condition (31), the equation (29b) 
applied to the sum of (29a & 38a) relates the two electric 
quantities, the charge and static potential (43a). According to 
(29a), (43a) multiplied by the product εμV  just gives (43b). 
The temporal terms of these equations accord to dynamic, 
and spatial ones – to static electric fields. As if, Maxwell’s 
equations understand both, static & dynamic electric fields, 
thus announcing their unity in -tr planes. 

11. EM Energy 
The volume densities of electric and magnetic energies at 

disturbed media are determined by the displacements of the 
two objects, in respective external fields: 

eW Q∂ = ⋅∂ = ⋅∂ = ⋅∂F R E R E D ,         (44a) 

m ( )  ( ) W∂ = × ⋅ ∂ = ⋅ ∂ × = ⋅ ∂J B R B R J B H .    (44b) 

The objects (electricity & current) are displaced in electric 
and magnetic fields, respectively. The referent zeroes accord 
to the undisturbed media. In the pairs of the collinear similar 
fields, the dot products turn into ordinary ones. The simple 
integrals of the external terms thus finally give: e /2W ED= , 

m /2W BH= . At the complex material media these densities 
are distributed amongst the vacuum and respective material 
structural layers (45). Namely, the vacuum factors disturb the 
formal symmetry of these two equations. 

2
o o (ε ) ε E PE⋅ = ⋅ + = +E D E E P ,       (45a) 

2
o o o μ ( )  μ μH MH⋅ = + ⋅ = +B H H M H .    (45b) 

The moving fields carry their own energies. In this sense, 
dot multiplication of the kinetic Maxwell’s equation by E , 
and of dynamic one – by H , with subtraction of the latter 
from former results, gives a 5D continuity equation, with 
spatial, temporal and substantial terms:  

( )  0tW∇⋅ × + ∂ + ⋅ =E H E J ,            (46a) 

2  c= × = ×S E H D B .               (46b) 
The equation (46a) is well-known as Poynting’s theorem. 

Its temporal term expresses the energy density variation, and 
substantial one, ,⋅ = ⋅E J F V – the power field of the energy 
dissipation. This term itself may be understood as the energy 
dislocation along fifth axis, from one into another structural 
layers. Cross product of the two fields, in the spatial term, 
represents the current field of EM energy (46b). According 
to Einstein’s equation, the product of the two total fields is 

equivalent to the linear momentum density. 

12. Moving Fields 
Instead of the field variation – in the differential equations, 

algebraic relations treat their motion. A moving electric, thus 
gives magnetic field (47a), affecting other moving charges – 
by the equivalent electric field (47b): 

s εH VE sinθ= ,     k s εμ sin E vV E θ= − .    (47) 

Here θ  is the polar angle between the moving field and 
its speed. The magnetic field is perpendicular to the plain of 
electric field and its motion. The longitudinal object motion 
gives transverse kinetic field, and vice versa. 

On the other hand, with respect to (30a & 29a), the kinetic 
potential axially inhomogeneous as (28), moving in its own 
direction causes the dynamic induction: 

2
d s l εμ cos t E V θ= −∂ = ⋅∇ = −E A V A i .     (48) 

Longitudinal motion of the kinetic potential is equivalent 
with transverse contraction of the magnetic field (14). The 
obtained dynamic field, independent of the object speed, is 
directed axially, towards the moving carrier (15). It reacts on 
the increasing polarization of the medium – in the front, and 
decreasing – behind the moving charge.  

Transverse kinetic field (47b) affects the moving charges 
only, and dynamic one (48) – all the present charges. The 
moving charges are thus affected by their sum: 

k d s t lεμ ( sin cos )E V v Vθ θ+ = − +E E i i .     (49) 

In the resting frame ( 0)v = , this is reduced to the letter 
term. In the frame of the object moving with carrier ( )v V= , 
vector sum of the two components is subtracted from the 
moving static field, thus scaling this field:  

2 2
tot s s(1 εμ )  v g= − =E E E .            (50) 

This total field also affects – in return – the field carrier 
itself. The kinetic forces (47b), affecting the moving objects 
only, are scaled by the factor 1 εμh vV= − . 

Moving EM fields carry by themselves their energies. The 
convective relations (6), substituted into (46b), express the 
electric and magnetic energetic currents: 

e ( ) ( )= ⋅ − ⋅S E D V V E D ,            (51a) 

m ( ) ( )= ⋅ − ⋅S H B U U H B .            (51b) 

The former terms, as if – of the double energy densities – 
invariant of the field speeds, form the main currents, flowing 
at the field speeds. Therefore, the moving energies can be 
increased by extension of their spatial domains only. The two 
latter components flow along the moving fields: the carriers 
accept the energies in front, and release behind themselves, 
thus maintaining the moving amounts. 

In the case of a charge moving with its fields, the latter 
term in (51b) annuls, owing to the perpendicular directions 
of the circular magnetic field and its transverse contraction. 
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The three remaining terms (52a) give (52b). 
( ) ( ) ( )= ⋅ − ⋅ + ⋅S E D V V E D H B U ,       (52a) 

2 2( )g ED sin θ= −S V U .            (52b) 

The relation (13a) – of the two field speeds (  & )U V  – is 
also taken into account. The current is resolved into the two 
components, longitudinal & transverse. The apparent double 
value of the moving energy density (51a) is finally reduced 
to the former term (52b). In the function of the factor g, the 
latter term tends to zero towards cV = . 

13. EM Waves 
Apart from the longitudinal medium undulation, its three 

features and respective kinetic forces maintain transverse 
oscillation too, perpendicularly to the kinetic potential. The 
longitudinal waves of electric currents in line conductors are 
followed by transverse waves of surrounding fields. The two 
mutually related waves are inseparable, with cyclic 
alternation and mutual support of their fields. At dielectric 
media, without free electricity and respective current, (43) 
reduce into respective wave equations, with the common 

solution: cr t= , 2c 1/εμ= . The radius ( r ) just concerns 
the wave cross-section, by the plain of propagation.  

With respect to Poynting’s relation (46b), the speed of EM 
wave propagation equals to the ratio of the vacuum and total 
fields products, perpendicular to propagation: 

2 / /  c EH DB W M= = .            (53) 
The field products express the flows of the wave energy 

and equivalent mass. Compared in natural units, this mass is 
equal or greater from the propagating energy. 

With respect to closed causal loop of the wave propagation, 
magnetic field eliminated from (6) gives (54). At least in the 
transverse waves, the latter term annuls, thus reducing this 
equality into the conditional identity (55a). 

εμ[( ( ) ]= ⋅ − ⋅E U V)E E U V ;            (54) 

 εμUV=E E , 2 1/εμ cUV = = .        (55) 

The last result (55b) points to the two separate, possibly 
different speeds of the two fields, with the effective speed of 
the wave energy propagation, as their geometric average. At 
least in the case of the transverse fields in respective waves, 
the latter terms in (51) annul, and two former ones represent 
the same current of EM wave energy: 

( ) ( )⋅ = = ⋅E D V S H B U .              (56) 

With expected equality of the vacuum energy densities 
(57a), this equation directly gives (57b), additionally relating 
the two field speeds. By help of their above product (55b), 
the two speeds are finally determined (58). 

2 2
o oε  μE H= , r rε μV U= ;          (57) 

o rc /εV = , o rc /μU = .            (58) 

Substituted into (55b), they give the refraction factor, 

o r rn c /c ε μ= = , as the ratio of the two speeds (through 
vacuum and matter). The arithmetic average of the two sides 
of (56) explains the wave propagation: 

2 2
o o o o o c (ε μ )/2 cS E H W= + = .        (59) 

This result points that the vacuum layer only transfers the 
wave energy, just at the standard speed oc . Material layers 
temporarily retain respective fractions of the wave energy, 
thus increasing its density, and decreasing the effective speed 
of propagation. The separate speeds of the two fields (58) are 
the more specific, effective physical quantities.  

14. Moving Media 
Let us consider the processes around a third medium body 

moving in vicinity of the field carriers, through their external 
EM fields. These two fields statically induce material fields, 
polarization and/or magnetization: 

o r ε  (1 1/ε )  j= − = − =P D E D D ,        (60a) 

o o rμ  μ  (1 1/μ )  k= − = − =M B H B B .     (60b) 

The asymmetry of the SI relations conceals the fractional 
factors j  & k . The symmetry is better in the natural units 

o o(ε 1 μ )= = . The incorrect Fresnel’s factor formerly used, 
2f 1 1/n= − , is just reduced into one of these two factors, at 

exclusively dielectric or magnetic media.  
The associated surrounding fields, moving in common 

with their carriers, produce dissimilar convective inductions, 
added to respective given fields: 

' j( )= + ×H H u D , ' k( )= + ×E E B u .     (61) 

Here u  is the moving medium speed. On the other hand, 
carrying the accumulated wave energies, the moving media 
also influence the wave propagation: 

e m o'  (j k )   ( )W W W W= + + = + −S S u S u .   (62) 

Here S  is the energetic current through resting, and 'S  
– with moving medium. The two factors substituted into the 
former, give the latter result. This logical explanation just 
obeys the well-known Fizeau’s result, with running water as 
the moving medium. Possible transverse speed component 
would distort the direction of propagation. 

15. Summary 
With respect to the moving entities – carrying & object 

conductors, charged particles and respective disturbances of 
the medium, three respective basic sets – algebraic relations, 
central laws and differential equations – are here introduced 
and mutually related. On the bases of the field definitions 
and respective empirical facts, the two algebraic pairs – 
convective & relative ones – are introduced, with further 
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examination of their application. With the known – static, 
kinetic central law is formulated in its more general form, by 
help of the algebraic set. On their own bases, the force action 
law is identified as the dynamic law itself. With reduction of 
inertia to induction, the known mass function is derived and 
explained. Einstein’s equation just appears as the alternative 
version of the static (Coulomb’s) central law. 

By mainly known generalizations of the central fields and 
respective energies, the three relevant Maxwell’s equations 
and respective gauge conditions are introduced. With respect 
to the mutual relations of the two potentials, the analogous – 
dielectric – interpretation of EM phenomena is predicted and 
demonstrated. Starting from the static potential, with the 
electric polarization of the indispensable vacuum medium, 
the kinetic potential is interpreted as the linear momentum 
density of such disturbances. The two EM fields are found as 
the formal features of the potentials. Moreover, the charge 
and current, as the apparent carriers, are reduced to formal 
features of the fields. By the way, the three relevant algebraic 
relations are confirmed in return. 

Concerning moving line conductors, with their electricity 
and currents, the algebraic relations phenomenally show 
their kinetic senses. With respect to accelerated electricity in 
a conductor, the known – so-called static – induction reveals 
its dynamic essence. The process of the polarization of the 
medium around a moving charged particle thus causes the 
dynamic force component – in the kinetic central law. In the 
opposite sense, the centrifugal force, in the dynamic law, is 
here interpreted as the kinetic effect of magnetic quantities. 
Though the static and dynamic components of electric fields 
are initially distinguished, there appears their essential unity 
in 4D space. Electric kinetic quantities represent the formal 
substitutes of the magnetic force action. 

By the fillings in of the inherited gaps, EM theory is here 
completed and, as such, affirmed in the crucial applications. 
Apart from the central laws, the elementary applications of 
the algebraic equations are demonstrated in the last four 
sections. Unknown or neglected in the standard presentations, 
they are here emphasized as the alternative approach to the 
fundamentals of EM theory, convenient at consideration of 
moving bodies. Not only that this approach confirms all the 
known classical results, but essentially contributes to their 
formal completion and rational interpretations. With better 
understanding of EM waves and their propagation, moving 
media are here treated and interpreted. Poynting’s theorem is 
finally identified as a 5D continuity equation, announcing a 
structural dimension, as the fifth axis. 

16. Conclusions  

1. Algebraic relations are here reaffirmed, re-examined 
and successfully applied. 2. By help of the field motion, the 
general kinetic law is formulated. 3. The central laws firmly 
mutually relate some, as if so far fully independent, results: 
Coulomb’s law, Einstein’s equation, classical radius & EM 
mass, EM induction, force action law, inertial & centrifugal 
forces, mass function, mass defect, associated waves and 
ellipsoidal field deformations. 4. The standard differential 
equations are obtained in the axiomatic order, starting from 
the static potential. 5. The three basic sets supplement each 
other in the interpretations and applications. 6. A number of 
the classical experimental results is consistently explained. 7. 
The principle of relativity and assumption of elementary 
mass are convincingly called in question. 
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