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Abstract  Existence of the added waves in double-layered cylindrical guiding structures is considered in the article. 
The added waves ensure completeness of solutions of boundary value problems for layered guiding structures. 
It is shown that eigenvalues, corresponding added waves (or adjoint waves), can be detected at points of the Jordan’s 
multiplicity of the wavenumbers. At these points characteristics of two normal waves joint and complex waves originate. 
The added waves define frequency boundaries of a complex resonance which originates as a result of a exciting of couple 
of complex waves. 
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1. Introduction 
The question about added waves of guidingelectrodynam

ics structures is emerged in connection with boundary value 
problems: 

L(u)=0; Uν=0                (1) 
(L – Differentiation operator, Uν=0 – system of boundary 

conditions, ν=1,2,3 … n), 
for which we can formulate added boundary value 

problems, consisting of differential equations: 
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where q=1,2 …k, and boundary conditions: 
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Functions ϕq  in Eq. (2) and Eq. (3) are called the added 
(or adjoint) functions. Functions ϕq are added to the function 
ϕ0. These functions obey Eq. (2) and boundary conditions Eq. 
(3) for eigenvalues λ=λ0. ϕ0 – the solving of the boundary 
value problem (1). 

Solutions of the adjoined boundary value problems 
describe the so-called added waves or adjoint waves 
(AWs)[2]. In[3], it was showed that AWs origin in the points 
of the Jordan’s multiplicity of the wavenumbers of normal 
waves. AWs ensure the completeness of the system of 
normal waves, which are violated in these points.  
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Completeness of system of normal waves is used for 
solving of diffraction problems, intended for the calculation 
of functional units for microwave and extremely high 
frequency. Completeness of diffraction basis determines 
correctness of solutions of the boundary value problem. 

Features of AWs influence characteristics of complex 
resonance[4-6], which originates in guiding structures (the 
result of pair interaction of complex waves). 

A steepness of front of frequency characteristic of a 
band-pass filter on complex resonance[7] depends on 
accounting of AWs.  

Characteristic property of AWs is linear dependence of 
their amplitudes from longitudinal coordinate. First 
particular information about results of solution of the added 
boundary value problems for multilayer guiding cylindrical 
structures was perhaps presented in[8-10]. 

 
Figure 1a.  The round double-layer shielded waveguide 
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2. The Boundary Value Problems for 
Added Waves of Double-Layer 
Guiding Cylindrical Structures 

In this paper guiding cylindrical structures with two 
concentric layers are discussed. The article deals with a 
round shielded waveguide with two concentric layers (Fig. 
1a) or a round dielectric waveguide placed in infinite  
homogeneous medium (Fig. 1b).  

These structures are used in functional units for 
microwave, extremely-high frequency and optical devices.  

Electromagnetic fields in these guiding structures are 
described by longitudinal components of the Herz vectors of 
electric and magnetic fields, which obey the Helmholtz 
equation: 
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Figure 1b.  The round dielectric waveguide 

where r, z are the cylindrical coordinates.  
A solution of this equation that corresponds to the AWs 

has the following form: 
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Functions incoming in Eq. (5) obey equations: 
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( ) ( ) ( )2f z f z f zβ′′ + = −      (8) 

( ) ( )2 0f z f zβ′′ + =       (9) 

α and β are the transverse and longitudinal wave numbers,  
that are related as: 

 
222 βαεµω +=  

Eqs. (7) and (8) are added to Eqs (6) and (7), respectively. 
R(r) is either the Bessel function (for the radial field 

profile in the inner layer of the guiding structure) or a 
combination of cylindrical functions of the 1st and 2nd kind 
obeying the corresponding (Dirichlet or Neumann) boundary 
conditions on the shield (for the radial field profile in the 
outer layer) or the Hankel function for the field in the outer 
infinite layer of a round dielectric waveguide. 

The Herz vectors (5) are written[5] in the following form: 

where q = 1, 2 is the layer number ( ),e m
nq qR rα are the solutions of Eq. (6); 
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Function 

( ) ( ) ( ), ,e m e m
nq nq q nq qr C R r rϕ α ρ α= +  

is the added general solution of Eq. (7); Jν and Yν are the cylindrical functions of the 1st and 2nd kind. 
Function (10) is a solution of the added Helmholtz equation. In right part of the equation is expression: 
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Function (10) will obey the normal Helmholtz equation, if function ( )rqnq αρ  is a solution of the added Bessel equation: 
Using the boundary conditions formulated as we arrive at a system of equations that determine functions dependent on the 

longitudinal coordinate. Equating the terms linearly dependent on the longitudinal coordinate z, we obtain a system of four 

linear homogeneous algebraic equations with respect to coefficients e
nD 2,1  and 1,2

m
nD : 
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Terms of these functional equations, which haven’t coordinate dependence, (fulfilment of condition (11) reduce to system 

of linear inhomogeneous algebraic equations with respect to coefficients 1,2
e
nC  and 1,2

m
nC : 

The main determinant of a system (13) coincides with the determinant of a system (14). If  determinates equate zero, we 
will obtain dispersion characteristics of normal waves of double-layer guiding cylindrical structures such as: a round 
double-layer shielded waveguide and a round open dielectric waveguide. 

Nontrivial solutions of the system of Eqs. (13) (coefficients e
nD 2,1  and 1,2

m
nD ) are substituted into the system of Eqs. (14), 

which is solved with respect to coefficients 1,2
e
nC  and 1,2

m
nC . 

So long as, the boundary conditions (12) must be executed, the system of Eqs. (13) and (14) must have common solutions. 
The system of Eqs. (13) will have got nontrivial solutions when determinant of the system is zero. As far as the main 
determinant of the system  (14) coincides with the main determinant of the system (13), the system (14) can have got the 
added solutions when the additional determinants equal zero. The wavenumbers of the added waves are determined by joint 
solutions of three equations: 

First equation: 
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coinciding with dispersion equation of normal waves of double-layer guiding cylindrical structures, and two additional 
equations: 
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Eqs. (15), (16a) and (16b) are solved together with 
equations: 

2 2 2
1 1 1ε µ ω α β= + , 2 2 2

2 2 2ε µ ω α β= +   (17) 

Solutions of the dispersion problem for AWs are 
represented by compatible solutions of the system of three 
Eqs. (15), (16a) and (16b). 

From boundary conditions (12), we can obtain: 
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Relations (18) enable to exclude coefficients 1,2
e
nD  and 

1,2
m
nD  from Eqs. (16 a,b) and these equations are reduce to 

transcendental form. 
The search of wave numbers of AWs comes to compatible 

solutions of three transcendent Eqs. (15) and (16a,b). Wave 
numbers are related by Eqs. (17).  

From (Eq. 18), if 0→h , coefficients 02,1 →m
nD . If 

the condition 121 == e
n

e
n DD  is executed, solution (10) 

will satisfy normal Helmholtz equation. A numerical 
analysis shows that this variant may be obtained. Solutions 
of the dispersion problem, corresponding to the AWs, are 
placed into the area of evanescent waves (at points of the 
jointing of characteristics of two normal waves, Fig. 2, point 
A). At this point of the Jordan’s multiplicity of the 
wavenumbers of normal waves the solution of the added 
boundary value problem is evaluated. 

3. Numerical Solution of Dispersion 
Characteristics of the Added Waves of 
Round Double-Layer Shielded 
Waveguide 

A compatible solution of the systems (Eqs. 15, 16a and 
16b) on the complex planes of wavenumbers was obtained 
using a combined approach in the search for complex roots 
of transcendent equations. This approach represented a 
combination of the Muller method and the phase variation 
method, thus using advantages of both rapidly finding a 
complex root by the first method and reliably identifying this 
root by the second method.  

At the point of the jointing of characteristics of waves 
НЕ12 and ЕН12 (Fig. 2, point A) complex waves are appeared 

with the parameters of the round double-layer shielded 

waveguide (Fig. 1a): 4≈
a
b

, 6,9
2
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ε
ε  and the expression 
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are a compatible solution of three Eqs. (15), (16a) and (16b). 
Compatible solutions correspond to the added waves. 

Coefficients me
nD ,

2,1  are solutions of a system of Eqs. (13), 

(14). With others parameters: 3≈
a
b
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e
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numbers are a compatible solution of three Eqs. (15), (16a) 
and (16b). At this points the solution (10) obeys the 
Helmholtz Eq. (4) and boundary conditions (12).  

 
Figure 2.  Dispersion characteristics of normal waves of a round 
double-layer shielded waveguide, where 1β  – real part and 2β – imaginary 
part of the longitudinal propagation number, 

0k – the free-space 

wavenumber, b – the radius of a shield 

 

Figure 3.  Solutions of Eqs. (15), (16a) and (16b) 

For arbitrary values of coefficients  solutions of 
three transcendental equations don’t converge at the point of 
a formation of complex waves (points A and B), they 
converge at arbitrary points of dispersion characteristics of 

me
nD ,

2,1
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normal waves (Fig. 3, point C). Fig. 3 shows a numerical 
solution of Eq. (15) (solid curve), Eq. (16a) (dashed curve), 

and Eq. (16b) (dotted curve) with  and . 

Complex wave is showed by chain curve. Fig. 4 is an 
oversize. 

 

Figure 4.  Solutions of Eqs. (15), (16a) and (16b) (It is an oversize) 

4. Conclusions 
It is shown that multiple eigenvalues of boundary value 

problems can exist. The multiplicity of eigenvalues shows a 
possibility of a existence waves which have different 
features (different longitudinal dependences of field). 

The AWs are characterized by a linear dependence of 
the field on the longitudinal coordinate. The AWs must be 
taken into consideration for a calculating and a constructing 
of components, which use the effect of the complex 
resonance. 

We have showed that two kinds of solutions of added 
boundary value problems can be. The first solution is only at 
points of the Jordan’s multiplicity of the wavenumbers of 
normal waves.  

Second solution is at points of curve crossings of solutions 
of three transcendent equations which are obtained from the 
condition of an existence of solutions of a system of 

algebraic equations. Second solution of added boundary 
value problem is calculated for any parameters of guiding 
cylindrical structures. 
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