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Abstract  Integral equation for electric field and potential in multilayer media is presented in this paper. Potential 
distribution function at the boundary surface is obtained as the solution of the integral equation. In some cases it is possible 
to obtain analytical solution of the equation. Such example is problem of a constant line charge parallel to dielectric 
cylinder having circular cross-section. Combining this solution with conformal mapping, the potential distribution at the 
surface of a square cross-section dielectric cylinder parallel to the line charge is determined. So-called "sliding" 
phenomenon, which is noticed in this case, is also described in the paper. In addition to that, approximate potential 
distribution at the boundary surface is determined in polynomial form, as the solution of above-mentioned integral 
equation. 
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1. Introduction 
There are not many problems where electric field and 

potential distribution can be determined analytically, in 
closed form. Usually, it is possible to do so in analysis of the 
systems with certain symmetry features or the systems in 
which boundary surface completely or partially coincide 
with coordinate surface of used coordinate system. Generally, 
such problems are solved approximately, using appropriate 
numerical procedure. Usually, the integral equations with 
boundary surface charge distribution as unknown function 
are used. Integral equation analysed in the paper, has 
potential distribution at the boundary surface as unknown 
function. It is formed using Poisson's integral for circle[1-2] 
and boundary condition for normal component of electrical 
displacement at the boundary surface. In such a way, 
boundary conditions for tangential component of electric 
field and potential are automatically satisfied. Previously 
Poisson integral formula was revisited in[3]. 

Exact analytical solution of the integral equation for 
system formed by constant line charge parallel to the 
dielectric cylinder having circular cross-section is used for 
approximate determining of potential distribution of the 
similar system, with the dielectric cylinder having square 
cross-section. Besides, Schwartz-Christoffel's transformati
on is used[4, 5]. After mapping interior and exterior area of  
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cylinder, the positions of the neighbouring interior and 
exterior point do not coincide, what presents "sliding" 
phenomenon. 

2. Deriving Integral Equation 
Integral equation for boundary surface potential is the 

result of the analysis carried out during determining Green's 
function for the potential in the system constituted of 
constant line charge placed parallel to the infinitely long 
dielectric domain of arbitrary-shaped cross-section (Fig. 1). 
The dielectric in above-mentioned domain is of permittivity 
ε1, while the system is placed in media of permittivity ε2. The 
potential distribution at the infinitely long domain surface is 
V(C). 

 
Figure 1.  Plan-parallel electrostatic system 

In order to derive integral equation for potential 
distribution at the boundary surface, two independent 
electrostatic systems are considered. They are formed using 
complex functions ( )wfz s=  and ( )wfz u= , which map 
contour C from z -plane to the circle having radius A in w 
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-plane. In that way, function ( )wfu  maps interior area (1) 

of cylinder to the interior of the circle in uj
uu e ψ= Rw

-plane, and ( )wfs  cylinder exterior area (2) to the exterior 

area of the circle in sj
ss e ψ= Rw -plane, as it is presented 

in Fig. 2a-b. 

 

uw -plane 

a 

 

sw -plane 

b 

Figure 2.  Electrostatic systems formed using complex functions ( )wfu  

and ( )wfs  

In general case, application of those complex functions, 
causes so-called "sliding" phenomenon. "Sliding" can be 
described in the following way: Let the point M, placed on 
the surface of the dielectric cylinder in z -plane, be mapped to 
the points Ms and Mu in sw  and uw -plane, respectively. 
Both points, Ms and Mu are placed at the circle of radius A, 
but on different positions. This problem can be solved by 
analysing two independent electrostatic systems in w -plane. 
One is formed of constant line charge q′ placed in point 

sq sq
sqjw R e ψ=  parallel to the cylinder having circular 

cross section of radius A with V2(ψs) as potential distribution 
at the surface (Fig. 2a). Circular cross-section dielectric 
cylinder having radius A presents second system. Dielectric 
permittivity is ε and potential distribution at the surface is 
V1(ψu) (Fig. 2b). Since there is "sliding", i.e., the same point 
at the surface (with unique potential value) is mapped on 
different points using ( )wfu  and ( )wfs  once can 

conclude V1(ψu)≠V2(ψs). Potential distribution in the systems 
presented in Fig. 2a-b, can be determined using well known 
Poisson's integral for the circle[1-2] as 
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for system from Fig. 2b (potential at the points defined with 
AR >s ). In expressions above the following is valid: 

sj
ss e ψ= Rw , uj

uu e ψ= Rw , θ= jerz , 
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22
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Also, the constant 0φ  value depends on the referent point 
choice and D parameter is obtained using quasistationary 
image theory for cylindrical perfectly conducting mirror. It is 
important to emphasize that expressions (1)-(2) represent the 
potential inside (1), i.e. outside (2) circularly-shaped 
cross-section boundary surface in Fig, but not at the surface. 
That distribution is V1(ψu), i.e.V2(ψs). In order to determine 
potential distribution in system presented in Fig. 1, it is 
necessary to express coordinates Ru, ψu (Fig. 2a) and Rs, ψs 
(Fig. 2b) using coordinates r and θ in z -plane (Fig. 1). 
Boundary conditions for potential and tangential component 
of electric field are automatically satisfied at the cylinder 
surface, and boundary condition for normal component of 
electrical displacement is given as 

( ) )(gradˆgradˆ s22u11
+− =φε==φε ARnARn ,    (3) 

where n̂  is normal ort on the boundary surface. In this way, 
it is possible to form integral equation having potential 
distribution at the boundary surface as unknown function. 

3. Examples 
3.1. Example 1 

In the following text, procedure for deriving and solving 
(analytical and numerical) described integral equation is 
presented. That procedure is applied to the system formed 
by line charge q′ placed parallel to dielectric cylinder 
having circular cross-section of radius a. Distance between 
line charge and cylinder axis is labelled with d (d > a) and it 
is assumed that dielectric permittivity in cylinder is ε, as it 
is shown in Fig. 3. Cylindrical coordinate system with r, θ 
and z coordinates is placed so that z -axis coincides with 
cylinder axis. Line charge q′ is situated on direction defined 
with r = d, θ = 0. Now, taking in consideration (1) and (2), 
potential distribution can be expressed as 
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In expressions (4) and (5) the following is valid: 
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




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With V(θ) the function of potential distribution at 
boundary surface is labelled. Constant ϕ0 can be determined 
using condition that electric scalar potential at the axis is the 
same as in infinity ϕ (→0) = ϕ (→∞), and in that way is 
obtained, 
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In this case is 
ϕ0 = 0.                    (7) 

Applying expression (A5) from Appendix 1 (on (4) for 
arR /=  and on integral part in (5) for raR /= ) and 

expression (A7) on logarithmic part of (5), (4) and (5) are 
developed in Fourier's series. Now, potential can be 
expressed as  
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in interior, and  
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in the exterior of the cylinder. The expression (9) is Foureir's 
series of the expression (5) which has closed form and it will 
be applied at the boundary surface defined with ar = . The 
singularity for ∞→r  is the result of developing closed 
form (5) into series (it does not make problem in closed form 
(5)). 

Substituting two previously presented expressions and for 
r = a in (3), integral equation for potential distribution at 
electrode surface is obtained, 
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Solution of integral equation (10) is assumed as the sum 

( ) ( )
n

n
n

n d
a

n
q'VnVV 








ε+επ
=θ=θ ∑

∞

= 211
,cos .   (11) 

The coefficients ,...2,1, =nVn (11) are obtained after 
applying the solution of the integral 
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on integral in (10) and comparing left and right side of the 
expression (10). Using (A7), the solution for the potential 
distribution at the cylinder surface is expressed in the closed 
form, 
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Function of potential distribution (12) is identical to the 
solution obtained by using image theorem in cylindrical 
mirror. Potential distribution at the surface of the cylinder 
presented in Fig. 3, is shown in Fig. 4 for d/a=1.5. 

 
Figure 3.  Dielectric cylinder and line charge 

 
Figure 4.  Potential distribution at dielectric cylinder surface 

3.1.1. Approximate Determining of Potential Distribution 

It is also possible to determine potential distribution 
numerically, where it is assumed that potential distribution 
has some other form. For example, for system presented in 
Fig. 3, potential distribution at the cylinder surface, (taking 
in consideration its symmetrical features), can be assumed in 
polynomial form 
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nCV
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Besides, considering condition that value of the electric 
field tangential component at the surface point defined with 
θ = 0 is zero, it is obtained that C1 = 0. The same condition 
for point defined with r = a, θ = π results with the following 
equation 

.0
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n
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In order to explain procedure for numerical determining of 
coefficients Cn, n = 0,1,2,...N, potential distribution (13) will 
be expressed as  
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Where 
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The value of coefficient C0 = V (θ = 0) depends on the 
referent point choice. It can be calculated from condition (7) 
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using expression (6), after determining coefficients Cn, n = 
1,2,...N. Calculation of those coefficients is based on the 
procedure described in the following text. 

After substituting (16) in expression (10), carrying out 
some simple mathematical transformations and using C1 = 0, 
it is obtained 
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Since there are N − 1 unknown coefficients (Cn, n = 2,...N), 
system of linear equations constituted from equation (14) 
and total N − 2 equations given with (17) (m =1,...N − 2), as 
solution gives coefficient values Cn, n = 2,...N. 

Exact and approximate potential distributions on upper 
half of dielectric cylinder surface for different degree of 
approximation (13) and d = 1.5a are presented in Fig. 5. For 
degree higher than 5, approximate distribution is very close 
to exact solution. 

 
Figure 5.  Potential distribution 

 
Figure 6.  Absolute value of relative error of approximate potential 
distribution 

Absolute value of relative error 

exact

eapproximatexact

V
VV −

=δ  in determining potential 

distribution at upper half of cylinder surface is presented in 
Fig. 6. Analysing Fig. 5 and 6, it can be noticed that error has 
maximum in the vicinity of the surface point where potential 
value is 0. That error maximum is local, and exists on very 
narrow part of electrode surface. 

3.2. Example 2 
The square cross-section dielectric rod, having side a is 

analysed. Dielectric permittivity of he rod is 1ε  and line 
charge q'  is placed near the rod, on direction dr =  
( ad 5.0> ), 0=θ  (Fig. 7). The permitivitty of surrounding 
media is ε2. 

 
Figure 7.  Dielectric rod and line charge 

The potential of the system can be expressed as 
( )drGq ,,' int01 θ+ϕ=ϕ , inside, i.e.       (18) 

( )drGq ,,' ext02 θ+ϕ=ϕ , outside the rod.    (19) 
In (18)-(19), ( )drG ,,int θ  labels Green function for the 

electric scalar potential of the line charge from Fig. 7 inside 
rod, while ( )drG ,,ext θ  is the corresponding Green 
function outside the rod. Constant ϕ0 can be determined 
using condition that electric scalar potential at the axis is the 
same as in infinity ϕ (→0) = ϕ (→∞). Since there are not any 
appropriate Green functions, the problem has been solved 
applying approach which includes complex function. 

Using Schwartz-Christoffel's transformations 
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rod interior is mapped to interior of unit circle (function (20)), 
and exterior area of rod is mapped to unit circle exterior 
(function (21)) in w -plane[7]. In this way, problem from z
-plane is reduced to analysis of the system presented in 
Example 1. Obviously, complex functions (20) and (21) 
correspond to the functions ( )wfu  and ( )wfs  introduced 
in second chapter of this paper, respectively. As it has been 
already explained, to determine potential distribution in the 
system presented in Fig. 7, it is necessary to express complex 
coordinate w  using radial coordinates r and θ in z -plane. 
In this case, for complex function (20) and (21), that is 
possible to carry out this numerically. Among others, there is 
procedure based on iterative process, proposed in[7]. For 
mapping point defined with kzz =  from exterior of square 
cross section rod, corresponding value of complex 
coordinate kww =  in w -plane is obtained from iterative 
procedure as 
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number. In similar way, it is possible to derive iterative 
procedure for mapping interior of the rod ( z -plane) from Fig. 
7 to unit circle interior ( w -plane), 
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Figure 8.  "Sliding" 

Convergence of described iteration procedures (22) and 
(23) depends on appropriate choice of starting value ( )0

kw . 
For largest part of space, described procedures are 
convergent if starting values are chosen as 

( ) ( ) a12 ks
0

k zSw = (procedure (20)), and 
( ) ( ) azSw ku
0

k 12=  (procedure (23)). In areas where those 
start values do not provide convergence, it is necessary to 
chose start values using some other criteria. It can be 
"searched" for starting solutions in area where they are 
expected to be found. In this case, for boundary surface, the 
facts that square cross-section is mapped to unit circle and 
that corresponding points in w -plane are known for the 
square edge in z -plane, are used. So, it is possible to reduce 
complex function to real function of one argument. Then, 
numerical value of inverse function can be determined and 
used as starting value that provide convergence of iterative 
procedures (23) and (23). In this case, in previous text 

described "sliding" phenomenon can be noticed. It is 
illustrated in Fig. 8. The surface points placed between A and 
B on the rod are not mapped to the same points on unit circle 
using complex functions (20) and (21). Mappings (20) and 
(21) map points A and B to the same points. That could be 
expected, concerning existing symmetry and cross-section 
geometry. 

Potential distribution at the rod surface (Fig. 7), using 
analytical solution (12) for system from Fig. 3 and complex 
functions (20) and (21) for d = a, is presented in Fig. 9. 
Because of "sliding", for different complex functions, 
different potential distributions are obtained. 

 
Figure 9.  Potential distribution 

 
Figure 10.  Approximate potential distribution when complex function (20) 
is used 

 
Figure 11.  Approximate potential distribution when complex function (21) 
is used 
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In Figs. 10 and 11 approximate potential distributions are 
presented, when above described procedure for approximate 
determining of potential distribution in polynomial form is 
used. The approximate distributions are compared with 
functions obtained using exact solution (12), when complex 
functions (20) and (21) are applied. The degree of 
approximation (13) is 5=N . 

4. Conclusions 
Integral equation for electric field and potential in 

multilayer media is presented in this paper. Solution of the 
integral equation is potential distribution at the boundary 
surface. Analytical solution of the equation can be obtained 
in some cases, as it is the problem of constant line charge 
parallel to the dielectric cylinder having circular 
cross-section. Using this solution in combination with 
conformal mapping, the potential distribution at the surface 
of square cross-section dielectric cylinder near parallel line 
charge is determined. Besides, the so-called "sliding" 
phenomenon is described. The procedure for approximate 
determining of potential distribution at the boundary surface 
is also presented. Potential distribution function is 
approximately determined in polynomial form. This 
procedure can be used in the solution for the transmission 
line with non-uniform or magnetoelectric filling[8] and will 
applied for the calculation of complex microwave devices. 
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Appendix 1 
The sum of complex geometric series is 
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2
0 cos21

cos1cos
RR

RnR
n

n

+θ−

θ−
=θ∑

∞

=
, i.e.     (A2) 

2
1 cos21

cos11cos
RR

RnR
n

n

+θ−

θ−
=+θ∑

∞

=
.     (A3) 

Consenquently is 

2
1 cos21

cos11cos
RR

RnR
n

n

+θ−

θ−
=+θ∑

∞

=
, i.e.    (A4) 

2

2

1 cos21
1

2
1

2
1cos

RR
RnR

n

n

+θ−

−
=+θ∑

∞

=
     (A5) 

Appendix 2 
Integrating expression(A1) obtaines 
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where is θ= jeRz . 
Real part of previous expression has the form 
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