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Abstract  Geostatistical methods have been applied to a reservoir in Jubilee oilfield, south-western Ghana, to analyses 

the distribution patterns of porosity, permeability and thickness. The spatial characteristics of porosity, permeability and 

thickness in this study were described through geostatistical analysis. The methods implemented include simple kriging 

(SK), ordinary kriging (OK), sequential indicator simulation (SIS) and sequential gaussian simulation (SGS). Experimental 

variograms and corresponding anisotropic variogram models were fitted to distribute flow unit data for porosity, 

permeability and thickness in the reservoir at well locations. The nugget effect, range and sill were used as key input 

parameters for variogram computation and modeling. Descriptive statistical analysis is performed to provide the means for 

geostatistical modeling. The statistical analysis yielded coefficient of variation values of 0.4042, 0.5217 and 0.3721, 

indicating better prediction for the porosity, permeability and thickness. 3D spatial-based maps for porosity, permeability 

and thickness were generated and analysed critically with respect to their significant variations in the reservoir. Analysis of 

the results from the spatial-based maps showed that porosity, permeability and thickness were distributed uniformly at the 

center towards north-east direction of the reservoir. It is also observed that both kriging methods gave good estimate. 

However, gaussian simulation provided more details to quantify the reservoir heterogeneity than kriging methods. The 

porosity, permeability and thickness estimated from SK method ranged between 17.01 to 22.54%, 158.48 to 2089.29 mD 

and 10.04 to 29.32 ft while OK method fell between 17.10 to 22.34%, 1023.29 to 3019.95 mD and 9.85 to 29.01 ft. Finally, 

regression analysis is performed for generated models. Quantile normalization plots were constructed to establish 

relationship between the simulated (SGS) data and estimated (kriging) data via real data for validation. The major 

contribution of this study is that, geostatistical reservoir modeling has been used to analyse the spatial behaviour of porosity, 

permeability and thickness for performance prediction of Jubilee oilfield.  
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1. Introduction 

The production of map of variable parameter from 

limited sample data has been a prevailing problem in the oil 

and gas industry for years. In order to address this problem, 

geostatistical methods are commonly used in creating a map 

to capture uncertainties associated with the use of limited 

sample data in property estimation. It is also a suitable 

method for effectively analyzing the petrophysical 

properties data and mapping of subsurface property values 
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at unsampled points (Johnston et al., 2003). Since late 

twentieth century, geostatistical techniques have been 

universally recognized for characterization of petroleum 

reservoirs. The technique was introduced in reservoir 

characterization purposely for the development of 

heterogeneous reservoir and the fact that oil industry is 

capital intensive; companies were compelled to use 

innovation and cheaper means to optimize hydrocarbon 

recovery Deutsch et al., 1996).  

However, unlike deterministic methods, geostatistical 

methods were introduced in the oil and gas sector to predict 

and model the reservoir with precision. Geostatistics 

provides numerous reliable results (Zhao et al., 2014; Zarei 

et al., 2011). The application of geostatistical methods in oil 

fields may result in the production of an average image or a 

set of equally probable images describing the spatial 

distribution of petrophysical variables, emphasizing the 
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various rock types, porosity, permeability and fluid 

saturation. Each of the equiprobable images comprises of a 

two or three-dimensional grid model containing millions  

of nodes that represent the internal structure of the field 

including petrophysical parameters and morphology 

(Deutsch and Journel, 1992; Srivastava, 2004).  

Over the years, the use of geostatistical conditional 

simulation for reservoir property prediction is on the wide 

spread. Geostatistics generates models or realizations of 

spatial distribution of categorical variables such as 

geological units and lithotypes including numerical 

variables like porosity, water saturation and permeability. 

The outputs from stochastic simulation produce 

equiprobable image descriptions that have the same 

probability of occurrence. Demonstrated from several case 

studies, the models (image descriptions) are based on 

probabilistic approach that has been proven to be the most 

appropriate method to quantify spatial heterogeneity in 

oilfields. Stochastic models (image descriptions) allow 

detailed modeling of intrinsic complexities to produce 

equally probable scenarios to describe the internal 

architecture of reservoirs at inter-well locations and low 

conditioned regions. The models are usually created from 

small dataset extracted from experimental data mainly to 

describe spatial distributions of relevant petrophysical 

properties of oil fields (Matheron et al., 1987; Journel and 

Alabert, 1988; Journel and Hernandez, 1989; Perez and 

Journel 1990; Goovaerts, 1997).  

Geostatistics improve predictions by providing reliable 

numerical models. The core mandate is to construct a more 

robust and realistic model of the reservoir spatial 

heterogeneity using techniques that do not average relevant 

reservoir properties. Like conventional deterministic 

method, it captures known unquestionable “hard” data and 

informative “soft” data (Wilson et al., 2011). 

The Stanford Geostatistical Modeling Software (SGEMS) 

is an open-source computer tools for solving 

spatially-related problems. It provides geostatisticians with 

a user-friendly environment and wide selection of 

algorithms to construct 3D numerical model (Kelsall and 

Wakefield 2002). The application of SGEMS facilitates 

detailed understanding of geostatistical estimation and 

conditional simulation algorithms for enhanced 3D 

visualization (Kelkar and Perez 2002; Remy et al., 2004; 

Geoff, 2007; Remy et al., 2009).  

However, the creation of spatial-based maps is very 

crucial to depict the characteristics of the real spatial 

attributes of an oilfield. In this regards, geostatistical 

conditional simulations are widely-used methods which can 

quantify the unknowns in a reservoir description to describe 

spatial attributes of reservoir properties. Mapping the 

distribution pattern of reservoir properties using 

geostatistical methods can consequently help in proposing 

optimal recovery processes and, to improve reservoir 

performance prediction.  

In the proceeding chapters of this research, SGEMS is 

used to evaluate the distribution of porosity, permeability 

and thickness in an oilfield. In addition, reservoir property 

estimation is performed in building three-dimensional 

spatial-based maps (static models) of the reservoir 

properties; and the models were used to perform 

comparative analysis of geostatistical techniques.  

2. Field Description 

The Jubilee Oilfield is located in the Gulf of Guinea near 

the Ghana and Côte d’Ivoire border along the coast of the 

western region of Ghana, 60 km deep offshore. Discovery 

of the field was initiated in June 2007, with average water 

depth of 1250 meters. It forms part of the South-Atlantic 

Ocean and lie between deepwater Tano and West Cape 

Three point blocks in Ghana. The various blocks within the 

field are under the ownership of the Ghana National 

Petroleum Corporation (GNPC) and National Petroleum 

Authority (NPA). Tullow oil developed the Jubilee offshore 

oil field after the discovery by Kosmos Energy. Production 

of oil from the Jubilee field started in 2010. It recorded 

average production rate of 150,000 barrels per day and total 

proven reserves was around 3 billion barrels. The amount of 

gas in the field is estimated to be 1.2 trillion cubic feet, 

representing 162 million barrels of oil equivalent. The 

participated oil companies discovered a total of more than 

15 wells in the western territory (Abrokwah, 2010; 

Kastning, 2012). Figure 1 shows the map of the study area. 

2.1. Geological Setting of Study Area  

The field is largely characterized by a continuous 

stratigraphic trap combined with thick hydrocarbon belts of 

about 600 meters. The reservoir is found in the deep 

offshore Tano basin within Gulf of Guinea hydrocarbon 

depositional belt and extends to the Ghana-Ivory Coast 

basin. The field consists mainly of cretaceous rocks, 

specifically sandstones as the main lithology. The field 

forms part of the Turonian and Santonian formations and 

consist mainly of cretaceous rocks which are bounded in the 

west by the St. Paul fracture zone. The basin originated as a 

result of the tensional movement of the Atlantic Ocean 

separating Africa and the South America. This resulted in 

the deposition of rich thick organic shale in the Turonian 

and Cenomanian era. The environment of deposition is 

made up of thick clastic sequence and turbiditic fan 

channeled into the basin from several rivers. The 

Turonian-Cenomanian shale and Albian sandstone 

constitutes the major source rocks of the Tano Basin. The 

reservoir rocks evolved from the sloped Albian sandstone 

and turbiditic faulted-fan sandstones of the Turonian. 

Trapping of hydrocarbons are largely influenced by 

stratigraphic and structural features (Brownfield and 

Charpentier, 2006). Initial rift from sedimentary infill of the 

western Basin consists of Lower Cretaceous sandstone 

ranging from Aptian to Lower Albian. The lower section is 

of marine origin with thickness more than 4000 meters. The 

marine influence increases in the upper sections from which 
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oil and gas reservoir are deposited within thick sandstone 

units. A large tilted block which forms the Central Tano 

structure is surrounded by Kobnaswaso formation and thick 

rift-units of the Devonian rocks (Cretaceous or Paleozoic). 

In the offshore zones, the Kobnaswaso formation is 

characterized by thinly interbbed lithic and feldspathic shale 

and sandstones. The sandstones are angular and round in 

shape and are generally fine-grained to conglomeratic 

poorly sorted. Thick sequence of shale and sandstones of 

the formation including other lithologies has been partially 

penetrated by the deep offshore wells of which nine of them 

constitute the offshore Western Basin wells (GNPC, 1989). 

Figure 2 shows the location map of wells in the study area. 

 

Figure 1.  Map of Ghana’s hydrocarbon discoveries showing location of the Jubilee Oilfield (Tullow, 2013) 

 

Figure 2.  Location map of wells in the study area 
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3. Methodology  

This study presents geostatistical numerical simulation 

approach for the characterization of an oilfield. For this 

research, reservoir flow unit data for porosity, permeability 

and thickness obtained from 12 actively producing wells in 

the offshore Jubilee oilfield were used to perform 

geostatistical analysis. The data covers about 350 points 

taken from each well in a reservoir in the Jubilee oil field. 

The flow unit data was taken from cores to logs for 

description of several geological cross sections throughout 

the field, including top, thickness, porosity, permeability  

(in log form) at different well locations. The methods 

adopted included: estimation of petrophysical variables at 

unknown locations conditioned to kriging algorithms and 

simulation of variables (porosity, permeability and 

thickness) for generating multiple equiprobable property 

images describing the reservoir heterogeneity. Conditional 

simulation (i.e., sequential gaussian simulation, sequential 

indicator simulation) and kriging algorithm were 

implemented for the property modeling stage of this 

research using the gaussian simulator (SGEMS). 3D grid 

model of the reservoir was constructed with a cell size of  

80 x 80 x 20. Total cells of 128000 with seed value of 

14071789 were obtained for the grid model. The porosity, 

permeability and thickness data were scaled up and 

distributed realistically in a three-dimensional grid by 

assigning a value for each property estimated. Variogram 

models were computed for these properties. Spatial-based 

maps were generated for porosity, permeability and 

thickness to evaluate their variability in the reservoir. The 

different reservoir model descriptions (image maps) 

obtained from the conditional simulation runs were 

discussed and analysed. Finally, regression-based analysis 

is performed to validate the reliability of the generated 

models. Figure 3 shows the flowchart of methodology used. 

3.1. Application of Geostatistical Modeling Methods 

Gaussian simulation is a conditional geostatistical method 

that utilizes the kriging mean and variance to produce a 

gaussian field. Gaussian random field makes use of gaussian 

probability density functions. It also uses simulation function 

parameters and input data. The sequential gaussian 

simulation (SGS) technique is mostly used in modern times 

because it is reasonably effective, simple and flexible (Pyrcz 

et al., 2014). In SGS algorithm, the variance and mean of the 

distribution function at a given location specified in the 

simulation path is predicted by kriging approach and kriging 

variance. The value obtained from the distribution is 

commonly used as conditional data. More often, the log 

transform of the actual data into gaussian distribution may be 

needed by the normal score transform (Remy et al., 2009).  

3.2. Kriging Algorithm 

The mining industry in the early twentieth century 1950s 

realized that classical statistics were inappropriate for 

prediction of ore reserves. For this reason, D.G. Krige, a 

South African mining engineer in collaboration with H.S. 

Sichel, a statistician proposed a new of predicting properties 

at unsampled location. George Matheron further researched 

into Krige’s ideas and formulated the concept into a single 

framework. Matheron discovered the word Kriging to 

acknowledge the work of Krige. In this perspective, kriging 

was initially designed for reserve estimation until it spread 

to areas of earth science. Geostatistical methods gained 

wide acceptance in the petroleum industry in the mid-to-late 

1980s and were accepted gradually (Krige, 1951; Lake et al., 

2007). However, attempting to be unbiased consequently 

ended in overestimation of values and underestimation of 

high values. At that time, Daniel Krige and Georges 

Matheron proved to be critical (Pyrcz et al., 2014). Kriging 

and cokriging geostatistical methods are commonly used for 

interpolation. Both techniques are forms of univariate and 

multivariate linear regression-based models for estimating 

point over a given region. The strength of kriging as an 

interpolation technique depends largely on its ability to 

describe anisotropy of geological variables using spatial 

covariance model, producing map that depict more 

geological features (Lake et al., 2007). The variables and 

their associated weights at given location are related by the 

equations (1) and (2), shown below. 

Zo = 𝝀𝒊
𝒏
𝒊=𝟏 𝒁𝒊               (1) 

where 

Zo = value at the un-sampled location to be estimated  

λi = weight of the regionalized variable  

Zi = the regionalized variable at a given location  

di = the distance between the un-sampled and sample 

location 

p = given power  

λi = 
(𝟏𝒅𝒊) 𝒑

 (𝟏𝒅𝒊) 𝒑𝒏
𝒊=𝟏

              (2) 

3.3. Simple Kriging  

As a rule-based assumption for simple kriging (SK), a 

value at an unsampled point can be estimated trivially. For 

SK estimations, the global mean is usually held constant over 

the entire region of estimation (Kelkar et al., 2002). SK uses 

the Equation (3) in property estimation: 

X* (𝑢𝑜) = 𝜆𝑜 +  𝜆𝑖
𝑛
𝑖= 1 𝑋(𝑢𝑖)       (3) 

where 

X* (𝑢𝑜) = the value to be estimated  

𝑋(𝑢𝑖) = a nearby sample value at location 

u,i n = the total number of samples selected within a search 

neighborhood 

λi = the weight assigned to each sample 

λo = a constant parameter 

3.4. Ordinary Kriging  

Ordinary kriging (OK) is a geostatistical technique which 

estimates variables locally using interpolation. Krige and 

Matheron proposed this linear interpolation method with the 

purpose of minimizing the volume of variance effect. They 
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suggested on a linear method because it provided the least 

discrepancies (differences) between actual and estimated 

mine grades. In OK, the regionalized variables are assumed 

to be stationary where the mean (m) remains unknown. 

When using OK, all the data points with no sample value  

are assigned a significant value using a weighted linear 

combination of the known sample variables (Mpanza, 2015).  

3.5. Variogram Computation and Modeling 

Clark (2001) defined a variogram model as a graph 

describing the expected difference in value between pairs of 

samples relative to their orientation and distance apart. 

Journel and Huijbregts (1978) also defined variogram as a 

function that captures the variability of samples based on 

expectation of the random field. The different types of 

variogram models introduced are spherical, gaussian, 

exponential, linear and power model. The selection of a 

model depends on the arrangement of the data points. How 

the data points are arranged will suggest the variogram 

model that best fit the variable to be modeled. The reason 

behind the choice of variogram model is the shape 

suitability to match the observations (Clark, 2000). 

Basically, variogram is the measure of dissimilarity or 

increasing variance between pair of points as a function of 

lag distance. Information from the variogram is used to seek 

ideas about grades in an ore deposit based on weighting the 

surrounding samples. The variogram shows the difference 

in sample values as the distance increases in a given 

direction (Mpanza, 2015). Variogram is computed from 

equation (4) as shown below:  

γ h = 
1

2N(h)
 [z xi −Z xi + h ]2n

i= 1        (4) 

where 

h = separation distance 

γ h  = variogram or semi-variogram 

Z(xi) = value of sample at location xi 

N(h) = total number of sample pair for lad distance h 

Z(xi+h) = value of sample located at point xi 

The higher the variogram value the more dissimilar of the 

value of the attributes being examined. 

4. Results and Discussion 

4.1. Petrophysical Analysis 

In this research, a detailed petrophysical analysis is 

performed on the reservoir within the zone of interest where 

the studied wells are located. The zone under consideration 

is between 8250 ft and 9250 ft as shown in Figure 4. The 

log analysis revealed two distinct zones for the reservoir. 

The top zone (upper portion) of the reservoir comprised of 

thick clean sands as indicated by the signature of the 

gamma logs. The most productive top zones of the reservoir 

are from 8259 ft to 8526 ft. The top section for the reservoir 

zone has thickness of 16.5 ft with average high porosity 

value of 25.1%, respectively. The analysis also revealed net 

to gross ratio of 97.57% and net pay thickness of 16.1 ft. It 

is important to note that the reservoir consist of a vast total 

rock volume characterized by thick sand sequence with few 

non-reservoir features. Moreover, a very low significant 

water saturation of 8% was obtained for the top zone, which 

compliments high hydrocarbon saturation value of 92%. 

The base portion of the reservoir is characterized by less 

clean sands interbedded with muddy shale sediments as 

shown by the gamma ray log. This suggests the presence of 

fairway sand bodies deposited in fan system within the part 

of the reservoir under consideration. The reservoir recorded 

lower porosity readings of 17.0% in the lower sections, 

which may be an indication of high shale volume. The 

computed volume of shale in the reservoir zone is slightly 

high which could portray a tight reservoir rock formation 

with low sand sequence. The logs indicated in Figure 4 

showed good petrophysical features. It revealed high 

concentration of reservoir quality sands trending from 

northeast to the southwest sections. This could prove to be a 

prospective zone for future drilling projects. Figures 4 and 5 

show the petrophysical logs and correlated wells for the 

reservoir in the sector of study. 

4.2. Reservoir Characterization and Geostatistical 

Modeling 

Characterization and modeling of complex clastic 

petroleum reservoirs has been the subject of intensive 

researches requiring the application of different techniques. 

Due to the high spatial heterogeneity of clastic systems, 

petroleum engineers face the common complications of 

providing reliable reservoir description. For this reason, 

detailed knowledge of reservoir properties is required to 

enhance description and facilitate hydrocarbon recovery 

processes. Therefore, analysing the spatial distribution 

pattern of reservoir properties to evaluate performance is an 

essential aspect of reservoir characterisation.  

Reliable characterisation of reservoir properties is the key 

elements for feasible economic evaluation of reservoirs. 

The provision of valuable information for characterising 

reservoir petrophysical properties facilitates the 

development and production of hydrocarbons and in 

consequence, the prediction of reserves in any oil or gas 

reservoir can be achieved (Islam et al., 2013).  

For the purpose of this research, geostatistical modeling 

approach has been used to build static reservoir models  

for porosity, permeability and thickness. Two conditional 

geostatistical methods and two other kriging methods are 

implemented in this section. These are sequential gaussian 

simulation, sequential indicator simulation, ordinary kriging 

and simple kriging. Comparative analysis of the two 

methods is performed. Validations on the generated models 

are done with available data using cross plots. Again,    

the spatial variability of the porosity, permeability and 

thickness is described in the subsequent chapters. Table 1 

shows the summary of defined region of stationarity used in 

building the static reservoir models. 
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Figure 4.  Petrophysical well logs showing relevant parameters for the reservoir in the zone of interest  

 

Figure 5.  Stratigraphic correlation of well no. 1, 2, 3, and 4 
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Table 1.  Grid data used in the static reservoir modeling  

Grid data Values (ft) 

Dimension of cell X 2126 

Dimension of cell Y 1311 

Dimension of cell Z 50 

Number of cells in x-direction 80 

Number of cells in y-direction 80 

Number of cells in z-direction 20 

Total number of 3D cells 128000 

Minimum value of x-coordinates, Xmin 677900 

Maximum value of x-coordinates, Xmax 866400 

Minimum value of y-coordinates, Ymin 442600 

Maximum value of y-coordinates, Ymax 535800 

4.3. Spatial Analysis of Porosity, Permeability and 

Thickness 

Certain variables of interest like porosity, permeability 

and thickness, among others are products that constitute  

the different chemical and physical processes in the oil and 

gas industry. It should be emphasized that the various 

physical and chemical processes superimposes the spatial 

configuration of the reservoir rock properties. Therefore, it 

is imperative to better understand the scales and directional 

perspectives of these variables in relation to hydrocarbon 

production. However, the spatial pattern of these variables 

at different well locations is very difficult to predict due to 

inherent geological uncertainties associated with their 

distribution. The fact that deterministic models do not take 

into consideration uncertainties; geostatistical modeling is 

recognized as an efficient approach. The probabilistic 

theory of geostatistical modeling captures uncertainties in 

reservoir property estimation. Mentioned earlier, 

geostatistical modeling is implemented in this study to 

describe the spatial variability of the porosity, permeability 

and thickness in the subsequent chapters. 

4.4. Porosity from Ordinary Kriging  

In this study, geostatistical conditional simulation is 

applied to model reservoir properties. The modeling of 

porosity was carried using ordinary kriging and sequential 

gaussian simulation. Generally, it is observed that the 

spatial-based map for porosity obtained from ordinary 

kriging is quite similar to the map generated from simple 

kriging. However, the ordinary kriging maps are slightly 

smoother in appearance compared to simple kriging maps. 

The estimated variance is larger in areas far from the data 

points and eventually becomes smaller in the grid blocks in 

areas close to the conditioning data. This is because 

ordinary kriging assumes a first-order stationary region 

which is strictly invalid at where the local mean is 

dependent on the sampled location. This leads to estimates 

that rely solely on neighboring girds, making a local 

average effect to produce smoother maps. The maximum 

variance for porosity estimated from ordinary kriging 

technique is 6.63, indicating minimal significant variations 

between the porosity dataset and estimated values. The 

minimum variance estimated from ordinary kriging method 

is recorded to be low as 0.73. The estimated porosity values 

from ordinary kriging ranged between 17.10% and 22.34% 

whereas the simulated map yielded high porosity values 

between 17.33 and 23.01%, respectively as seen in Figure 

6(c). This shows a very high spatial continuity that can be 

observed from the various maps generated from ordinary 

kriging technique. All the data points spread significantly 

around the sample data that was used in populating the 

porosity flow unit data via ordinary kriging. The minimum 

and maximum values are closely related with few 

significant discrepancies. The porosity distribution profiles 

presented in Figure 6(a) to (c) is consistent with the well 

locations, indicating symmetric distributions across the field. 

Overall, the ordinary kriging maps showed good spatial 

continuity which trends from the east to the west directions 

of the reservoir. However, it is extremely difficult to detect 

the real distribution of each property variable based on 

visual inspection. More especially, the distribution for the 

variables may look differently based on the different 

number of bin chosen. As it can be seen in Figure 6(c),  

the sequential simulation gaussian map provided local 

variability to simulate reality for the porosity data to create 

equiprobable realizations (images). Four realizations were 

generated for porosity to describe its spatial distribution. 

The grid values of the maps generated from ordinary 

kriging are relatively different in appearance from the 

gaussian simulation map since the gaussian assumes a 

continuous normal distribution. As a result, the simulated 

map is not smoother compared to the map obtained from 

ordinary kriging method. The porosity distribution trend is 

very high from the middle to the west portions of the 

reservoir across the simulated map. Figure 6 shows the 

porosity distribution maps generated from ordinary kriging, 

ordinary kriging variance and sequential gaussian 

simulation.  

4.4.1. Porosity from Simple Kriging  

Simple kriging method is considered for porosity 

estimation and sequential gaussian simulation performed to 

subsequently generate multiple equal probable realizations. 

The simple kriging map presented in Figure 7(b) shows few 

significant variances for the porosity data. This is an 

indication of less error estimate for porosity values at 

unsampled location. The simulated map for porosity in 

Figure 7(c) showed good spatial continuity. The overall 

continuity of the simulated map is very high across the 

locations of the studied wells compared to the ordinary 

kriging. The good spatial continuity of the simple kriging 

map trends from east to the west corner of the reservoir. It 

recorded minimum and maximum porosity values of  

17.21% and 23.12%. This suggests that simple kriging 

tends to over-predict properties of the reservoir. The 

estimation variance in the grid blocks is small as 0.72 and 
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significantly large as 4.08. It should be mentioned that, 

simple kriging does not necessary reproduce extreme values 

of a property when populated within a grid block. Generally, 

symmetrical distribution is observed for simple kriging 

maps. It captured spatial structure for the flow unit  

porosity data. Due the scarcity nature of the sampled data, 

relatively small variation within the sampled data is 

observed. The variance for simple kriging map was much 

lower (i.e., 4.08) compared to ordinary kriging (i.e., 6.63). 

Next, four realizations (model descriptions) were generated 

for porosity using sequential gaussian simulation. 

Comparatively, it is observed that the estimated values are 

quite smaller than the sampled data. There are high porosity 

values spreading across the north-east location of the 

reservoir. However, we observed high simulated values for 

porosity than either of the two kriging techniques. The 

sequential gaussian simulation turned the porosity values 

into normal transform univariate distribution, scaled the raw 

data to unit sill and generated spatial-related values for 

porosity. However, there are no significant differences in 

terms of appearance for the spatial-based maps generated 

from both simple and ordinary kriging methods. Figure 7 

shows the porosity distribution maps generated from simple 

kriging, simple kriging variance and sequential gaussian 

simulation.  

4.5. Permeability from Ordinary Kriging  

The spatial distribution maps for permeability are 

generated from ordinary kriging and sequential indicator 

simulation method. The permeability distributions are 

presented as log transforms of the actual sampled data. The 

simulated permeability values range from 3.05 (1122 mD) 

to 3.49 (3090 mD). The distribution for permeability shows 

a symmetric trend because the permeability values are 

clustered at one end. High permeability values are observed 

at the north east and south west corners of the grid model. 

Overall, the distribution of permeability across the reservoir 

grid showed a very good lateral continuity. The 

permeability map obtained from ordinary kriging estimation 

showed high spatial variations. The estimated values of 

permeability from ordinary kriging had low and high values 

of 3.01 (1023 mD) and 3.48 (3020 mD). The estimation 

variance for permeability is close to conditioning data. The 

distribution pattern is relatively higher at the central portion 

of the grid block. In this case, the conditioning data 

becomes extremely larger in the region far from the 

sampled data points. This suggests that the permeability 

distribution experienced a narrower spread than the 

conditioning data. However, the permeability distribution 

from the ordinary kriging method follows normal 

distribution trend. This implies that, the data points are 

distributed close to the estimated mean value. Figure 8(b) 

shows the variance map for permeability. The minimum 

and maximum variances are obtained as 0.11 and 1.23, 

respectively. In special cases where the sampled data 

becomes close to the conditioning data, the kriging variance 

becomes a reflection of the nugget of the variogram. In 

general, the ordinary kriging method provided good 

estimates for permeability distribution at well locations. It 

captured the spatial correlation at well locations in the 

permeability dataset. Figure 8 shows the spatial distribution 

maps for permeability obtained from ordinary kriging, 

ordinary kriging variance and sequential indicator 

simulation.  

4.5.1. Permeability from Simple Kriging  

Simple kriging and sequential indicator simulation were 

used to populate the permeability values at well locations. 

In all, the permeability distribution maps generated from 

both simple kriging and ordinary methods showed similar 

appearances. However, the maps from simple kriging 

technique were quite smoother in appearance compared to 

the ordinary kriging. Also, high values of permeability  

were obtained from the simple kriging. The simulated 

permeability values from simple kriging method peaked at 

3.55 (3548 mD) whereas ordinary kriging recorded high 

permeability value of 3.49 (3090 mD). The simple kriging 

estimates for permeability ranged between 2.20 (158 mD) 

and 3.32 (2089 mD). The overall discrepancies for both 

techniques is very small as 0.16. This means that the 

estimation differences between both kriging methods are in 

proximity to each other. The estimated variance for 

permeability values tends to be higher at the extreme ends 

of the reservoir grid as shown in Figure 9(b). The 

estimation variances are between 0.08 and 1.19. This 

explains that the error variance for simple kriging is quite 

smaller than ordinary kriging. More importantly, both 

simple and ordinary kriging methods gave good estimates. 

However, estimation from simple kriging method appears to 

be closer to the conditioning data than ordinary kriging 

method. As seen in Figure 9(a), the blue region of the map 

represents areas where the true permeability values are 

found. Extending to the north east corner of the map, it is 

observed that predicted values from the simple kriging are 

much higher at these locations. This also the case for 

locations where the sampled data are much populated in the 

grid. This is because simple kriging distributes property 

data close to the mean value. Consequently, the simulated 

map for permeability is associated with extreme values. 

This could eventually reflect the intrinsic characteristics of 

the reservoir under consideration as four realizations were 

generated to capture the overall description of the reservoir. 

The simulation results in Figure 9(c) achieved a better 

spatial structure to describe the reservoir heterogeneity, 

although showed similar appearance to the kriging map 

presented in Figure (a). The simulation uses extreme values 

within the search neighborhood of the dataset unlike kriging 

which only utilizes values around the sampled location to 

predict the unsampled locations. Figure 9 shows the 

permeability distribution maps generated from simple 

kriging, simple kriging variance and sequential indicator 

simulation. 
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(c) 

Figure 6.  Spatial distribution maps for porosity; (a) Ordinary kriging (b) Ordinary kriging variance (c) Sequential gaussian simulation  
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(b) 

 

(c) 

Figure 7.  Spatial distribution maps for porosity; (a) Simple kriging (b) Simple kriging variance (c) Sequential gaussian simulation  
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(b) 

 

(c) 

Figure 8.  Spatial distribution maps for permeability; (a) Ordinary kriging (b) Ordinary kriging variance (c) Sequential indicator simulation  
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(c) 

Figure 9.  Spatial distribution maps for permeability; (a) Simple kriging (b) Simple kriging variance (c) Sequential indicator simulation 
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(b) 

  

(c) 

Figure 10.  Spatial distribution maps for thickness; (a) Ordinary kriging (b) Ordinary kriging variance (c) Sequential gaussian simulation  
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(a) 

 

(b) 

 

(c) 

Figure 11.  Spatial distribution maps for thickness; (a) Simple kriging (b) Simple kriging variance (c) Sequential gaussian simulation 

4.6. Thickness from Ordinary Kriging  

The gross thickness for the reservoir is distributed within 

the grid model using ordinary kriging and sequential 

gaussian simulation as observed from Figure 10. The 

continuity of the thickness map generated from ordinary 

kriging is pretty similar to the simple kriging map. It shows 

high spatial continuity at the locations close to the sampled 

data. The data is highly distributed close the center 

locations through the entire maps. The estimated gross 

thicknesses from ordinary kriging are between 9.85 ft and 

29.01 ft. However, there are few significant variations at the 
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location where the various wells are distributed. The 

maximum value for estimated thickness is 37.80 ft whereas 

the maximum value for thickness data is 38.15 ft. The 

thickness data are populated with extreme values more than 

10.12 ft. This shows no tremendous improvement of the 

conditioned data for thickness prediction. The estimation 

variances for thickness were low and high as 6.45 ft and 

13.49 ft. In the north east corner of the grid, the thickness 

data is almost partitioned at the sub areas. High thickness 

values are observed for the sub areas of the ordinary kriging 

map. This can be seen in Figure 10(a). The maps generated 

from ordinary kriging shows good lateral continuity from 

the center to the west portions. This indicates relatively 

small variations in the thickness dataset. The small 

variations in the thickness distribution maps show closeness 

of the sampled data to the conditioned data. The thickness 

data followed normal distribution trend such that most of 

the sampled data were distributed close to the mean value. 

Overall, the thickness distribution maps showed some level 

of smoothness in appearance compared to the simple 

kriging maps. High thickness locations are observed from 

the simulated map shown in Figure 10(c). On the more note, 

it should be mentioned that the simulated thickness values 

were pretty higher than the two kriging estimations. 

Noticeably in Figure 10(c), simulated thickness values is 

much distributed at the extreme ends and spread 

continuously from the west to the east portion. However, 

the estimation variance becomes large at the northwest 

corner of the grid. The red and yellowish sections show 

areas with high thickness values. These are areas with good 

spatial continuity for gross thickness. The blues portions 

represent areas with low thickness values. Figure 10 shows 

the thickness distribution maps generated from ordinary 

kriging, ordinary kriging variance and sequential gaussian 

simulation.  

4.6.1. Thickness from Simple Kriging  

Thickness is further estimated from simple kriging and 

sequential gaussian simulation. Typically of simple kriging, 

the generated maps are quite smooth in appearance. It 

shows good spatial correlation (continuity) from the west to 

the east direction of the grid. Configuration of the 

conditioned data resulted in the west/east trend observed 

from the simple kriging map shown in Figure 11(a). The 

thickness data is distributed such that the conditioning data 

is undersampled within the search neighborhood relative to 

the other section of the grid. This area tends to have smaller 

variance for gross thickness values, indicating a better 

estimation result compared to ordinary kriging method. 

However, the maps generated from both kriging methods 

are pretty similar in physical appearance. The simple 

kriging variance map is shown in Figure 11(b). The 

estimated variances for thickness obtained from simple 

kriging are 7.56 ft and 14.01 ft. Close to the conditioning 

data, the estimation variance for thickness becomes 

extremely small in the gridblock. However, it becomes 

large in the sections far from the conditioning data. 

Consequently, sequential gaussian simulation map captured 

intrinsic characteristics of the field, although it could not 

estimate the exact distribution of each populated variable 

defined within the grid block.  

On the more note, the simulated map presented in Figure 

11(c) revealed high thickness values between 9.44 ft and 

38.10 ft. The thickness data is distributed uniformly at the 

northwest corner portion of the grid model.  

The blue section represents areas with low thickness 

values while the red and yellowish portions represent areas 

with high thickness values. The simple kriging method 

yielded low and high thickness values of 10.04 ft and 29.32 

ft. It predicted thickness values that are much larger than 

the estimated mean value. That is 19.9 ft. Because simple 

kriging does not produce values close to extreme values for 

spatial-related data, the thickness data modeled in this study 

showed a narrow spread close to the sampled data. The 

maximum value for thickness data is 23.12 ft whilst the 

maximum estimated value from simple kriging is 29.32 ft. 

It should be mentioned that the distributions for thickness 

are consistent with location of the wells under consideration. 

This brings the idea that the thickness distributions are 

representative of the different well profiles. Figure 11 

shows the thickness distribution maps generated from 

simple kriging, simple kriging variance and sequential 

gaussian simulation.  

4.7. Ranking of Geostatistical Reservoir Models  

Four equiprobable realizations were generated for 

porosity, permeability and gross thickness and ranked. The 

ranking involved comparing the statistical mean values for 

each of the reservoir properties modeled, before and after 

the various simulations. The ranking is performed for the 

different property realizations by comparing mean values 

from the raw data used with the mean values from 

simulated data. The significant variations in the minimum 

and maximum mean values after the ranking process 

provided ideas of what the geostatistical models are well 

represented in the studied reservoir. Consequently, 

geostatistical modeling predicted values that are smaller 

than the real field data after the simulation. This observation 

can be seen in Table 2. Generally, the mean values of the 

simulated data become slightly smaller than the mean 

values of the raw data. The possible reason behind this 

observation is attributed to the variations incurred in the 

minimum and maximum parameters of each property used 

in the variogram computation. This implies that generating 

multiple realizations for porosity, permeability and 

thickness are reliable method for enhanced reservoir 

characterization. The method minimizes uncertainties 

related with petrophysical property estimations. Table 2 

shows summary of statistical parameters from the 

geostatistical ranking. 
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Table 2.  Summary of geostatistical ranking for realizations of properties 

Property Before SGS/SIS  After SGS/SIS  No. of real. 

Porosity Mean 22.82% Mean (all realizations from SGS) 21.85%  

   Minimum mean 17.38% 2 

   Maximum mean 22.15% 3 

Permeability Mean 3.52(3311.31 mD) Mean (all realizations from SIS) 3.21(1698.24 mD)  

   Minimum mean 2.20 (158.49 mD) 4 

   Maximum mean 3.25 (1778.28 mD ) 3 

Thickness Mean 35.87 ft Mean (all realizations from SGS) 28.17 ft  

   Minimum mean 9.03 ft 4 

   Maximum mean 32.68 ft 2 

Table 3.  Statistical analysis for porosity of the wells in the reservoir 

 

Well no. 

 

Points 

 

Mean 

 

Stand dev. 

 

Coeff. of variation 

 

Median 

 

Min. 

 

Max. 

Upper 

quartile 

Lower 

quartile 

Z-01 350 19.90 0.0328 0.4042 19.75 17.01 22.57 21.75 18.48 

Z-02 350 17.92 0.1023 0.1138 19.12 17.05 21.09 22.17 18.55 

Z-03 350 17.12 0.0171 0.0981 18.98 17.12 23.12 20.13 17.29 

Z-04 350 18.94 0.0215 0.3321 18.12 17.25 22.89 21.18 18.11 

Z-05 350 19.05 0.0014 0.0145 18.66 17.03 22.33 20.56 18.06 

Z-06 350 18.20 0.0423 0.1034 19.55 17.55 21.12 21.27 17.47 

Z-07 350 17.89 0.0187 0.8204 18.61 17.07 23.01 19.98 18.44 

Z-08 350 17.38 0.0542 0.6103 19.05 17.22 20.88 21.02 18.52 

Z-09 350 17.01 0.0109 0.1231 18.76 17.18 21.78 20.35 18.16 

Z-10 350 18.22 0.1016 0.1011 18.37 17.10 22.66 22.11 18.14 

Z-11 350 18.01 0.0138 0.0318 19.09 17.08 22.05 21.32 17.55 

Z-12 350 17.56 0.1122 0.4021 18.87 17.33 20.17 22.01 17.18 

 

4.8. Statistical Analysis and Variography 

Statistical analysis is performed for porosity, 

permeability and thickness. Total number of 4,200 data 

points was used as the input values for the analysis. Semi 

variograms were fitted for each property to infer the spatial 

variability between the sampled data point as a function of 

distance and location. The core mandate of the statistical 

analysis was to evaluate the behaviour of the distribution 

pattern of the input variables (i.e., porosity, permeability 

and thickness). However, it is not an easy task to interpret 

large numbers of raw data points from oil reservoirs in the 

digital format from geostatistical perspective. Therefore, the 

raw data was well-organized and analyzed critically using 

univariate statistical analysis. The various parameters are 

summarized and presented in the form of tables, charts to 

provide vivid picture of their variations in the reservoir 

under consideration. From this point of discussion, it can be 

stated that statistical analysis is an essential aspect of 

geostatistical modeling commonly used for quantifying 

reservoir heterogeneity.  

Noted earlier, the descriptive univariate analysis provided 

several statistical parameters to gain insight for describing 

distribution trend of the dataset used. Also, the different 

statistical parameters were computed. These included the 

mean, median, minimum, maximum, variance, standard 

deviation, lower and upper quartiles and coefficient of 

variation. Statistical parameters like the mean, median, and 

coefficient of variation can determine the type of 

distribution. The median and mean statistical parameters 

provide information about the central location for mass 

property distributions whereas the standard deviation and 

variance describe the spatial correlation (variability) of the 

input data.  

4.8.1. Statistical Analysis and Variography for Porosity 

Descriptive statistics is performed for porosity and 

variogram computed. The spatial variability for the porosity 

data points was described in the omnidirectional variogram 

model. It is assumed that the direction of minimum and 

maximum of the selected variogram are at right-angles to 

each other. That is 90°. Exponential variogram model was 

fitted by visual inspection to populate the porosity data   

as shown in Figure 12(a). The input variables used for 

variogram analysis of porosity is described as follows. The 

minimum, median and maximum ranges for porosity data 

are 3600 ft, 18800 ft and 35600 ft. Lag separation of 50 ft 

was used. The number of lags used in calculating the 

variogram is 65. The nugget effect and the sill contribution 

values are 6.7 and 20.3. The tolerance of direction is 90 .̊ 
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The lag distance (tolerance of distance) and allowable 

bandwidth are 105 ft and 1800 ft. Anisotropic effect was 

taken into consideration in the variogram analysis to ensure 

symmetric continuity. Therefore, azimuth and dip angle of 

180° and 90° were used. Moreover, histogram plot is 

generated for porosity data using bin width of 12, 

respectively. This is shown in Figure 12(b). It is observed 

that the frequency of each bin from the histogram decreases 

with increase in bin number. This is as a result of reduction 

in bin length. The mean and median porosity values from 

the histogram plot for the entire reservoir are 19.90% and 

19.75%, and the minimum and maximum values are   

17.01% and 22.54%. The mode is around 22%. High 

coefficient of variation value of 0.4042 is obtained for the 

porosity data points. The least deviation is around 0.0014 

and the variance is 2.91. This signifies appreciable level of 

prediction for porosity. Figure 12 shows the variogram 

model and histogram plot for porosity. Table 3 presents the 

statistical variables for porosity. 

 

(a) 

  

(b) 

Figure 12.  Porosity; (a) anisotropic variogram model (b) histogram plot  
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4.8.2. Statistical Analysis and Variography for Permeability 

Statistical analysis is subsequently performed for 

permeability and corresponding anisotropic variogram 

calculated. Omni-directional gaussian variogram model  

was fitted to distribute the permeability data as shown in 

Figure 13(a). Key input parameters used for the variogram 

computation included: nugget effect, sill contribution, range, 

tolerance limit, lags distance, azimuth, dip angle and 

bandwidth. The minimum, median and maximum ranges for 

the permeability data are 500 ft, 1975 ft and 3900 ft. The 

lag separation is 40 ft, and the number of lags is 85. The 

nugget effect and sill contribution values of the variogram 

model are 1.15 and 4.38. The tolerance of direction is 90°. 

This was used to cater for the effect of anisotropy to ensure 

symmetric continuity in the permeability distribution. 

Azimuth and dip angle values of 180° and 90° were 

specified to populate the permeability data. The lag distance 

(tolerance of distance) and acceptable bandwidth are 98 ft 

and 1700 ft. Histogram plot is generated for permeability 

using a bin width of 12, as shown in Figure 13(b) and 

descriptive statistics performed. It can be seen from  

Figure 13(b) that, the frequency of each bin for log 

transformed-permeability data decreased with increase in 

bin number and consequently reduces bin length. Overall, 

the median and mean values from the histogram for log 

permeability are 3.23 (1698 mD) and 3.25 (1778 mD). The 

modal value is around 3.21 (1621 mD). The least deviation 

and coefficient of variation values for log permeability are 

0.0113 and 0.0152. The coefficient of variation describes 

the spread of extreme values from the sampled data. 

However, low values of coefficient variances were observed 

as shown in Table 4. This means there are no outliers in  

the estimation and hence, there is high validity for the 

permeability estimation. Figure 13 shows the variogram 

model and histogram plot for permeability data. Table 4 

presents the statistical variables for log permeability.  

Table 4.  Statistical analysis for log permeability of the wells in the reservoir 

 

Well no. 

 

Points 

 

Mean 

 

Stand dev. 

 

Coeff. of variation 

 

Median 

 

Min. 

 

Max. 

Upper 

quartile 

Lower 

quartile 

Z-01 350 3.24 0.0136 0.3831 3.21 2.12 3.67 3.34 3.15 

Z-02 350 3.20 0.0161 0.1352 3.01 2.15 3.51 3.44 3.17 

Z-03 350 3.12 0.0184 0.2456 3.03 2.52 3.42 3.26 3.19 

Z-04 350 3.14 0.0201 0.0723 3.23 2.78 3.33 3.32 3.18 

Z-05 350 3.30 0.0119 0.0621 3.20 2.15 3.53 3.55 3.06 

Z-06 350 3.18 0.0215 0.2718 3.11 2.19 3.30 3.21 3.04 

Z-07 350 3.10 0.1789 0.0152 3.08 2.21 3.54 3.43 3.18 

Z-08 350 3.09 0.0223 0.0237 3.10 2.09 3.65 3.51 3.05 

Z-09 350 3.27 0.0178 0.2145 3.14 2.25 3.49 3.29 2.98 

Z-10 350 3.35 0.0851 0.0231 3.18 2.10 3.50 3.36 3.17 

Z-11 350 3.08 0.0247 0.5217 3.25 2.52 3.58 3.41 3.11 

Z-12 350 3.16 0.0113 0.0482 3.12 2.67 3.62 3.26 3.09 

  

(a) 
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(b) 

Figure 13.  Log permeability; (a) anisotropic variogram model (b) histogram plot 

4.8.3. Statistical Analysis and Variography for Thickness 

Statistical analysis is performed for thickness to 

understand their distributions. Anisotropic variogram is 

calculated and gaussian variogram model fitted for 

thickness data as shown in Figure 14(a). First, we assumed 

that the minimum and maximum continuity of directions of 

the variogram are perpendicular to each other. For this 

reason, omnidirectional variogram model is selected to cater 

for anisotropic effect in the estimation process. Because 

thickness is a discrete property which constitutes different 

replicated integers, the gaussian simulation transformed the 

data into continuous normal distribution for easy estimation. 

However, it should be mentioned that the structures of the 

variogram showed similar direction of continuity regardless 

of the input variables. Noticeably, it is very difficult to 

judge the different continuity of directions in the variogram 

by visual inspection. The nugget effect, sill contribution, 

ranges, tolerance limit, lag distance, azimuth, dip angle and 

bandwidth were used as major input properties for the 

variogram computation. Nugget effect and sill contribution 

values of the computed variogram for thickness are 3.5 and 

33.80. The minimum, median and maximum ranges are 

2200 ft, 4400 ft and 38000 ft. The lag tolerance is 112 ft, 

and the permissible lag separation is 45 ft. Bandwidth of 

1670 ft is considered. The direction of continuity of the 

variogram model was given a tolerance of 90°, and an 

azimuth value of 180°, respectively. The angle of dip is 90°. 

Histogram is plotted for the thickness as shown in Figure 

14(b). The thickness data is divided into 12 bins at varying 

bin lengths. The mean and median values for thickness 

observed from the histogram are 32.82 ft and 22.73 ft. The 

minimum and maximum values for thickness are 12.8 ft and 

37.55 ft. High correlation coefficient value of 0.3721 is 

obtained for thickness distribution, indicating more valid 

estimation for thickness. The minimum deviation is 

estimated to be 0.0011. Figure 14 shows the variogram 

model and histogram plot for thickness data. Table 5 

presents the statistical variables for thickness. 

Table 5.  Statistical analysis for thickness of the wells in the reservoir 

 

Well no. 

 

Points 

 

Mean 

 

Stand dev. 

 

Coeff. of variation 

 

Median 

 

Min. 

 

Max. 

Upper 

quartile 

Lower 

quartile 

Z-01 350 32.82 0.0131 0.3521 22.83 12.78 38.15 38.59 15.28 

Z-02 350 29.67 0.0212 0.0105 21.11 09.33 35.17 34.12 16.16 

Z-03 350 31.18 0.0301 0.2131 23.64 10.75 30.91 38.11 17.01 

Z-04 350 30.22 0.0238 0.2803 20.85 12.32 32.15 33.71 15.57 

Z-05 350 31.07 0.0323 0.1875 18.87 11.58 33.15 31.41 17.01 

Z-06 350 28.87 0.0725 0.3238 19.05 13.10 32.19 36.65 16.45 
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Well no. 

 

Points 

 

Mean 

 

Stand dev. 

 

Coeff. of variation 

 

Median 

 

Min. 

 

Max. 

Upper 

quartile 

Lower 

quartile 

Z-07 350 27.82 0.0111 0.0312 17.98 15.12 37.38 37.81 16.67 

Z-08 350 32.32 0.0361 0.0672 19.92 12.05 34.57 36.15 17.22 

Z-09 350 27.87 0.0255 0.2082 22.05 09.92 36.18 37.10 16.19 

Z-10 350 32.55 0.3128 0.3112 23.12 10.01 33.37 36.91 15.48 

Z-11 350 31.32 0.0028 0.2709 22.22 09.03 29.29 32.16 16.59 

Z-12 350 30.01 0.0011 0.3721 21.17 11.12 31.45 35.89 15.78 

   

(a) 

 

(b) 

Figure 14.  Thickness; (a) anisotropic variogram model (b) histogram plot 
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4.9. Regression Analysis and Model Validations 

Detailed understanding of spatial distribution of data 

requires the need to draw Q-Q plots. In the Q-Q plot,    

the sampled data is compared to theoretical modeled 

distribution. To achieve the set objective of this paper, 

validation is performed between simulated (modeled) data 

and the estimated (kriging) data via the real field data. The 

results obtained are compared using cross plots as shown in 

Figure 15. The simulated data is plotted against actual and 

the estimated data after the quantile normal transformation. 

Quantile normalization line at 45° angle is established to 

check correlation between the real data and the predicted 

data for validation of the proposed gaussian and kriging 

models. The Q-Q type of plot ensures that the observed data 

points are well-fitted to the 45° line. The closer the data 

points to the 45° line, more validity for the generated 

models. In cases where the theoretical quantile exceed a 

value of one, the fitting becomes poor due to a phenomenon 

called tail effect or outliers. Generally, the gaussian 

predicted more details compared to the kriging methods. 

The relationship between the simulated data and real data 

for porosity, permeability and thickness showed less 

significant outliers as shown in Figure 15. However,     

the variables of interest (i.e., porosity, permeability and 

thickness data) are skewed to the either sides of the 

indicating a symmetric distribution called gaussian (normal) 

distribution. Gaussian distribution ideally predicted based 

on variance and mean of the input variables. Cross plot 

validations for the variables showed higher degree of 

compatibility of real data. This means that the predicted and 

simulated data were close to the 45° line and consequently 

depict more valid estimations for modeling generated. 

However, the sequential gaussian simulation method 

showed more compatibility with the real data for porosity, 

permeability and thickness, compared with kriging method. 

Figure 15 shows the model validations for porosity, 

permeability and thickness estimation from Q-Q plots. 

  

(a) Q-Q Plot                                            (b) Q-Q Plot 

  

(c) Q-Q Plot                                              (d) Q-Q Plot 
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(e) Q-Q Plot                                          (f) Q-Q Plot 

Figure 15.  (a) Cross plot validation between simulated data and real porosity data. (b) Cross plot validation between real porosity data and 

kriging-estimated data. (c) Cross plot validation between simulated data and real permeability data. (d) Cross plot validation between real permeability 

data and kriging-estimated data. (e) Cross plot validation between simulated data and real thickness data. (f) Cross plot validation between real thickness 

data and kriging-estimated data 

5. Conclusions 

The study showed that: (i) porosity, permeability and 

thickness were largely distributed at the center towards 

north-east direction of the reservoir. This can be observed 

from the spatial-based maps. The kriging methods provided 

good estimates that described the variations of porosity, 

permeability and thickness in the reservoir. The porosity, 

permeability and thickness values estimated from simple 

kriging method ranges from 17.01 to 22.54%, 158.48 to 

2089.29 mD and 10.04 to 29.32 ft. The ordinary kriging 

method predicted porosity, permeability and thickness 

values from 17.10 to 22.34%, 1023.29 to 3019.95 mD and 

9.85 to 29.01 ft. However, the conditional simulation 

methods (sequential gaussian simulation and sequential 

indicator simulation) gave high porosity, permeability and 

thickness values, ranging from 17.21 to 23.12%, 977.23 to 

3548.13 mD and 9.44 to 38.10 ft. The wide range of 

porosity, permeability and thickness values observed could 

describe the reservoir of having high storativity, flow 

capacity and good pay zones for oil and gas accumulations. 

(ii) The observed relatively dissimilarities between the 

kriging maps and the gaussian maps in terms of appearance 

is attributed to the fact that, the kriging methods tends to 

minimize error variance in estimation for smoother 

distribution of variables while gaussian simulation approach 

transformed error variance into probable variables to give 

details in the flow unit data for porosity, permeability and 

thickness predictions. Also, the kriging maps showed much 

transitional changes in subregions of the reservoir than the 

gaussian simulation maps.  

This is because the effect of order-of-magnitude 

variations and extreme girds within the flow unit dataset 

was minimized to obtain better images (maps) with good 

spatial structure that captured the significant variations of 

porosity, permeability and thickness for the case study. (iii) 

The anisotropic variogram analysis (variography) better 

explained the porosity, permeability and gross thickness 

distributions in the reservoir as a function of distance and 

location. Using the nugget effect, range and sill as key input 

parameters for variogram analysis has provided detailed 

information on potential locations for future oil drilling 

projects. (iv) Furthermore, the regression-based analysis 

evaluated reliability of the generated models. From this 

analysis, it is observed that more data points were closer to 

the quantile normalization line (i.e., 45° line), depicting 

more validity for proposed gaussian and kriging models. 

The univariate statistical analysis showed coefficient of 

variation values for porosity, permeability and gross 

thickness distributions as: 0.4042, 0.5217 and 0.3721, 

indicating less outlier and appreciable level of prediction for 

porosity, permeability and thickness. Conclusively, it can be 

stated emphatically that, geostatistical methods are efficient 

approach to describe reservoir heterogeneity. It has 

provided the means for describing the spatial distributions 

of porosity, permeability and thickness for performance 

evaluation of the Jubilee oilfield, Ghana.  
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