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Abstract  A long strike-slip fault is taken to be situated in a viscoelastic half space. The material is taken to be of linear 
viscoelastic type combining both the properties of Maxwell and Kelvin-Voigt type materials. Tectonic forces due to mantle 
convection and other related tectonic processes are taken to be acting on the system, the magnitude of which is assumed to be 
slowly increasing with time. Expressions for displacement, stresses and strain are obtained both in the absence of fault 
movement and also after the creeping movement across the fault. Relevant mathematical techniques involving integral 
transform, Green's function, correspondence principle with suitable numerical methods have been used for solving the 
associated boundary value problem. 
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1. Introduction 
In the present paper we have considered a long vertical 

strike-slip fault situated in a viscoelastic half space. Most of 
the earlier works dealt with elastic/viscoelastic half space of 
Maxwell type or elastic/viscoelastic layered medium. But the 
properties of the material in the lithosphere-asthenosphere 
system suggest that other types of viscoelastic material may 
also be relevant. With this in view, we introduce linear 
viscoelastic material to represent the lithosphere- 
asthenosphere system having the properties of both Maxwell 
and Kelvin-Voigt type. Further the tectonic forces which 
cause movement across the earthquake faults in the region 
may not remain constant for the entire aseismic period in 
between two major seismic events, but is likely to be slowly 
increasing in nature. Consequently the tectonic force 𝜏𝜏∞(𝑡𝑡) 
is taken to be slowly increasing linearly with time. The 
resulting boundary value problems are solved by using 
integral transform, Modified Green's function technique and 
Correspondence principle. 

2. Formulation 
We consider a long strike-slip fault F of width D situated  
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in a viscoelastic half space of linear viscoelastic material. 
We introduce a rectangular Cartesian coordinate system 

(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3) such that the free surface is the plane 𝑦𝑦3 = 0  
and the fault is in the plane 𝑦𝑦2 = 0. 

 
Figure 1.  The section of the model by the plane 𝑦𝑦1 = 0 
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We assume that for the long fault whose length is much 
greater than its width D, the displacement, stresses and 
strains are independent of 𝑦𝑦1 and depended on 𝑦𝑦2,𝑦𝑦3 and t. 
With this assumption, the displacement, stress and strain 
components are separated out into two distinct groups: one 
group containing u, 𝜏𝜏12 , 𝜏𝜏13, 𝑒𝑒12 and 𝑒𝑒13  associated with 
strike-slip movement, while the other group containing v, w, 
𝜏𝜏22 , 𝜏𝜏23, 𝜏𝜏33, 𝑒𝑒22, 𝑒𝑒23  and 𝑒𝑒33  associated with a possible 
dip-slip movement. We consider here the components of 
displacement, stress and strain u, 𝜏𝜏12 , 𝜏𝜏13, 𝑒𝑒12 and 𝑒𝑒13 
associated with strike-slip movement across the fault. 
Similar model for a dip-slip fault was considered in [1]. 

2.1. Constitutive Equations (Stress-Strain Relations) 

For the linear viscoelastic type medium combining both 
the properties of Maxwell and Kelvin-Voigt type materials, 
the constitutive equations have been taken as: 

�
𝜏𝜏12 + 𝜂𝜂

𝜇𝜇
𝜕𝜕
𝜕𝜕𝑡𝑡

(𝜏𝜏12) = 𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦2

+ 2𝜂𝜂 𝜕𝜕
𝜕𝜕𝑡𝑡
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦2
�

𝜏𝜏13 + 𝜂𝜂
𝜇𝜇
𝜕𝜕
𝜕𝜕𝑡𝑡

(𝜏𝜏13) = 𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦3

+ 2𝜂𝜂 𝜕𝜕
𝜕𝜕𝑡𝑡
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦3
�
�     (1) 

where 𝜂𝜂 is the effective viscosity and 𝜇𝜇  is the effective 
rigidity of the material. 

2.2. Stress Equation of Motion 

We consider the aseismic state of the model when the 
medium is in a quasi-static state, and choose our time origin 
t=0 suitably.   

For slow, aseismic deformation, the stresses satisfy the 
following equation of motion as: 

�
𝜕𝜕
𝜕𝜕𝑦𝑦2

(𝜏𝜏12) + 𝜕𝜕
𝜕𝜕𝑦𝑦3

(𝜏𝜏13) = 0

(−∞ < 𝑦𝑦2 < ∞,   𝑦𝑦3 ≥ 0,   𝑡𝑡 ≥ 0)
�        (2) 

neglecting the inertial term. 

2.3. Boundary Conditions 

The boundary conditions are: 

�
𝜏𝜏13 = 0 on  𝑦𝑦3 = 0 , (−∞ < 𝑦𝑦2 < ∞,    𝑡𝑡 ≥ 0)

  
𝜏𝜏13 → 0 as  𝑦𝑦3 → ∞ , (−∞ < 𝑦𝑦2 < ∞,    𝑡𝑡 ≥ 0)  

�  (3) 

We assume 𝜏𝜏∞(𝑡𝑡) , the stress maintained by different 
tectonic phenomena including mantle convection, a slowly 
linearly increasing function with time, as 𝜏𝜏∞(𝑡𝑡) =
𝜏𝜏∞(0)(1 + 𝑘𝑘𝑡𝑡) , where  𝑘𝑘 > 0, is a small quantity. It is the 
main driving force for any possible strike-slip motion across 
F. 

�
𝜏𝜏12 → 𝜏𝜏∞(𝑡𝑡) = 𝜏𝜏∞(0)(1 + 𝑘𝑘𝑡𝑡), (𝑘𝑘 > 0)

as |𝑦𝑦2| → ∞, for 𝑦𝑦2 ≥ 0, 𝑡𝑡 ≥ 0.
𝜏𝜏∞(0) = The value of 𝜏𝜏∞(𝑡𝑡) at t = 0.

(𝜏𝜏12)0 → 𝜏𝜏∞(0) as |𝑦𝑦2| → ∞, for t = 0.⎭
⎬

⎫
     (4) 

2.4. Initial Conditions 
Let (𝜕𝜕)0, (𝜏𝜏12)0, (𝜏𝜏13)0   and (𝑒𝑒12)0  are the values of u, 

𝜏𝜏12 , 𝜏𝜏13, 𝑒𝑒12 and 𝑒𝑒13  respectively at time t=0. They are 
functions of 𝑦𝑦2,𝑦𝑦3 and satisfy the relations (1) to (4). 

Now differentiating partially equation (1) with respect to 
𝑦𝑦2 and with respect to 𝑦𝑦3 and adding them using equation (2) 
we get, 

∇2𝜕𝜕(𝑦𝑦2,𝑦𝑦3, 𝑡𝑡) = 𝑐𝑐. 𝑒𝑒−
𝜇𝜇𝑡𝑡
2𝜂𝜂 , 

(c, an arbitrary constant) and ∇2𝑈𝑈 = 0       (5) 

where, 𝑈𝑈 = 𝜕𝜕 − (𝜕𝜕)0𝑒𝑒
−𝜇𝜇𝑡𝑡2𝜂𝜂  

3. Displacements, Stresses and Strains in 
the Absence of Any Fault Movement 

The boundary value problem given by (1)-(5) can be 
solved by taking Laplace transform with respect to time t of 
all constitutive equations and boundary conditions. Finally, 
on taking inverse Laplace transform we get the solutions for 
displacement, strains and stresses as: 

�

𝜕𝜕 = (𝜕𝜕)0𝑒𝑒
−𝜇𝜇𝑡𝑡2𝜂𝜂                                                      

+𝑦𝑦2𝜏𝜏∞(0) �1
𝜇𝜇
− 𝜂𝜂𝑘𝑘

𝜇𝜇2 + 𝑘𝑘𝑡𝑡
𝜇𝜇

+ �𝜂𝜂𝑘𝑘
𝜇𝜇2 −

1
𝜇𝜇
� 𝑒𝑒−

𝜇𝜇𝑡𝑡
2𝜂𝜂 �

𝑒𝑒12 = (𝑒𝑒12)0𝑒𝑒
−𝜇𝜇𝑡𝑡2𝜂𝜂                                                  

+𝜏𝜏∞(0) �1
𝜇𝜇
− 𝜂𝜂𝑘𝑘

𝜇𝜇2 + 𝑘𝑘𝑡𝑡
𝜇𝜇

+ �𝜂𝜂𝑘𝑘
𝜇𝜇2 −

1
𝜇𝜇
� 𝑒𝑒−

𝜇𝜇𝑡𝑡
2𝜂𝜂 �

𝜏𝜏12 = 𝜏𝜏∞(0) �1 + 𝑘𝑘𝑡𝑡 − 𝑒𝑒−
𝜇𝜇𝑡𝑡
𝜂𝜂 � + (𝜏𝜏12)0𝑒𝑒

−𝜇𝜇𝑡𝑡𝜂𝜂

𝜏𝜏13 = (𝜏𝜏13)0𝑒𝑒
−𝜇𝜇𝑡𝑡𝜂𝜂

 

⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

  (6) 

From the above result we find that, the initial field for 
displacement, stresses and strain gradually dies out. The 
relevant stress component 𝜏𝜏12 is found to increase with time 
t and tends to 𝜏𝜏∞(𝑡𝑡) as 𝑡𝑡 → ∞. However the rheological 
behaviors of the material near the fault F are assumed to be 
capable of withstanding stress of magnitude 𝜏𝜏𝑐𝑐 , called 
critical value of the stress where 𝜏𝜏𝑐𝑐   is less than 𝜏𝜏∞(𝑡𝑡). We 
assume that when the accumulated stress 𝜏𝜏12 near the fault 
exceeds this critical level after a time, T, a creeping 
movement across F sets in, and thereby the accumulated 
stress releases to a value less than 𝜏𝜏𝑐𝑐 . 

If we assume (𝜏𝜏12)0 =50 bar, 𝜏𝜏∞(0)=50 bar, 𝑘𝑘 = 10−9 
and 𝜏𝜏𝑐𝑐=200 bar, it is found that 𝜏𝜏12 reaches the value 𝜏𝜏𝑐𝑐  in 
about 96 years. In our subsequent discussions we shall take T 
to be 96 years. 

The relevant boundary value problem after 
commencement of the creeping movement across F , 𝑡𝑡 ≥ 𝑇𝑇 
has been described in Appendix-7.2. 

4. Displacements, Stresses and Strains 
after the Commencement of the Fault 
Creep 

We assume that after a time T, the stress component 𝜏𝜏12 
which is the main driving force for the strike-slip motion of 
the fault, exceeds the critical value 𝜏𝜏𝑐𝑐  and the fault starts 
creeping characterized by a dislocation across the fault as 
discussed in Appendix-7.2. 
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We solved the resulting boundary value problem by 
modified Green's function method following [2], [3] and 
correspondence principle (as shown in Appendix) and get the 
solution for displacement, strain and stresses as: 

�

𝜕𝜕 = (𝜕𝜕)0𝑒𝑒
−𝜇𝜇𝑡𝑡2𝜂𝜂                                                        

 +𝑦𝑦2𝜏𝜏∞(0) �1
𝜇𝜇
− 𝜂𝜂𝑘𝑘

𝜇𝜇2 + 𝑘𝑘𝑡𝑡
𝜇𝜇

+ �𝜂𝜂𝑘𝑘
𝜇𝜇2 −

1
𝜇𝜇
� 𝑒𝑒−

𝜇𝜇𝑡𝑡
2𝜂𝜂 �

+ 𝑈𝑈(𝑡𝑡−𝑇𝑇)
2𝜋𝜋

𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜑𝜑1(𝑦𝑦2,𝑦𝑦3)

𝑒𝑒12 = (𝑒𝑒12)0𝑒𝑒
−𝜇𝜇𝑡𝑡2𝜂𝜂                                                  

+𝜏𝜏∞(0) �1
𝜇𝜇
− 𝜂𝜂𝑘𝑘

𝜇𝜇2 + 𝑘𝑘𝑡𝑡
𝜇𝜇

+ �𝜂𝜂𝑘𝑘
𝜇𝜇2 −

1
𝜇𝜇
� 𝑒𝑒−

𝜇𝜇𝑡𝑡
2𝜂𝜂 �

+ 𝑈𝑈(𝑡𝑡−𝑇𝑇)
2𝜋𝜋

𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜓𝜓1(𝑦𝑦2,𝑦𝑦3)

𝜏𝜏12 = 𝜏𝜏∞(0) �1 + 𝑘𝑘𝑡𝑡 − 𝑒𝑒−
𝜇𝜇𝑡𝑡
𝜂𝜂 � + (𝜏𝜏12)0𝑒𝑒

−𝜇𝜇𝑡𝑡𝜂𝜂

+ 𝜇𝜇
2𝜋𝜋
𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜓𝜓1(𝑦𝑦2,𝑦𝑦3)

�∫ 𝑣𝑣1(𝜏𝜏)𝑑𝑑𝜏𝜏 +𝑡𝑡−𝑇𝑇
0 ∫ 𝑣𝑣1(𝜏𝜏)𝑒𝑒−

𝜇𝜇 (𝑡𝑡−𝑇𝑇−𝜏𝜏)
𝜂𝜂 𝑑𝑑𝜏𝜏𝑡𝑡−𝑇𝑇

0 �

𝜏𝜏13 = (𝜏𝜏13)0𝑒𝑒
−𝜇𝜇𝑡𝑡𝜂𝜂 + 𝜇𝜇

2𝜋𝜋
𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜓𝜓2(𝑦𝑦2,𝑦𝑦3)

�∫ 𝑣𝑣1(𝜏𝜏)𝑑𝑑𝜏𝜏 +𝑡𝑡−𝑇𝑇
0 ∫ 𝑣𝑣1(𝜏𝜏)𝑒𝑒−

𝜇𝜇 (𝑡𝑡−𝑇𝑇−𝜏𝜏)
𝜂𝜂 𝑑𝑑𝜏𝜏𝑡𝑡−𝑇𝑇

0 � ⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

  (7) 

where 𝜑𝜑1(𝑦𝑦2,𝑦𝑦3), 𝜓𝜓1(𝑦𝑦2,𝑦𝑦3) and 𝜓𝜓2(𝑦𝑦2,𝑦𝑦3) are given in 
the Appendix. 

It has been observed, as in [4] that the strains and the 
stresses will be bounded everywhere in the model including 
the lower edge of the fault, the depth dependence of the creep 
function 𝑓𝑓(𝑥𝑥3)  should satisfy the certain sufficient 
conditions: 

(I)  𝑓𝑓(𝑦𝑦3), 𝑓𝑓′(𝑦𝑦3) are continuous in 0≤ 𝑦𝑦3 ≤ 𝐷𝐷, 
(II) Either (a) 𝑓𝑓′′ (𝑦𝑦3) is continuous in 0≤ 𝑦𝑦3 ≤ 𝐷𝐷, 
or (b) 𝑓𝑓′′ (𝑦𝑦3) is continuous in 0≤ 𝑦𝑦3 ≤ 𝐷𝐷, except for a 

finite number of points of finite discontinuity in 0≤ 𝑦𝑦3 ≤ 𝐷𝐷, 
or (c) 𝑓𝑓′′ (𝑦𝑦3)  is continuous in 0 ≤ 𝑦𝑦3 ≤ 𝐷𝐷, except 

possibly for a finite number of points of finite discontinuity 
and for the ends points of (0,D), there exist real constants 
m<1 and n<1 such that 𝑦𝑦3

𝑚𝑚𝑓𝑓′′ (𝑦𝑦3) → 0 or to a finite limit 
as 𝑦𝑦3 → 0 + 0  and (𝐷𝐷 − 𝑦𝑦3)𝑛𝑛𝑓𝑓′′ (𝑦𝑦3) → 0  or to a finite 
limit as 𝑦𝑦3 → 𝐷𝐷 − 0 and 

(III) 𝑓𝑓(𝐷𝐷) = 0 = 𝑓𝑓′(𝐷𝐷)  ,     𝑓𝑓′(0) = 0, 
These are sufficient conditions which ensure finite 

displacements, stresses and strains for all finite (𝑦𝑦2,𝑦𝑦3, 𝑡𝑡) 
including the points at the lower edge of the fault. 

We can evaluate the integrals in 𝜑𝜑1(𝑦𝑦2,𝑦𝑦3), 𝜓𝜓1(𝑦𝑦2,𝑦𝑦3) 
and 𝜓𝜓2(𝑦𝑦2,𝑦𝑦3) in the above equations in closed form, if 
𝑓𝑓(𝑦𝑦3) is any polynomial satisfying (I), (II) and (III). One 
such function is  

𝑓𝑓(𝑦𝑦3) = 1 −
3𝑦𝑦3

2

𝐷𝐷2 +
2𝑦𝑦3

3

𝐷𝐷3  

5. Numerical Computations 
We consider 𝑓𝑓(𝑥𝑥3) to be  

𝑓𝑓(𝑥𝑥3) = 1 −
3𝑥𝑥3

2

𝐷𝐷2 +
2𝑥𝑥3

3

𝐷𝐷3  

which satisfies all the conditions for bounded strain and 
stresses stated above. 

Following [5], [6] and the recent studies on rheological 
behaviour of crust and upper mantle by [7], [8], the values to 
the model parameters are taken as: 

𝜇𝜇 =  3.5x1011dyne/sq. cm. 
𝜂𝜂 = 5x1020 poise 

D = Depth of the fault = 10 km., noting that the depth of 
the major earthquake faults are in between 10-15 km.  

𝑡𝑡1 = 𝑡𝑡 − 𝑇𝑇 
𝜏𝜏∞(𝑡𝑡) = 𝜏𝜏∞(0)(1 + 𝑘𝑘𝑡𝑡) 
𝜏𝜏∞(0) = 50 bar 
(𝜏𝜏12)0 = 50 bar 
(𝜏𝜏13)0 = 50 bar 
𝑘𝑘 = 10−9 

6. Discussion of the Results 
We compute the following quantities: 

𝑈𝑈 = 𝜕𝜕 − (𝜕𝜕)0𝑒𝑒
−𝜇𝜇𝑡𝑡2𝜂𝜂  

    = 𝑦𝑦2𝜏𝜏∞(0) �
1
𝜇𝜇
−
𝜂𝜂𝑘𝑘
𝜇𝜇2 +

𝑘𝑘𝑡𝑡
𝜇𝜇

+ �
𝜂𝜂𝑘𝑘
𝜇𝜇2 −

1
𝜇𝜇
� 𝑒𝑒−

𝜇𝜇𝑡𝑡
2𝜂𝜂 � 

        +
𝑈𝑈(𝑡𝑡 − 𝑇𝑇)

2𝜋𝜋
𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜑𝜑1(𝑦𝑦2,𝑦𝑦3) 

𝐸𝐸12 = 𝑒𝑒12 − (𝑒𝑒12)0𝑒𝑒
−𝜇𝜇𝑡𝑡2𝜂𝜂  

       = 𝜏𝜏∞(0) �
1
𝜇𝜇
−
𝜂𝜂𝑘𝑘
𝜇𝜇2 +

𝑘𝑘𝑡𝑡
𝜇𝜇

+ �
𝜂𝜂𝑘𝑘
𝜇𝜇2 −

1
𝜇𝜇
� 𝑒𝑒−

𝜇𝜇𝑡𝑡
2𝜂𝜂 � 

        +
𝑈𝑈(𝑡𝑡 − 𝑇𝑇)

2𝜋𝜋
𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜓𝜓1(𝑦𝑦2,𝑦𝑦3) 

𝜏𝜏12 = 𝜏𝜏∞(0) �1 + 𝑘𝑘𝑡𝑡 − 𝑒𝑒−
𝜇𝜇𝑡𝑡
𝜂𝜂 � + (𝜏𝜏12)0𝑒𝑒

−𝜇𝜇𝑡𝑡𝜂𝜂  

           +
𝜇𝜇

2𝜋𝜋
𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜓𝜓1(𝑦𝑦2,𝑦𝑦3) 

            �� 𝑣𝑣1(𝜏𝜏)𝑑𝑑𝜏𝜏 +
𝑡𝑡−𝑇𝑇

0

� 𝑣𝑣1(𝜏𝜏)𝑒𝑒−
𝜇𝜇(𝑡𝑡−𝑇𝑇−𝜏𝜏)

𝜂𝜂 𝑑𝑑𝜏𝜏
𝑡𝑡−𝑇𝑇

0

� 

where the expression for u, 𝜏𝜏12,  𝑒𝑒12 are given in expression 
(7). 

6.1. Displacement against Year 
Figure 2 shows surface displacement against time due to 

the effect of 𝜏𝜏∞(𝑡𝑡) and the creeping movement across the 
fault with 𝑦𝑦2 = 10 km. 

It has been observed that in the absence of the fault 
movement the displacement increases almost linearly with 
time at a slightly increasing rate. After the onset of the 
creeping movement across the fault at t = 96 years the 
displacement increases almost linearly but at much higher 
rate. This sudden increase may be attributed to the creeping 
movement across the fault. 
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Figure 2.  Surface displacement against time (𝑦𝑦2 = 10 km) 

6.2. Displacement against 𝐲𝐲𝟐𝟐 

Figure 3 shows surface displacement against 𝑦𝑦2, the distance from the fault, just before and after commencement of the 
fault movement. 

It is observed from the figure that the displacement increases at a constant rate as expected for t=95 years (just before the 
commencement of the fault movement). The curve in the red colour shows the displacement against 𝑦𝑦2 for t=98 years just 
after the beginning of the fault movement. Comparing these two curves it is found that the magnitude of the displacement is 
always greater in the later case. The displacement increases but with a gradually decreasing rate. 

 
Figure 3.  Surface displacement against 𝑦𝑦2, just before and after commencement of the fault movement 

 
Figure 4.  Surface share strain before the fault movement 
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6.3. Strain against Year 

Figure 4 shows Surface share strain before the 
commencement of the fault movement. 

We can deduce from the figure that the share strain 
increases slowly with time under the action of 𝜏𝜏∞(𝑡𝑡) but its 
magnitude is found to be of the order of 10−4 which is in 
conformity with the observational facts. 

6.4. Stress near the Midpoint on the Fault (𝐲𝐲𝟐𝟐=0.5 km. 
and  𝐲𝐲𝟑𝟑= 5.0 km.) Against Time for Different Creep 
Velocities 

Figure 5 shows that, in the absence of any fault movement 
across F, the share stress 𝜏𝜏12(𝑡𝑡) increases gradually with 
time but at a decreasing rate. After the commencement of the 
fault movement the stress accumulation pattern near the fault 
undergoes significant changes depending upon the creep 
velocity (v). For v=10 cm./year the rate of accumulation 
decreases significantly. For v=20 cm./year the accumulation 
rate is marginally above zero. For higher values of v, the 
stress gets released instead of accumulation. For example for 
v=50 cm./year the accumulated stress has been completely 

released within 60 years after the commencement of the fault 
movement. 

6.5. Stress against Depth 
In Figure 6 the stress 𝑇𝑇12  along the fault due to the 

movement across F where, 

𝑇𝑇12 =
𝜇𝜇

2𝜋𝜋
𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜓𝜓1(𝑦𝑦2,𝑦𝑦3) �� 𝑣𝑣1(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑡𝑡−𝑇𝑇

0

+ � 𝑣𝑣1(𝜏𝜏)𝑒𝑒−
𝜇𝜇(𝑡𝑡−𝑇𝑇−𝜏𝜏)

𝜂𝜂 𝑑𝑑𝜏𝜏
𝑡𝑡−𝑇𝑇

0

� 

The magnitude of 𝑇𝑇12  has been computed very close to 
the fault line with 𝑦𝑦2=0.5 km. and 𝑦𝑦3varies from 0 to 50 km. 
The figure shows that initially the stress is negative and its 
magnitude increases up to a depth of 2 km. from the upper 
edge of the fault. Thereafter its magnitude decreases up to 
the lower edge of the fault, where its attends its maximum 
positive value at 𝑦𝑦3=10 km. As we move downwards the 
accumulated stress gradually dies out and tends to zero. 

 

Figure 5.  Stress near the mid point on the fault (𝑦𝑦2=0.5 km. and  𝑦𝑦3= 5.0 km.) against time for different creep velocities 

 

Figure 6.  Stress 𝑇𝑇12  due to the movement across the F (closed to the fault line) 
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Figure 7.  Region of stress accumulation/reduction due to the creeping movement across F 

 
6.6. Stress against Depth and 𝐲𝐲𝟐𝟐 

Figure 7 shows Identification of the region of stress 
accumulation and stress reduction due to the creeping 
movement across F. 

We computed 𝑇𝑇12  for a set of values of 𝑦𝑦2 from -50 km. 
to 50 km. and for a set of values of 𝑦𝑦3 ranging from 0 km. to 
50 km. It is found that, there is a clear demarcation of the 
zones where stress is increased due to the fault movement 
marked by (A: Blue in the graph) and a stress reduction zone 
(R: Red in the graph). From this figure we may conclude that 
if there be a second fault situated in the region of stress 
accumulation (marked A) then the rate of accumulation of 
stress near it will be increased due to the movement across 
the fault F. As a result, the time of a possible movement 
across the second fault will be advanced. On the other hand if 
the second fault be situated in the region of stress reduction 
(marked by R), the rate of stress accumulation near the 
second fault will be reduced due to the fault movement 
across F and as a result any possible movement across the 
second fault will be delayed due to the movement across F. 
This gives us some ideas about the interactions among 
neighboring faults in a seismic fault system. The interacting 
effects depend on the relative positions of the fault. 
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Appendix 
A1. Displacements, Stresses, and Strains before the 

Commencement of the Fault Creep  

The method of solution 
We take Laplace Transform of all constitutive equations 

and boundary conditions 

�𝜏𝜏12���� =
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑦𝑦2

(𝜇𝜇+2𝜂𝜂𝜂𝜂 )

1+𝜂𝜂𝜂𝜂
𝜇𝜇

+
𝜂𝜂
𝜇𝜇 (𝜏𝜏12 )0

1+𝜂𝜂𝜂𝜂
𝜇𝜇
−

2𝜂𝜂� 𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦2
�

0
1+𝜂𝜂𝜂𝜂

𝜇𝜇
�    (8) 

where 𝜏𝜏12���� = ∫ 𝜏𝜏12𝑒𝑒−𝜂𝜂𝑡𝑡
∞

0 𝑑𝑑𝑡𝑡, p being the Laplace transform 
variable. 

Also the stress equation of motion in Laplace transform 
domain as: 

� 𝜕𝜕
𝜕𝜕𝑦𝑦2

(𝜏𝜏12����) + 𝜕𝜕
𝜕𝜕𝑦𝑦3

(𝜏𝜏13����) = 0�        (9) 

and the boundary conditions are (after transformation) 

� 𝜏𝜏13���� = 0 on  𝑦𝑦3 = 0 , (−∞ < 𝑦𝑦2 < ∞,    𝑡𝑡 ≥ 0)
𝜏𝜏13���� → 0 as  𝑦𝑦3 → ∞ , (−∞ < 𝑦𝑦2 < ∞,    𝑡𝑡 ≥ 0)� (10) 

�𝜏𝜏12���� → 𝜏𝜏∞����(𝜂𝜂) = 𝜏𝜏∞(0)(1 + 𝑘𝑘𝑡𝑡), (𝑘𝑘 > 0)
𝑎𝑎𝑎𝑎  |𝑦𝑦2| → ∞, for 𝑦𝑦2 ≥ 0, 𝑡𝑡 ≥ 0. �    (11) 

Using (8) and other similar equation assuming the initial 
fields to be zero, we get from (9) 

    ∇2𝑈𝑈� = 0                   (12) 
Thus we are to solve the boundary value problem (12) 

with the boundary conditions (10) and (11) 
Let,   

𝜕𝜕� =
(𝜕𝜕)0

𝜂𝜂 + 𝜇𝜇
2𝜂𝜂

+ 𝐴𝐴𝑦𝑦2 + 𝐵𝐵𝑦𝑦3 
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be the solution of (12), where   

𝑈𝑈� = 𝜕𝜕� −
(𝜕𝜕)0

𝜂𝜂 + 𝜇𝜇
2𝜂𝜂

 

Using the boundary conditions (10) and (11) and the initial 
conditions we get, 

𝐴𝐴 =
𝜇𝜇 + 𝜂𝜂𝜂𝜂

𝜇𝜇(𝜇𝜇 + 2𝜂𝜂𝜂𝜂) 𝜏𝜏∞����
(𝜂𝜂) −

𝜂𝜂𝜏𝜏∞(0)
𝜇𝜇(𝜇𝜇 + 2𝜂𝜂𝜂𝜂) 

𝐵𝐵 = 0 
On taking inverse Laplace transform, we get 

𝜕𝜕 = (𝜕𝜕)0𝑒𝑒
−𝜇𝜇𝑡𝑡2𝜂𝜂  

       +𝑦𝑦2𝜏𝜏∞(0) �
1
𝜇𝜇
−
𝜂𝜂𝑘𝑘
𝜇𝜇2 +

𝑘𝑘𝑡𝑡
𝜇𝜇

+ �
𝜂𝜂𝑘𝑘
𝜇𝜇2 −

1
𝜇𝜇
� 𝑒𝑒−

𝜇𝜇𝑡𝑡
2𝜂𝜂 � 

𝑒𝑒12 = (𝑒𝑒12)0𝑒𝑒
−𝜇𝜇𝑡𝑡2𝜂𝜂  

          +𝜏𝜏∞(0) �
1
𝜇𝜇
−
𝜂𝜂𝑘𝑘
𝜇𝜇2 +

𝑘𝑘𝑡𝑡
𝜇𝜇

+ �
𝜂𝜂𝑘𝑘
𝜇𝜇2 −

1
𝜇𝜇
� 𝑒𝑒−

𝜇𝜇𝑡𝑡
2𝜂𝜂 � 

𝜏𝜏12 = 𝜏𝜏∞(0) �1 + 𝑘𝑘𝑡𝑡 − 𝑒𝑒−
𝜇𝜇𝑡𝑡
𝜂𝜂 � + (𝜏𝜏12)0𝑒𝑒

−𝜇𝜇𝑡𝑡𝜂𝜂  

𝜏𝜏13 = (𝜏𝜏13)0𝑒𝑒
−𝜇𝜇𝑡𝑡𝜂𝜂  

A2. Displacements, Stresses and Strains after the 
Commencement of the Fault Creep 

The method of solution 
We assume that after a time T the stress component 𝜏𝜏12, 

which is the main driving force for the strike-slip motion of 
the fault, exceeds the critical value 𝜏𝜏𝑐𝑐 , the fault F starts 
creeping then (8) to (11) are satisfied with the following 
conditions of creep across F: 

[𝜕𝜕] = 𝑈𝑈(𝑡𝑡1)𝑓𝑓(𝑦𝑦3)𝐻𝐻(𝑡𝑡1)          (13) 
where [𝜕𝜕] is the discontinuity in u across F, and 𝐻𝐻(𝑡𝑡1) is 
Heaviside unit step function. 

That is  
[𝜕𝜕] = lim𝑦𝑦2→0+0 𝜕𝜕 − lim𝑦𝑦2→0−0 𝜕𝜕 , 0 ≤ 𝑦𝑦3 ≤ 𝐷𝐷  (14) 

The creep velocity 
𝜕𝜕
𝜕𝜕𝑡𝑡

[𝜕𝜕] = 𝑣𝑣(𝑡𝑡1)𝑓𝑓(𝑦𝑦3)𝐻𝐻(𝑡𝑡1) 

where  

𝑣𝑣(𝑡𝑡1) =
𝜕𝜕
𝜕𝜕𝑡𝑡
𝑈𝑈(𝑡𝑡1) =

𝜕𝜕
𝜕𝜕𝑡𝑡1

𝑈𝑈(𝑡𝑡1) 

and 𝑣𝑣(𝑡𝑡1),𝑈𝑈(𝑡𝑡1)  vanish for 𝑡𝑡1 ≤ 0. 
Taking Laplace transform in (13) with respect to 𝑡𝑡1, we 

get 
[𝜕𝜕�] = 𝑈𝑈�(𝜂𝜂1)𝑓𝑓(𝑦𝑦3)               (15) 

The fault creep commence across F after time T, we take 
𝑈𝑈(𝑡𝑡1) = 0 for 𝑡𝑡1 ≤ 0 that is 𝑡𝑡 ≤ 𝑇𝑇 
So that [𝜕𝜕] = 0 for 𝑡𝑡 ≤ 𝑇𝑇. 
We try to find the solution as: 

�
𝜕𝜕 = (𝜕𝜕)1 + (𝜕𝜕)2

𝑒𝑒12 = (𝑒𝑒12)1 + (𝑒𝑒12)2
𝜏𝜏12 = (𝜏𝜏12)1 + (𝜏𝜏12)2
𝜏𝜏13 = (𝜏𝜏13)1 + (𝜏𝜏13)2⎭

⎬

⎫
             (16) 

where (𝜕𝜕)1, (𝑒𝑒12)1, (𝜏𝜏12)1  𝑎𝑎𝑛𝑛𝑑𝑑 (𝜏𝜏13)1  are continuous 
everywhere in the model satisfying equations (1) to (5). The 
solution for (𝜕𝜕)1, (𝑒𝑒12)1, (𝜏𝜏12)1  𝑎𝑎𝑛𝑛𝑑𝑑 (𝜏𝜏13)1 are similar to 
equation (6). 

For the second part (𝜕𝜕)2, (𝑒𝑒12)2, (𝜏𝜏12)2  and 
(𝜏𝜏13)2  boundary value problem can be stated as: 

∇2(𝜕𝜕�)2 = 0                  (17) 
where (𝜕𝜕�)2   is the Laplace transformation of (𝜕𝜕)2  with 
respect to t, give 

(𝜕𝜕�)2 = � 𝑒𝑒−𝜂𝜂𝑡𝑡 𝜕𝜕(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

0

 

The modified boundary condition: 
(𝜏𝜏12)2
�������� → 0 as |𝑦𝑦2| → ∞, for 𝑦𝑦3 ≥ 0, 𝑡𝑡1 ≥ 0.    (18) 

and the other boundary conditions are same as (10) and (11). 
Now we solve the boundary value problem by using a 

modified Green's function technique developed by [1], [2] 
and the Correspondence Principle. 

Let, 𝑄𝑄(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3)  is any point in the medium and 
𝑃𝑃(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)  is any point on the fault, then we have 

(𝜕𝜕�)2(𝑄𝑄) = �[(𝜕𝜕�)2(𝑃𝑃)]𝐺𝐺(𝑃𝑃,𝑄𝑄)𝑑𝑑𝑥𝑥3 

where the integration is taken over the fault F.  
Therefore, [(𝜕𝜕�)2(𝑃𝑃)] = 𝑈𝑈1���(𝑃𝑃)𝑓𝑓(𝑥𝑥)3 

where G is the Green's function satisfying the above 
boundary value problem and 

𝐺𝐺(𝑃𝑃,𝑄𝑄) = 𝜇𝜇
𝜕𝜕
𝜕𝜕𝑥𝑥2

𝐺𝐺1(𝑃𝑃,𝑄𝑄) 

where 

𝐺𝐺1(𝑃𝑃,𝑄𝑄) = −
1

4𝜋𝜋𝜇𝜇
[log{(𝑥𝑥2 − 𝑦𝑦2)2 + (𝑥𝑥3 − 𝑦𝑦3)2}

+ log{(𝑥𝑥2 − 𝑦𝑦2)2 + (𝑥𝑥3 + 𝑦𝑦3)2}] 

(𝜕𝜕�)2(𝑄𝑄) = � 𝑓𝑓(𝑥𝑥3)
𝑈𝑈 � (𝑃𝑃)

2𝜋𝜋
�

𝑦𝑦2

(𝑥𝑥3 + 𝑦𝑦3)2 + 𝑦𝑦2
2

𝐷𝐷

0

+
𝑦𝑦2

(𝑥𝑥3 − 𝑦𝑦3)2 + 𝑦𝑦2
2� 𝑑𝑑𝑥𝑥3 

Now,  

(𝜏𝜏12����)2 = �̅�𝜇
𝜕𝜕(𝜕𝜕�)2

𝜕𝜕𝑦𝑦2
 

where  

�̅�𝜇 =
(𝜇𝜇 + 2𝜂𝜂𝜂𝜂)

1 + 𝜂𝜂𝜂𝜂
𝜇𝜇

 

We assume that 𝑓𝑓(𝑦𝑦3)  is continuous everywhere on the 
fault 0 ≤ 𝑦𝑦3 ≤ 𝐷𝐷. 
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Now, taking inverse Laplace transformation 

(𝜕𝜕)2(𝑄𝑄) =
1

2𝜋𝜋
𝑈𝑈(𝑡𝑡 − 𝑇𝑇)𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜑𝜑1(𝑦𝑦2,𝑦𝑦3) 

where 𝐻𝐻(𝑡𝑡 − 𝑇𝑇) is Heaviside unit step function, and 

𝜑𝜑1(𝑦𝑦2,𝑦𝑦3) = � 𝑓𝑓(𝑥𝑥3) �
𝑦𝑦2

(𝑥𝑥3 + 𝑦𝑦3)2 + 𝑦𝑦2
2

𝐷𝐷

0

+
𝑦𝑦3

(𝑥𝑥3 − 𝑦𝑦3)2 + 𝑦𝑦2
2� 𝑑𝑑𝑥𝑥3 

where 𝑓𝑓(𝑥𝑥3)  is the depth-dependence of the creeping 
function across F. 

We also have, 

(𝜏𝜏12����)2 =
(𝜇𝜇 + 2𝜂𝜂𝜂𝜂)

1 + 𝜂𝜂𝜂𝜂
𝜇𝜇

  
𝜕𝜕(𝜕𝜕�)2

𝜕𝜕𝑦𝑦2
 

and similar other equations. 
Now, taking inverse Laplace transformation we get 

(𝜏𝜏12)2 =
𝜇𝜇

2𝜋𝜋
𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜓𝜓1(𝑦𝑦2,𝑦𝑦3) �� 𝑣𝑣1(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑡𝑡−𝑇𝑇

0

+ � 𝑣𝑣1(𝜏𝜏)𝑒𝑒−
𝜇𝜇(𝑡𝑡−𝑇𝑇−𝜏𝜏)

𝜂𝜂 𝑑𝑑𝜏𝜏
𝑡𝑡−𝑇𝑇

0

� 

where 

𝜓𝜓1(𝑦𝑦2,𝑦𝑦3) =
𝜕𝜕
𝜕𝜕𝑦𝑦2

{𝜑𝜑1(𝑦𝑦2,𝑦𝑦3)} 

= � 𝑓𝑓(𝑥𝑥3) �
(𝑥𝑥3 + 𝑦𝑦3)2 − 𝑦𝑦2

2

((𝑥𝑥3 + 𝑦𝑦3)2 + 𝑦𝑦2
2)2

𝐷𝐷

0

+
(𝑥𝑥3 − 𝑦𝑦3)2 − 𝑦𝑦2

2

((𝑥𝑥3 − 𝑦𝑦3)2 + 𝑦𝑦2
2)2� 𝑑𝑑𝑥𝑥3 

Similarly,  

(𝜏𝜏13)2 =
𝜇𝜇

2𝜋𝜋
𝐻𝐻(𝑡𝑡 − 𝑇𝑇)𝜓𝜓2(𝑦𝑦2,𝑦𝑦3) 

            �� 𝑣𝑣1(𝜏𝜏)𝑑𝑑𝜏𝜏 +
𝑡𝑡−𝑇𝑇

0

� 𝑣𝑣1(𝜏𝜏)𝑒𝑒−
𝜇𝜇(𝑡𝑡−𝑇𝑇−𝜏𝜏)

𝜂𝜂 𝑑𝑑𝜏𝜏
𝑡𝑡−𝑇𝑇

0

� 

where     

𝜓𝜓2(𝑦𝑦2,𝑦𝑦3) =
𝜕𝜕
𝜕𝜕𝑦𝑦3

{𝜑𝜑1(𝑦𝑦2,𝑦𝑦3)} 

= � 2𝑓𝑓(𝑥𝑥3) �
(𝑥𝑥3 − 𝑦𝑦3)𝑦𝑦2

((𝑥𝑥3 − 𝑦𝑦3)2 + 𝑦𝑦2
2)2

𝐷𝐷

0

−
(𝑥𝑥3 + 𝑦𝑦3)𝑦𝑦2

((𝑥𝑥3 + 𝑦𝑦3)2 + 𝑦𝑦2
2)2� 𝑑𝑑𝑥𝑥3 
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