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Abstract  This paper presents Evolutionary Programming (EP) based optimisation technique for estimating 
synchronising torque coefficients, Ks and damping torque coefficients, Kd of a synchronous machine. These coefficients are 
used to identify the angle stability of a system. Initially, a Simulink model was utilised to generate the time domain 
response of rotor angle under various loading conditions. EP was then implemented to optimise the values of Ks and Kd 
within the same loading conditions. Result obtained from the experiment are very promising and revealed that it 
outperformed the Least Square (LS) and Artificial Immune System (AIS) methods during the comparative studies. 
Validation with respect to eigenvalues determination confirmed that the proposed technique is feasible to solve the angle 
stability problems. 
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1. Introduction 
Small signal stability analysis of power systems has 

become more important nowadays. Under small 
perturbations, this analysis predicts the low frequency 
electromechanical oscillations resulting from poorly damped 
rotor oscillations. The oscillations stability has become a 
very important issue as reported in[4-6]. The operating 
conditions of the power system are changed with time due to 
the dynamic nature, so it is needed to track the system 
stability on-line. To track the system, some stability 
indicators will be estimated from given data and these 
indicators will be updated as new data are received. 
Synchronising torque coefficients, Ks and damping torque 
coefficients, Kd are used as stability indicators. To achieve 
stable condition, both the Ks and Kd must be positive[1-3]. 

Certain techniques have been proposed to estimate the 
values of Ks and Kd involving optimisation technique. Some 
techniques have been explored by means of frequency 
response analysis[6,7].[3] decomposed the change in 
electromagnetic torque into two orthogonal components in 
the frequency domain. The two equations were expressed in 
terms of the load angle deviation then solved directly. Static 
and dynamic time domain estimation methods were also 
proposed in this study.  

Least Square (LS) method can be one of the possible 
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techniques in addressing the stable and unstable phenomena. 
It has been used as static parameter estimation[8]. However, 
several disadvantages have been identified in LS method. 
Amongst them are the long computation time and the 
requirement for data updating. It also requires monitoring the 
entire period of oscillation.  

Recently, optimisation algorithms such as Evolutionary 
Programming (EP) and Artificial Intelligent System (AIS) 
have received much attention in global optimisation 
problems. EP and AIS are heuristic population-based search 
methods that use both random variation and selection. The 
optimal solution search process is based on the natural 
process of biological evolution and is accomplished in a 
parallel method in the parameter search space. EP-based 
method has been applied in various researches in 
static[12-16] and dynamic system stability[17-19]. On the 
other hand, AIS optimisation approach is still new in power 
system compared to the EP. EP and AIS share many 
common aspects; EP tries to model the natural evolution 
while AIS tries to benefit from the characteristics of human 
immune system[20-22].  

This paper presents an efficient online estimation 
technique of synchronising and damping torque coefficients 
in solving angle stability problems. It is based upon the 
population-based search methods that use both random 
variation and selection. The method is used to estimate 
synchronising torque coefficients, Ks, and damping torque 
coefficients, Kd, from the machine time responses of the 
change in rotor angle, Δδ(t), the change in rotor speed, Δω(t), 
and the change in electromechanical torque, ΔTe(t). The goal 
is to minimise the estimated coefficient error and the time 
consumed. The proposed EP technique is used to find the 
best solution of the formulated problem. Results obtained 
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from the experiment using EP were compared with AIS and 
LS methods. Then, the results were verified with 
eigenvalues. 

2. The System Model 
A simplified block diagram model of the small signal 

performance is shown in Figure 1. In this representation, the 
dynamic characteristics of the system are expressed in terms 
of K constants with linearised single machine infinite bus 
(SMIB) system. This model is represented with some 
variables such as electrical torque, rotor speed, rotor angle, 
and exciter output voltage. 
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Figure 1.  Block diagram model of small signal performance. 

As in the case of the classical generator model, the 
acceleration and the field circuit dynamic equations are: 
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where Tm is a mechanical torque, Te is a electromagnetic 
torque, efd 

is a field voltage, Rfd 
is a rotor circuit resistance, ifd 

is a field circuit current, and ω0=2πf0.  
From the transfer function block diagram, the following 

state-space form is developed.  
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The system matrix A is a function of the system 
parameters that depends on the opening conditions. The 
perturbation matrix B depends on the system parameters only. 
The interaction among these variables is expressed in terms 
of the 4 constants K1, K2, K3, and K4. Constants K1, K2, and K4 
are functions of the operating real and reactive loading as 

well as the excitation levels in the generator. K3 is a function 
of the ratio of impedance. Details of matrix A and matrix B 
are explained as follows. 
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Pt and Qt are terminal active and reactive power, 

respectively. All related equations are given in[1]. 

3. The System Model 
A single machine connected to infinite bus system is 

considered. The system comprises a steam generator 
connected via a tie line to a large system represented as 
infinite bus. The machine differential equations, the exciter 
equation, and the block diagram can be found in[1]. 

The change of electromagnetic torque ΔTe(t) can be 
broken down into two components namely the synchronising 
torque, Ks and damping torque, Kd. The synchronising torque 
is in phase and proportional with the change in rotor angle, 
Δδ(t), while the damping torque is in phase and proportional 
with the change in rotor speed, Δω(t). The estimated torque, 
ΔTes(t)  can be written as: 

( ) ( ) ( )tKtKtT dses ωδ ∆+∆=∆         (28) 
where: 

Δδ(t): Change in rotor angle 
Δω(t): Change in rotor speed 

Ks: Synchronising torque coefficients 
Kd: Damping torque coefficients 

4. Evolutionary Programming 
The Evolutionary Programming (EP) is one of the 

evolutionary computing techniques that uses the models of 
biological evolutionary process to solve complex 
engineering problems. The search for an optimal solution is 
based on the natural process of biological evolution and is 
accomplished in a parallel method in the parameter search 
space. EP belongs to the generic fields of simulated 
evolution and artificial life. It is robust, flexible, and 
adaptable and it can yield global solutions to any problem, 
regardless of the form of the objective function. 

The advantages of EP over other conventional 
optimisation techniques can be summarised as 
follows[12-19]: 

(a) EP searches the problem space using a population 
of trials representing possible solutions to the problem and 
not a single point. This will ensure that EP has less 

possibility of getting trapped in local minima. Therefore, EP 
can reach to a global optimal solution. 

(b) EP uses performance index or objective function 
information to guide the search for solution. Therefore, EP 
can easily deal with non-smooth and non-continuous 
objective functions. 

(c) EP uses probabilistic transition rules instead of 
non-deterministic rules to make decisions. Moreover, EP is a 
kind of stochastic optimisation algorithm that can search a 
complicated and uncertain area to find the global minimum. 
This makes EP more flexible and robust than conventional 
methods. 

In the EP algorithm, the population has 2n candidate 
solutions with each candidate solution is an m-dimensional 
vector, where m is the number of optimised parameters. The 
EP algorithm can be described as: 
 Step 1 (Initialisation): Generation counter i is set to 0. n 

random solutions (xk, k=1, …, n) are generated. The kth trial 
solution xk can be written as xk=[p1 ,…, pm], where the lth 
optimised parameter pi is generated by random value in the 
range of[pl

min, pl
max] with uniform probability. Each 

individual is evaluated using the fitness J. In this initial 
population, minimum value of fitness, Jmin will be searched; 
the target is to find the best solution, xbest with the fitness, 
Jbest. 
 Step 2 (Mutation): Each parent xk produces one 

offspring xk+n. Each optimised parameter pl is perturbed by 
Gaussian random variable N (0, σl

2). The standard deviation, 
σl specifies the range of the optimised parameter perturbation 
in the offspring. σl can be written as follows: 
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k
l pp

J
xJ

−××= βσ             (29) 

where β is a search factor, and J(xk) is the fitness equation of 
the trial solution, xk. The value of optimised parameter will 
be set at certain limit if any value violates its specified range. 
The offspring xk+n can be described as: 

( ) ( )[ ]22
1 ,0,...,,0 mknk NNxx σσ+=+             (30) 

where   k=1, …, n 
 Step 3 (Statistics): The minimum fitness, Jmin; the 

maximum fitness, Jmax; and the average fitness, Jave of all 
individuals are calculated. 
 Step 4 (Update the best solution): If Jmin is bigger than 

Jbest, go to Step 5, or else, update the best solution, xbest. Set 
Jmin as Jbest, and go to Step 5. 
 Step 5 (Combination): All members in the population xk 

are combined with all members from the offspring xk+n to 
become 2n candidates. Matrix size would be[2n × k] from its 
original size[n × k], where k is the number of control 
variables. These individuals are then ranked in descending 
order based on their fitness as their weight. 
 Step 6 (Selection): The first n individuals with higher 

weights are selected as candidates for the next generation. 
 Step 7 (Stopping criteria): The search process will be 

terminated if one of the followings is satisfied: 
i. It reaches the maximum number of generations. 
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ii. The value of (Jmax − Jmin) is very close to 0. 
If the process is not terminated, the iteration process will 

start again from Step 2. The flowchart of EP is shown in 
Figure 2. 
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Figure 2.  Flowchart of EP. 

5. Artificial Immune System 
Artificial immune system (AIS) approach to optimisation 

is more recent exploitation of natural phenomena in power 
system than EP. EP and AIS share many common aspects. 
Unlike the EP that tries to model the natural evolution, AIS 
tries to benefit from the characteristics of human immune 
system. Basic algorithm for AIS-based optimisation is called 
the Clonal Selection Algorithm (CSA) and it works as 
follows[20-22]: 
 Step 1: Initialisation; during initialisation, n random 

solutions (xk, k=1, …, n) are generated to represent the 
control parameters and determine the fitness, J. 
 Step 2: Cloning; population of variable x will be cloned 

by 10. As a result, the number of cloned population becomes 
10n. Each individual of cloned population is evaluated using 
the J. Minimum value of fitness, Jmin will be searched; the 
target is to find the best solution, xbest with the best fitness, 
Jbest. 
 Step 3: Mutation; each individual clone is mutated. The 

mutation equation can be described as in equation (30) and 
(31). 
 Step 4: Ranking process; the population of matured 

clones in Step 2 and mutated clones in Step 3 are ranked 
based on fitness. The first n individuals with higher weights 
are selected along with their fitness as parents of the next 
generation.  
 Step 5: Convergence test; The search process will be 

terminated if one of the followings is satisfied: 
i. It reaches the maximum number of generations. 
ii. The value of (Jmax − Jmin) is very close to 0. 

If the process is not terminated, the iteration will repeat 
from Step 2 again. The flowchart of AIS is shown in Fig. 3. 
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Figure 3.  Flowchart of AIS. 

6. Least Square Method 
All the data of Δδ(t), Δω(t), and ΔTe(t) can be obtained 

from either offline simulation or online measurements. 
Following a small disturbance, the time responses of these 
three items are recorded. The least square (LS) method is 
then used to minimise the sum of the square of the 
differences between the electric torque, ΔTe(t) and the 
estimated torque, ΔTes(t). The error is defined as:  

( ) ( ) ( )tTtTtE ese ∆−∆=          (31) 

The torque coefficients, Ks and Kd are calculated to 
minimise the sum of the error squared over the interval of 
oscillation, t as given in equation (4), where t=NT (N is the 
number of samples and T is the sampling period). For correct 
estimation of Ks and Kd, the interval t should be chosen 
adequately. The suitable value of t that makes Ks and Kd 
constant during the oscillation period was found to be the 
entire period of oscillation. In matrix notation, the above 
problem can be described by an over-determined system of 
linear equations as follows: 

( ) ( ) ( ) ( )tEAxtEtTtT ese +=+∆=∆       (32) 

where A=[Δδ(t) Δω(t)], and x=[Ks  Kd]T. The estimated 
vector, x is such that the function J(x) is minimised, where: 

( ) [ ] [ ]AxTAxTxJ e
T

e −∆⋅−∆=        (33) 

In this case, the estimated vector, x will be given by: 

[ ] e
t

e
TT TATAAAx ∆⋅=∆⋅⋅⋅=+

−1
     (34) 

where At
 is the left pseudoinverse matrix. Solving equation 

(35) gives the values of Ks and Kd for the corresponding 
operating point. 
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7. Test System 
In this study, performance evaluation of the EP for the 

estimation of Ks and Kd is compared with LS and AIS 
estimation methods. The evaluation is carried out by 
conducting several offline simulation cases on the linearised 
model of SIMB. In this study, block diagram as shown in 
Figure 1 is used for offline simulation to generate the 
required Δδ(t), Δω(t), and ΔTe(t) samples in MATLAB 
Simulink environment.  

Single Machine Infinite 
Bus System
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Figure 4.  Estimating Ks and Kd using EP and AIS. 

Table 1.  Eight different loading conditions. 

Case P (p.u.) Q (p.u.) 
1 0.75 1.0 
2 0.5 0.75 
3 -1.0 -0.5 
4 0.5 1.0 
5 0.5 1.25 

6 1.5 1.25 
7 1.0 1.5 

8 0.5 2.0 

The SMIB system parameters are as follows: 
Generator parameters: 
H = 2.0, Td0

’ = 8.0, Xd = 1.81, Xq = 1.76, Xd
’ = 0.30, Ra = 

0.003, Ksd = Ksq = 0.8491, Et = 1.0∠−36° 
Transmission line parameters: 
Re = 0.0, Xe = 0.65, XL = 0.16 
where Td0

’ is the open circuit field time constant; Xd and Xq 
are the d-axis and q-axis reactance of the generator, 
respectively; Ra and Xd

’ are the armature resistance and 
transient reactance of the generator, respectively; Re and Xe 
are the resistance and reactance of the transmission line, 
respectively; XL is the load reactance; Ksd and Ksq are the 
d-axis and q-axis of synchronising torque coefficients, 
respectively; and Et is the terminal voltage. 

Stable and unstable study cases are simulated using 
different types of disturbances. Data size is set to 20 seconds, 
while number of samples is set to 400 samples. Using Δδ(t), 
Δω(t), and ΔTe(t) as generated sample data, 2 sets of 
MATLAB files, EP and AIS-based simulation are developed. 
The simulation diagram is shown in Figure 4. 

In this study, eight sets of of Δδ(t), Δω(t), and ΔTe(t) 
samples are generated using offline simulation implemented 
in MATLAB Simulink. Those eight different loading 
conditions are tabulated in Table 1. 

During simulation, all parameters are adjusted until an 
optimal solution is obtained. The results of EP and AIS are 
compared with the LS solution.  

8. Simulation Results 
In this study, eight sets of Δδ(t), Δω(t), and ΔTe(t) samples 

are generated using offline simulation of block diagram 
implemented in MATLAB Simulink. The samples of Δδ(t) 
data in graph forms are shown in Figure 5 until Figure 12. 
Different values of P and Q are used to simulate these cases. 
For verification, the eigenvalues for all cases have been 
calculated and written below of each graph. For cases in 
which all the eigenvalues are negative, they are stable. For 
cases that have positive eigenvalues, they are unstable.  

 
Figure 5.  Speed response for Case 1. 

 
Figure 6.  Speed response for Case 2. 

 
Figure 7.  Speed response for Case 3. 

 
Figure 8.  Speed response for Case 4. 
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Figure 9.  Speed response for Case 5. 

 
Figure 10.  Speed response for Case 6. 

 
Figure 11.  Speed response for Case 7. 

 
Figure 12.  Speed response for Case 8. 

Table 2 shows the results obtained from the eight study 
cases. The estimated constants obtained using EP, AIS, and 
LS methods are shown as well as the eigenvalues for each 
case. 

From the results of eigenvalues, the first five cases (Figure 
5 until Figure 9) are stable and the other three cases (Figure 
10 until Figure 12) are unstable. As both values of Ks and Kd 
are positive, the results indicate that case 1, 2, 3, 4, and 5 are 
stable cases. On the other hand, case 6, 7, and 8 are unstable 
cases as the value of Kd is negative. Eigenvalues shown in the 
last column verify the results obtained. 

In all cases, all three methods give accurate and close 
results. Although results using EP and AIS methods are close, 
the difference in the value between EP and LS methods is 
closer than the difference in the value between AIS method 
and LS methods. This shows that simulation results from EP 
method are more accurate and closer than simulation results 
using AIS method. 

Except for LS method, the time consumed to calculate the 
values of Ks and Kd until they reach steady state solution has 

been recorded for EP and AIS methods. As the calculated 
values of Ks and Kd are same with the first iteration, the time 
consumed for LS method is not recorded. Comparing the EP 
and AIS for all cases, the average of time consumed to 
calculate using AIS is about 48 seconds, while the average of 
time consumed to calculate using EP is about 30 seconds. 
This shows that the average of time consumed to calculate 
using AIS is almost 40% longer than using EP. This also 
means that calculation method using EP is faster than AIS.  

For the effect of error-contaminated data on the accuracy 
of the estimated values of Ks and Kd, simulation is done by 
introducing about 10% of bad data (zeros) at different 
locations of Δδ(t), Δω(t), and ΔTe(t). For comparison, case 5 
and 8 are selected. 

Table 2.  Results of EP, AIS, LS, and eigenvalues for case 1 until 8 

Case  EP AIS LS Eigenvalue 

1 

Ks 0.3776 0.3706 0.3733 -0.0670 
±j4.4855,  
-0.3807 

Kd 0.9303 0.7117 0.9352 
Time 41.9s 47.9s - 

2 

Ks 2.1346 2.1346 2.1362 -0.0547 
±j10.7263, 

-0.6636 
Kd 0.7733 0.7733 0.7657 

Time 29.5s 48.1s - 

3 
Ks 0.6298 0.6291 0.6300 -0.1153 

±j5.8284,  
-0.2159 

Kd 1.5979 1.5950 1.6101 
Time 30.6s 49.0s - 

4 
Ks 0.4200 0.4200 0.4200 -0.0294 

±j4.7561,  
-0.4515 

Kd 0.4277 0.4280 0.4108 

Time 28.8s 47.9s - 

5 
Ks 0.2247 0.2231 0.2252 -0.0382 

±j3.4832,  
-0.4811 

Kd 0.5779 0.8734 0.5334 

Time 29.0s 47.3s - 

6 

Ks 0.1805 0.1809 0.1805 0.2566 
±j3.1477, 
-1.1027 

Kd -3.7254 -3.8225 -3.7221 
Time 30.1s 48.0s - 

7 

Ks 0.1523 0.1535 0.1525 0.1302 
±j2.8736, 
-0.8871 

Kd -1.9271 -1.5854 -1.8602 
Time 29.4s 47.2s - 

8 

Ks 0.5523 0.5530 0.5531 0.0057 
±j5.4576, 
-0.7594 

Kd -0.1238 -0.0383 -0.0799 
Time 28.8s 46.8s - 

Table 3 shows the results of EP, AIS, and LS methods 
calculation with bad data. It is clear that although bad data 
are injected into the system, estimates for Ks and Kd using EP 
and AIS methods are not affected as the value is identical 
with the results obtained in Table 2.  

On the other hand, LS method is affected with the 10% of 
bad data introduced. Moreover, it also gives false result for 
case 8. Using the LS method, the simulation gives positive 
value of damping torque coefficient, Kd, which indicates that 
the system is stable for case 8. But, the results given by EP 
and AIS methods give negative value, which indicates that 
the system for case 8 is unstable. This result can also be 
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confirmed by the positive value of eigenvalues, which 
verifies that case 8 is unstable. As a result, estimates for Ks 
and Kd using EP and AIS method are more accurate 
compared to LS method.  

Table 3.  Results of EP, AIS, LS, and eigenvalues for case 5 and case 8 with 
bad data. 

Case  EP AIS LS Eigenvalue 

5 
Ks 0.2247 0.2231 0.2010 

-0.0382±j3.4832, 
-0.4811 Kd 0.5779 0.8734 0.4474 

Time 29.0s 47.3s - 

8 
Ks 0.5523 0.5530 0.4940 

0.0057±j5.4576, 
-0.7594 Kd -0.1238 -0.0383 0.0020 

Time 28.8s 46.8s - 

9. Conclusions 
In this paper, three methods for accurate estimation of the 

synchronising and damping torque coefficients, Ks and Kd 
are presented. The performance of Evolutionary 
Programming (EP) is compared with the Artificial Immune 
System (AIS) and Least Square (LS) methods. In 
comparison with AIS and LS methods, EP offers several 
advantages. These include better data accuracy and 60% 
shorter computing time compared to AIS. EP is also not 
affected with bad data consumed in the system unlike the LS 
method that gives false decision on the stability. The 
proposed method can be considered a reliable and efficient 
tool in the area of power system stability analysis. 
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