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Abstract  Poly(ɣ-g lutamic acid) known as ɣ-PGA, is a polymer that releases the nonessential amino acid glutamic acid 
upon hydrolysis. The application of poly(ɣ-glutamic acid ) has increased in past year, as has the research to optimise its 
production methods with less-expensive processes, for example, the use of new substrate carbon and nitrogen sources for the 
fermentation processes. The following work reports the study of different fermentation processes for ɣ-PGA production and 
their implementation with regard to the fermentation and nutritional requirements of the studied microorganisms. 
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1. Introduction 
Several authors report that Ivánovics et al. (1937) 

discovered ɣ -PGA as the component of the Bacillus 
anthracis capsule[1-4]. Later, ɣ -PGA was identified in 
other Bacillus species, and Bovarnick  showed  in 1942 
that ɣ-PGA was produced in a culture broth by Bacillus 
subtilis as a submerged fermentation (Smf) and solid-state 
fermentation (SSF) product[5]; the polymer has been well 
studied since. 

Although biopolymers formed by the union of amino 
acids are very similar to proteins, not being proteins, they 
do not have a specific sequence. Rather, they comprise a 
single amino acid that form polymers having molecular 
masses as widely d iverse as those of polysaccharides[6]. 
These polymers can be produced by fermentation. For 
example, ɣ-PGA is p resent in natto, a t raditional Japanese 
food prepared using soybeans fermented by Bacillus strains; 
the ɣ -PGA and polysaccharides are found on the bean 
surface[6].  

The ɣ-PGA from natto consists of 50 - 80 % D- and 20 - 
50 % L-glutamate as the main component of the v iscous 
extracellular (bacterial) materials[7],[8]. The natto contains 
polysaccharide-containing mucin (levan-form fructan) in 
addition to ɣ-PGA[3],[6],[9-11], and the consumption of 
natto is associated with reduced bone loss in 
postmenopausal Japanese women[12]. 

The aim of this review is d iscuss several of the recent 
developments in the applicat ion of Bacillus species for the  
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production of ɣ -PGA. ɣ -PGA is biopolymer anionic, 
biodegradable, water-soluble with different applications and 
has effect on human health. In this review, the various 
works are briefly described. The main features and 
mechanis ms of the ɣ-PGA synthesis and the results are 
discussed. 

2. The ɣ-PGA Synthesis 

ɣ-PGA is synthesised by Gram-positive bacteria[13] and 
is produced as a polymer outside of the cell[4],[5],[14] by 
several Bacillus species, particularly wild -type isolates, 
includ ing Bacillus subtilis IFO3335[3], Bacilluslicheniform
is, Bacillus megaterium, Bacillus amyloliquefaciens[5], 
[15],[16] and a few other organis ms[17],[18].  

However, problems  have been reported in the ɣ-PGA 
production by Bacillus licheniformis 9945a: after repeated 
cultivation, the strain degenerates to a non-PGA-producing 
strain, causing different results in the ɣ-PGA productivity 
and fermentation kinetics[16],[19]. Birrer et al. solved this 
problem in 1994 using cryogenically frozen vegetative 
cells[20].  

The biosynthesis of ɣ-PGA in bacteria is performed  in  
two steps: in the first step, L- and D- glutamic acid are 
synthesised, and these glutamic acid units are joined 
together in the second step[1],[21]. 

The units of D- and L- g lutamic acid are connected by 
amide linkages between the α-amino and ɣ -carboxylic 
acid[2],[4],[6],[10],[11],[22-25]. The ɣ-PGA polymer can 
be characterised by its molecular mass and the relationship 
between the D- and L-glutamic acid monomers and the 
carboxyl group (α- or ɣ -) connected to the peptide[26]. The 
structural framework is shown in Figure 1.  
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Figure 1.  Structure of ɣ-PGA[3] 

There are two types of PGA, ɣ-PGA and α-PGA, which 
are composed of glutamic acids joined by ɣ or α linkages, 
respectively. Although α-PGA can be obtained by chemical 
synthesis, ɣ -PGA is produced only by microbial 
fermentation[27]. 

ɣ-PGA has a structure of 5,000 - 10,000 units of D- and 
L-glutamic acid that generates a highly  viscous solution 
when it accumulates in the culture medium[28],[29] with a 
maximum viscosity observed under conditions of neutral 
pH[30] and no salt[31]. However, an increase in the 
viscosity reduces the volumetric oxygen mass transfer, 
leading to insufficient cell growth and a decrease in  ɣ-PGA 
yields[32]. Published data have shown that there are several 
ɣ-PGA producers and that their respective ɣ-PGA polymers 
differ in molecular size and stereochemical composition[22]. 
Furthermore, the molecu lar size changes with the salt 
concentration in the cu lture medium: ɣ-PGA is produced at 
comparatively low molecular masses in media containing 
high concentrations of NaCl[32]. 

Approximately equal amounts of D- and L- units are 
present in naturally produced ɣ-PGA[33]. According to the 
existing literature, ɣ -PGA can contain L-glutamate or 
D-glutamate alone or both enantiomers[34]. It is likely that 
the enantiomers concentrations depend on the bivalents 
cations that are present in the culture medium[35]. 

In general, the production of ɣ-PGA by fermentation has 
been well studied[9],[28],[30],[36-38]. 

3. Enzymes Involved in ɣ-PGA 
Production 

Several studies have been conducted to identify the 
enzymes of the ɣ-PGA b iochemical pathway to increase 
productivity[24], and reports have shown that the key step 
is the production of 2-oxogluturate, the precursor of 
L-glutamic acid[36], which is synthesised via glycolysis 
and the tricarboxylic acid cycle[24]. A transglutaminase has 
been reported to be involved in ɣ -PGA production in 
Bacillus subtilis NR-1[39], however transglutaminase 
involvement has not been found in some other works[6]. 
Glutamate racemase is an important enzyme in  ɣ -PGA 

synthesis, as it is involved in the production of the substrate, 
more specifically in the supply of D-g lutamate[32]. 

In ɣ-PGA producing Bacillus subtilis, the p roduction of 
abundant DL-g lutamate occurs via glutamate racemase[22]. 

Figure 2 shows ɣ-PGA production, whereby L-g lutamic 
acid is produced from citric acid, which reacts to form 
isocitric acid; isocitric  acid then reacts to form the 
α-ketoglutarate of the tricarboxylic acid  cycle (TCA). Thus, 
glutamic acid is used to form ɣ-PGA, and a large amount 
of the polymer is produced from citric acid and ammonium 
sulphate[6]. 

The pgsBCA genes are responsible for the synthesis of ɣ
-PGA, with the PgsBCA system encoding the sole catalytic 
activity for ɣ-PGA synthesis. The polymerisation reaction 
in vitro is given by (1)[40]: 

(1) 
ɣ-PGA can be produced by fermentation in the presence 

and absence of L-glutamine. The fo rmation of L-glutamic 
acid in the absence of glutamine occurs via glutamate 
dehydrogenase (GD). In this case, α-ketoglutaric acid and 
ammonium sulphate form L-glutamic acid, a p rocess 
catalysed by GD[1]. 

In the presence of L-glutamine, glutamine synthetase (GS) 
and glutamine-2-oxoglutarate aminotransferase (GOGAT) 
are utilised for the format ion of L-glutamic acid. GOGAT 
catalyses the reaction between L-glutamine and 
α-ketoglutaric acid, with the regeneration of glutamine from 
L-glutamic acid and ammonium sulphate by GS[4]. 
D-glutamic acid is produced by the indirect conversion of 
L-glutamic acid[1]. 
ɣ-PGA is one of the few naturally occurring polyamides 

that is not synthesised by ribosomal protein biosynthesis but 
is synthesised by enzymat ic processes[41]. 

4. Nutritional Requirements for 
Different Bacillus Species 

Several parameters that affect the ɣ -PGA yield and 
molecular weight have been investigated, for example, the 
composition of the culture medium, Bacillus species, 
fermentation conditions, viscosity and mode of reactor 
feeding[37]. Additionally, owing to the presence of the 
enzymes that catalyse the in situ depolymerisation of ɣ
-PGA, polyglutamyl hydrolase (PGA hydrolase), the final 
molecular weight of ɣ -PGA can decrease as the 
fermentation time increases[9].  

[ ] [ ] 1n n
PgsBCAPGA Glutamate ATP PGA ADP Piγ γ +− + + → − + +
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Figure 2.  Biochemical pathway of ɣ-PGA production and some modifications[3] 

The ɣ-PGA-producing bacteria have different nutritional 
requirements for ɣ -PGA production[3],[6]. The bacteria 
can require different carbon sources, and others require 
specific nitrogen sources, though many of these bacteria do 
not require glutamic acid; conversely, other bacteria grow 
only in the presence of glutamic acid[6] or require b iotin[6]. 
It was found that glutamic acid was not incorporated in the 
ɣ-PGA chain when it  was added to the medium and that 
only the glutamic acid moiety produced from citric acid and 
ammonium sulphate was utilised[9], whereas the addition of 
L-glutamate significantly stimulated ɣ -PGA production, 
and highly elongated chains were synthesised[32]. 

The Mg+2 ion was essential for Bacillus licheniformis to 
synthesise ɣ -PGA and could not be replaced by other 
divalent cations, such as Mn+2[19]. However, Gross et al. 
showed that both the stereochemical composition and yield 
of the polymer were affected by the Mn+2 concentration 
[33].  

The concentration of Mn+2 can influence the 
configuration of the glutamic acid in ɣ-PGA produced by 
Bacillus subtilis. ɣ-PGA is composed of 80 % or more of 
the D-isomer when the growth medium is composed of a 
high concentration of Mn+2; at a low concentration of Mn+2, 
the proportion of the D-isomer is approximately 40 %[16]. 
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ɣ-PGA increases the Ca+2 solubility that is associated 
with reduced bone loss in post-menopausal women[42] and 
is, thus, important in the treatment of osteoporosis[22]. 

The microbial biomass and ɣ-PGA production using the 
nitrogen and other nutrients contained in manure liquid as 
the substrate and the utilisation of the ammonium nit rogen 
for the production of nitrogen-containing biopolymers 
would provide a good use of the ammonium and nutrients 
presents in swine waste[43]. Other such residues used in ɣ
-PGA production include soybean and sweet potato residues 
by solid-state fermentation, which are rich in proteins, 
carbohydrates and other nutrients[44]. 

One important fact is the remarkab le resistance of ɣ
-PGA to the proteolytic attack of its structural features[22]. 
Indeed, the degradation of ɣ -PGA by  non-adapted 
microflora is expected to be very slow, which should result 
in a continuously low rate of free-ammonium release[43]. 

5. Characteristics and Possible 
Applications 
ɣ -PGA is an anionic, b iodegradable, water-soluble 

biopolymer[2],[21],[25],[45],[46] that is edib le and 
non-toxic to humans or the environment[4],[37],[38],[45]. 
Its characteristics enable wide applicat ions as a 
biodegradable thickener, humectant, sustained-release 
material, chemical vehicle in the food, cosmetic, medicine 
[21],[43] and pharmaceutical industries[24], cryoprotectant, 
curable biological adhesive, biodegradable fibre and 
biopolymer flocculant[4],[21]. ɣ-PGA has been suggested 
for medical applications in addition to drug delivery, 
namely as a biological glue[47],[48]. It is important to note 
that the ɣ -PGA polymers with different stereochemical 
composition have different applications: ɣ -PGA with a 
high content of L-glutamate is used for cosmetics due to its 
skin compatib ility, and ɣ -PGA with a high content of 
D-glutamate is used because it degrades more slowly[49].  
ɣ -PGA and its derivatives can be used as potential 

substitutes for petroleum-based hydrogels and thermoplastic 
polymers because it is highly water absorbent and 
biodegradable[50]. There are many studies concerned with 
modifying the chemical reactions with ɣ -PGA for the 
production of hydrogels and thermoplastic polymers. For 
example, the esterification of the carboxyl g roups of ɣ
-PGA produced esters that are thermoplastic[8], and a ɣ
-PGA hydrogel has been produced through the ɣ-irradiation 
of aqueous solutions[50]. 

Various chemically modified derivatives have been 
developed for the extension of the polymer utility as an 
environmentally important substitute for hydrogels or 
non-biodegradable thermoplastics[7],[50]. 

Another interesting application was proposed by 
Hoppensack et al. who  studied the conversion of the 
nitrogen content in liquid manure into biomass and ɣ-PGA 
by the newly isolated Bacillus licheniformis. These authors 
observed that, when the extensive spreading of liquid 
manure onto agricultural fields occurred, eutrophication of 
the ground and surface water and pollution of the 
atmosphere also occurred due to the high ammonium 
nitrogen content. The proposed solution was the production 
of biomass and ɣ-PGA in batch cult ivations with swine 
manure and an optimised mineral salt medium using 
Bacillus licheniformis because of its ability to utilise the 
nitrogen source. For example, a reduction of the ammonium 
content in the liquid manure from 2.83 to 0.1 g/l and the 
production of 0.16 g/l ɣ-PGA and 7.5 g cell dry mass/l 
were observed within 410 h. In this case, the liquid manure 
was modified by adding 18 g  citrate and 80 g glycero l/l, 
producing a carbon to nitrogen ratio of 15.5:1. 
Approximately  33 % (w/v) of the original ammonium was 
lost by stripping[43]. 

The production of ɣ -PGA by Bacillus subtilis ZJU-7 
isolated from fermented bean curd, a trad itional Ch inese 
food, was reported by Sh i et al. in  1996. The production 
reached 58.2 g/l in a culture medium containing 81.05 g/l 
L-glutamic acid, 59.8 g/ l sucrose and 53.54 g/l tryptone at 
37 °C for 24 h[10]. 

Published data showed that the ɣ-PGA production by 
Bacillus licheniformis 9945a is affected by the 
concentrations of salt, glycerol, citric acid and L-glutamic 
acid and the ions Mn+2 and Ca+2. The production reached 
15.4 g/l in a culture medium containing 20 g/l L-glutamic 
acid, 12 g/l citric acid and 80 g/l g lycerol, pH adjusted to 
7.4 with NaOH, with the fermentation occurring for 2 - 3 
days[24]. 

Goto and Kunioka (1992) studied the biosynthesis and 
hydrolysis of ɣ-PGA using Bacillus subtilis IFO 3335, a 
strain that requires biotin as a nutrient, and observed that 
there was no production of ɣ-PGA in a medium without 
L-glutamic acid. By adding citric acid as the carbon source 
in a medium containing L-g lutamic acid and ammonium 
sulphate, a large amount of ɣ -PGA was produced (9.6 g/l) 
without the appearance of by-products, whereas a 
by-product that appeared to be a polysaccharide was 
generated when glucose was used as the carbon source in a 
medium with glutamic acid. When it is not added carbon 
source, but using L-malic acid, succinic acid or fumaric 
acid in  the culture medium with glutamic acid, the ɣ-PGA 
was hardly produced and by-product predominated. It was 
reported that the cells did not grow when using acetic acid 
as the carbon source in a culture medium with glutamic 
acid[3]. 
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After the production of ɣ -PGA, they studied its 
hydrolysis in aqueous solutions using different temperatures 
(80, 100 and 120 °C) and observing the time dependence of 
the changes in the molecular weight. These authors 
observed that the hydrolytic degradation of ɣ-PGA was 
found to proceed through a random chain  scission: at the 
highest temperature, faster and smaller molecules were 
obtained in a shorter time interval[3]. 

Li et al. produced ɣ-PGA in large amounts (34.1 g/l) 
using Bacillus subtilis CGMC 2108 in a culture medium 
containing sodium glutamate at a concentration of 40 - 60 
g/l[52]. 

According to the existing literature, the ɣ -PGA was 
produced by Bacillus subtilis in batch fermentation using a 
medium with glycerol (20 g/l) as the carbon source 
supplemented with glutamic and citric acid, yielding 23 g/l 
after 30 h. This work was based on the fact that the addition 
of glycerol to the medium and the control of the pH have 
been shown to increase the carbon ɣ-PGA y ield, findings 
that have not been studied in Bacillus subtilis. It was shown 
that, in a medium without glycerol supplementation with 
glutamic and citric acids, the maximum b iomass and ɣ
-PGA concentrations occurred at the init ial pH values of 6.5 
and 7.0 after 50 h of fermentation. When the initial pH was 
6 or 8, the maximum b iomass and ɣ -PGA production 
occurred after 90 h  of fermentation in the same medium. 
Based on these results, a new study was conducted using 
glycerol in different concentrations, with the observation 
that the addition of glycerol had a positive effect on the 
maximum ɣ-PGA yield (23 g/l) after 30 h[37].  

Bajaj and Singhal (2009) studied the effect of the 
addition of different amino acids and the acids of the 
tricarboxylic acid  cycle as intermediate metabolic 
precursors for ɣ-PGA production in  Bacillus licheniformis 
NCIM 2324. When the medium contained 0.5 mM 
L-glutamine and 10 mM α-ketoglutaric acid, the maximum 
yield was 35.75 g/l ɣ-PGA, whereas the maximum yield 
was 26.12 g/l ɣ -PGA in a medium without metabolic 
precursors. The medium culture was composed of glycerol, 
citric  acid, L-glutamic acid, ammonium sulphate and other 
components. The initial pH was adjusted to 6.5, and the 
fermentation occurred for 96 h  on a rotary shaker at 200 
rpm and 37 ± 2 °C[1]. 

Table 1 and 2 show the comparison between the different 
research conducted on the production of ɣ-PGA. 

6. Conclusions  
This review showed that there are different methods of 

producing ɣ-PGA and that important consideration include 
the choice of microorganism and the different nutritional 
requirements and fermentation conditions. The large 
number of ɣ-PGA applications have been the impetus for 
many studies regarding its production. We also discussed 
the interesting alternative of the use of industrial residues to 

produce ɣ -PGA, a compound of interest to various 
industries and of environmental benefit. 
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