
Electrical and Electronic Engineering 2012, 2(2): 68-77
DOI: 10.5923/j.eee.20120202.13

Design of a Qos-Based Reconfigurable Priority Active
Queue Management for IP Networks

Hattab Guesmi1,2,*, Rached Tourki1

1Electronic and microelectronic laboratory, Monastir university, Monastir, Tunisia
2Faculty of sciences, Jazan university, Jazan, KSA

Abstract This paper presents a reconfigurable and scalable architecture of a high-performance IP switch to improve
network quality of service (QoS). Quality of services, in terms of delay, through-put and loss rate, can be provided by using a
mechanism support like scheduling and buffer management architecture of packet switching IP networks. The proposed
architecture consists of a new memory management data structure based on circular linked lists. The linked lists include
different priorities levels with a pipelined organization for the reconfigurable priority active queues management. The ar-
chitecture also scales dynamically to support a large number of priority levels and a large queue size. The new data structure
enables us to configure the architecture based on network service domain. Detailed description of new data structures of the
proposed algorithms and their corresponding implementations are presented as well.

Keywords Diffserv, IP Switch, Qos, Psoc, CBWFQ, AQM, WFQ, Reconfigurable Architecture, RPAQM

1. Introduction
The future growth of the Internet requires design and de-

velopment of high-speed IP switch that forward exponen-
tially increasing volume of traffic and provide QoS guaran-
tees at the same time. In this respect, Quality of service (QoS)
guarantees in term of delay, throughput, and loss rate can be
provided by using a service discipline at switching nodes in
packet switching networks. This paper deals with the im-
portant class service disciplines used for output queued
switches like the Class Based Weighted Fair Queuing and
Weighted Fair Priority Queuing Techniques. In these service
disciplines, packets are assigned transmission deadlines (or
priority indices), and the packet with the earliest deadline (or
highest priority) is served at first. This approach requires a
priority queue manager for sorting priority levels and man-
aging queues. Packets from various connections are inter-
leavingly served so that each connection’s QoS requirements
can be guaranteed by using services disciplines and priority
queues. In order to achieve QoS guarantees in practice, the
priority queue manager must be able to support a large buffer
size in high-speed networks.

The design of an AQM that implements the dead-
line-ordered service disciplines with a large number of pri-
ority levels, a large buffer size, and a large number of input
links is not easy to achieve for high-speed packet switching

* Corresponding author:
Hattab.guesmi@fsm.rnu.tn (Hattab Guesmi)
Published online at http://journal.sapub.org/eee
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

networks. In fact, stored-priority disciplines must always
choose the packet with smallest deadline or highest priority
among all prioritized packets in the queue to be served at first.
If the number of stored packets is M, then the complexity is
O(logM). The bottleneck comes from the high cost of
maintaining a high-speed sorting mechanism associated with
implementing these service disciplines. Moreover, to im-
prove the network performance, a large number of input
links to an AQM is necessary. However, many proposed
priority queue designs have limitations in term of priority
levels number, buffer size, and input links number or band-
width are introduced in the literature[1, 2, 3]. In our ap-
proach, we propose priority AQM architecture for dead-
line-ordered service disciplines that can be used in out-
put-buffered switches to provide QoS guarantees in
high-speed packet switching networks. In this respect, we
have to use an insert mechanism in a sorted priority list to
maintain the highest priority cell in the top instead of com-
monly used shift, compare and RAM-based search mecha-
nisms. This paper, also, presents a novel, highly-scalable
architecture for a PAQM. Section two of this paper intro-
duces quality of services basics and mechanisms that support
the QoS. High-performance, QoS-capable data structure of
the PQM that is the priority circular linked list is represented
in section three. Then, the implementation of the component
supporting the QoS management is presented in Section four.
In section five, design results are presented. Then we present
the reconfiguration of the architecture to be used in different
networks domain and finally, the design results related to our
proposed architecture is presented with some important
conclusions and remarks.

mailto:Hattab.guesmi@fsm.rnu.tn

 Electrical and Electronic Engineering 2012, 2(2): 68-77 69

2. Quality of Service Mechanism’S
Support

QoS (Quality of Service) is a hot topic in both academic
and industrial fields for many years. QoS means a series of
service requirements that networks should satisfy while
delivering data. It can be represented by: delay, delay jitter,
loss rate, bandwidth, etc[1]. QoS control is to provide con-
sistent, predictable and controllable data delivery service,
and to satisfy different application requirements. In fact, the
application of the QoS philosophy has to guarantee different
received packets related to different level of services.

Table 1. QoS parameters and mechanisms

QoS
parame-

ters

QoS
mechanisms Guaranteed Statistical Best effort

Loss Buffer
management

Fixed buffer
allocation

based on the
peak rate

Shared
buffers

based on
average

rate

No guar-
anteed
buffer

allocation

Throughp
ut

Regulation
(flow shap-

ing)

Eligibility
time based
on a peak

rate

Eligibil-
ity time
based on
average

rate

No regula-
tion re-
sources

committed

Delay and
jitter Scheduling

Flow always
scheduled at

eligibility
time

Flow
scheduled
at eligi-
bility
time

resources
permit-

ting

Flow
scheduled

if scheduler
idle

There’re many mechanisms to support QoS, such as re-
source reservation (RSVP), admission control in Integrated
Services (IntServ) and traffic shaping/marking in Differen-
tiated Services (DiffServ). The major difference between
IntServ and Diffserv architecture consists on the granularity
of service differentiation. The IntServ concept lies in re-
source reservation where each application requests service
level in term of service rate or end-to-end delay. Conse-
quently, the network has to accept or reject requests ac-
cording to resources availability. However, the IntServ ap-
proach faces potential problems concerning scalability and
manageability, since all routers must maintain per-flow state.
The main strength of DiffServ, as proposed by the IETF
Differentiated Services Working Group[4, 5], is that it al-
lows IP traffic to be classified into a finite number of service
classes that receive different routing treatments. Routers at
the network edges classify packets into predefined service
classes based on requirements and characteristics of associ-
ated application. Core routers forward each packet according
to its class service. DiffServ model provides service differ-
entiation on each node (Per-Hop behaviors) for large ag-
gregates of network traffic. DiffServ achieves scalability and
manageability by providing QoS to aggregate traffic (not for
each application flow). While the common and key ones are

buffer management and packet scheduling, called interest-
edly “Active Queue Management”. Buffer management
determines how to allocate buffers and whether to drop an
arriving packet according to certain policy, which mainly
influences the loss rate and fairness. In this respect, packet
scheduling adapts politic transmission of stored packets. It
serves to control the resource distribution between classes of
service. This operation is carried out with flow isolation and
priority levels assignment to find and send highest priority
packets first. In fact, packet scheduling mainly influences the
bandwidth, delay/jitter, and fairness. There has been a great
amount of research work on packet scheduling in the past
years and many algorithms appeared. The key ideas of most
packet scheduling algorithms consist in computing an index
for each queue and sort them. The scheduling decision is
performed by selecting the queue with the minimum or
maximum value of these indexes. WRR and DRR are kinds
of round robin strategy which are easy to implement, but
have weakness in providing delay guarantee. EDF (Earliest
Deadline First) and its variants are based on queuing delay.
Their key ideas consist on allocating a delay parameter Di to
each queue as the delay up bound, where each arrived packet
is tagged with the time stamp Ti = Ai + Di : Ai represents the
arrival time. Consequently, every time the packet with the
minimum Ti has to be scheduled. In the other way, another
category of algorithms called PFQ (Packet Fair Queuing) are
based on service rate. Their key ideas lies in maintaining the
virtual system time Vi(t), the virtual start time Si(t) and the
virtual finish time Fi(t) for each queue. Si(t) or Fi(t) is
computed and the queue with its maximum or minimum
value is scheduled. One weakness of the PFQ algorithms
consists on coupling the service rate (bandwidth) and the
delay that results in the inflexible resource allocation. Floyd
and Jacobson have proposed a link-sharing and resource
allocation scheme called class-based queuing (CBQ) which
employs DRR queuing algorithm and differentiate flows into
different queue classes. Each queue is serviced in
round-robin fashion and receives bandwidth equal to its
allocated share. However, the research work on buffer
management and packet scheduling are mostly separated
where they consider only one or some performance metrics
which is insufficient[6-8]. Since buffer management allows
the manipulation of en-queuing and packet scheduling con-
cerns the manipulation of de-queuing, which have a tight
relationship. Consequently, both buffer management and
packet scheduling mechanisms (which means the active
queue management) have many effects on almost of the
performance metrics are unable to meet the QoS requirement
of today’s applications.

The table 1 summarizes the characteristics in terms of loss,
throughput, delay and jitter related to each traffic control
strategy. We remark that the guaranteed service requires a
specific treatment in order to satisfy the required service
compared to the best effort one. Where the QoS mechanisms
that support QoS parameters is the active queue management
which consist of buffer management, traffic regulation and
scheduling the more interesting one in term of performance

70 Hattab Guesmi et al.: Design of a Qos-Based Reconfigurable Priority Active Queue Management for IP Networks

but needs an important effort to be implemented.

3. Data Structure of the Priority Circu-
lar Linked List (P-CLL)

3.1. Description of the Active Queue Manger

The active queue management requires a specific
organized data structure related to the selcted scheduling
algorithm, since it presents its data base. The data structure
must be structured in a way that all stored packets are visible
and accessible so that the decision have to be fast and
effective according to the QoS required for each flow. Thus,
basic operations like creation, access and release of a service
flow are achieved in a dynamic way according to the number
of declared flows and the free memory spaces. Consequently,
the memory spaces have to be adjustable according to the
dynamic parameters of the loss management algorithm. The
number of flows per class is not fixed statically, but can be
managed dynamically according to the allocated memory.
To meet these needs, we have used the priority circular
linked list which ensures the dynamic queues management
and the reconfiguration of the architecture parameteres. The
architecture of the active queue manager consists primarily
on a priority assignement unit, a P-CLL manager and a queue
controller as depicted in the Figure 1. In this respect, the
priority asignement unit stamps the incoming packets with a
certain priority value, which is decided depending upon the
scheduling algorithm in use. The P-CLL manager
responsible for the queue managmenet contains the priority
circular linked list, where each elements in the P-CLL
represents an active priority level. The queue controller
maintains a lookup matrix with entries corresponding to each
priority level. Each priority level gather all packets have the
same priority. We refer to this list as a priority list. Thus, our
proposed structure is one of per-priority queuing rather than
per-flow queuing, and is more general in the sense that it can
handle many priorities of the same flow. It should be noted
that at any time, the P-CLL contains only the active priority
levels for which the priority list is non-empty[9, 1].

Generally, the RPAQM maintains a logical queue for each
flow or session in the data memory. Each queue can be im-
plemented in a linked list with head and tail pointers pointing
to its head of line (HOL) and tail of line (TOL) packets. An
idle queue may also be needed to maintain the idle priority
levels. When a packet arrives at the system, it is stored in the
corresponding queue. The scheduler queue prioritizes all
HOL packets, or all eligible HOL packets if a
shaper-scheduler is implemented, based on their finish times.
It then chooses the packet with the smallest finish time to
transmit first. This requires fast sorting or searching opera-
tions and it is one of the challenges in designing a packet
scheduler. In general, all the HOL packets are first stored in
the shaper queue. Only those that are currently eligible can
be moved to the scheduler queue. Some efficient mechanism
is needed to compare the system virtual time with the start

times of packets in the shaper queue (i.e., performing the
eligibility test) and then move eligible packets to the sched-
uler queue. In the worst case, there may be a maximum of
packets that become eligible. Suppose the scheduler queue
selects the HOL packet of queue; it determines the head
pointer associated with queue and then reads out the packet
using the head pointer. There are more design issues, such as
handling time-stamp overflow and time-stamp aging prob-
lems.

as
sig

ne
m

en
t U

ni
t Queue

Controler

P-CLL
management

Output line
From selector

buffer memories

Figure 1. the output queue manager architecture

3.2. Data Structure of the Active Queue Management

In order to increase the design performance of the
per-priority queuing, we have retained the priority circular
linked list combined with a dedicated data structure which
implements the reconfigurable priority active queue manager.
The P-CLL contains only active priorities levels. In this
respect, data related to each class of service is stored in a
per-connection data queues, so that each data queue repre-
sents a cell in the priority circular linked list, can be served
separately.

When a new packet needs to be inserted into the queue, the
priority assignment unit stamps the packet with a suitable
priority value. The queue controller determines whether a
priority list already exists for the stamped priority value. If it
does, it simply adds the new packets to the corresponding
priority list. However, if the list does not exist, the queue
controller creates a new priority list. It also signals the
P-CLL manager to perform an en-queue operation, which
inserts the new priority value into the P-CLL in a sorted
manner. This operation is done to make sure that the highest
priority stays at the top of the P-CLL so that when a
de-queuing of a packet is required, the priority list with the
highest priority can be rightly accessed. In the other hand,
when a packet needs to be removed from the queue, the
P-CLL manager determines the non-empty priority list with
the highest priority by looking at the topmost element of the
P-CLL and sends this priority value to the queue controller.
The queue controller accesses the corresponding priority list
and removes a single packet from it. When the priority list
become empty, the P-CLL manager initiates a de-queue
operation which removes the topmost element from the
P-CLL while making sure that the P-CLL remains sorted.

The P-CLL data structure maintains various priority lists
sorted in the circular linked list. Each en-queue operation
requires N times to be serviced, where N is the size of the
P-CLL. However, the emulation of the circular linked list

 Electrical and Electronic Engineering 2012, 2(2): 68-77 71

which implements the priority queuing mechanism is easy to
make and it provides a big save in term of time constraints.
Furthermore, this structure allows a pipelined implementa-
tion compared with the conventional circular linked list and
provides a constant time operations. In order to improve the
performance of our P-CLL, we implement the method of
insert based on a content addressable memory where each
priority queuing operation is performed in only one time.

3.3. The P-CLL Based Priority Queuing Solution

Using a conventional circular linked list, queuing op-
erations require O(n) steps, where n is the number of
elements in the circular linked list; (these cannot be easily
pipelined). On the other hand, architectures such as the
systolic array and binary heap architectures can be pipe-
lined[6, 10] but have extremely high hardware require-
ments. To support the pipeline organization for queuing
operations using a circular linked list, a specific data
structure is required. This will be able to offer constant
priority queuing operations with a low hardware cost.
Two main operations have been defined regarding the
en-queuing and de-queuing operations.
● The en-queuing operation: To en-queue a new value

of priority in the circular linked list of the P-CLL, we need to
find a free cell. This operation is achieved by exploring the
valid data path from the matrix T values which allows us to
find the inserted cell address pointer. Then, we carry out the
updated list to be added to the P-CLL in a sorted manner. The
insertion position is identified by finding the first least weak
priority level of non-empty priority list coming just after this
level. Seeking the matrix T from the inserted value address
and find the first case contain ‘1’ coming after this address
corresponding to cell which has the least weak priority. The
address of priority level founded represents the insertion
position of the priority level. The addition operation consists
on reading and writing the bonding pointers of the two cells
(inserted cell and founded cell) and updating the class de-
scriptor service parameters. The operation of research re-
quires N time, where N is the priority levels number. How-
ever, in the P-CLL, the research operation needs only the
conversion time of the priority level into address to fetch the
first non empty cell. We can summarize the required steps
for inserting a new priority list as the following:

Step1:
Request an available free cell
Read the pointer at the matrix address
Step2:
Stamp the packet with a priority value
Update the flag in the matrix
Step3:
Determine the insertion position
Insert the priority list
● The de-queuing operation: The de-queuing opera-

tion consists of extracting the cell pointed by the header
pointer from the P-CLL since it has the highest priority value.
Then, modify the case in the matrix representing the priority

level (flag) to ‘0’ making the priority level inactive and
update the class descriptor service parameters. The de-queue
operation are summarized below:

Step1:
Read the head pointer of the circular linked list
Add the free cell to the free cell list
Step2:
Update the circular linked list
Update the status flag
Update the file capacity

4. Related Works
Extensive research has been done on the next generation

of high-speed routers. Nick Mckeown’s group at Stanford
University did intensive research on high speed switching[11,
3, 12]. R. Bhagwan proposed a Design of a high-speed
packet switch for fine-grained quality of service guarantees
and a fast and scalable priority queue architecture for
high-speed networks switches[13]. H. Jonathan et al. have
proposed a design for packet-fair queuing schedulers using a
RAM-based searching engine[14]. Many other papers and
proposals are dealing with some key issues in real-time
packet scheduling, fine grain QoS control, high-speed
switches for the data path and so on[9, 2]. We present two
techniques which implements data structure of the AQM
such as:
● The calendar queue uses the search-based approach to

reduce implementation complexity. In the search-based
approach, time stamps are quantized into integers and are
used as the address for the priority queue. Each memory
entity may contain a validity bit and two pointers pointing to
the head and tail of an associated linked list called the timing
queue which links the indexes, such as, of each session,
where the time stamps of the HOL packets are the same.
Therefore, all the HOL packets are pre-sorted when their
corresponding session indexes are stored in the calendar
queue. Finding the next packet with the minimum time stamp
is equivalent to finding the nonempty timing queue with the
smallest address. In the search-based approach, the time
complexity of sorting time stamps is traded with space
complexity, which is determined by the maximum value of
the time stamp, say for instance.
● The Hierarchical Searching (RSE) reorganizes and

stores all the bits in the calendar queue. Its main function is
to find a nonempty timing queue that has the smallest finish
time (address) and to output its address, which is the output
of the RSE (read operations). It is used to fetch the queue
index which in turn locates the pointer pointing to queue’s
HOL packet.

In a calendar queue, a validity-bit is associated with each
timing queue, indicating whether this queue is empty or not.
Since packets are automatically sorted based on their cor-
responding locations in the calendar queue, finding the next
packet to be transmitted is equivalent to searching the first bit
in the calendar queue. The key concept of hierarchical
searching is extended and generalized from the one in the

72 Hattab Guesmi et al.: Design of a Qos-Based Reconfigurable Priority Active Queue Management for IP Networks

PCAM chip by dividing the total validity-bits in the basic
searching into multiple groups, which forms a tree data
structure, where is the maximum value of time stamp. Each
group consists of a number of bits, so another bit string can
be constructed at the upper level with its length equal to the
number of groups at the bottom level. Each bit at the upper
level represents a group at the bottom level with its value
equal to the logical OR of all the bits in the group. Further
grouping can be performed recursively until the new string
can be placed in a register. Suppose levels are formed from
the original bit string. There are bits at level, and each of its
groups has bits.

The services disciplines implemented in our architecture
such as CBWFQ and WFPQ also needs to maintain another
priority queue called shaper queue is implemented as a mul-
titude of priority lists. Each list is associated with a distinct
value of start time common to all queued packets in this list.
Using the search-based approach, we can construct a 2-D
calendar queue based on the start times of the queued packets,
where the start time and time stamp are used as the column
and row addresses, respectively, and is the maximum value
of the start times. All packets with the same start time are
placed in the same column addressed by and also are sorted
according to their time stamps. Hence, each column repre-
sents a priority list. Each bit in a column can be located by its
unique address. Performing the eligibility test is equivalent
to using the system virtual time as the column address to find
the nonempty column(s), with their addresses ranging from
the previous value until the current value of the system vir-
tual time, and then moving packets in these column(s) to the
scheduler queue.

5. Implementation of the RPAQM
All recently proposed packet-scheduling algorithms for

output-buffered switches that support quality of services
(QoS) transmit packets in some priority order, e, g, according
to dead-lines, virtual finishing times, eligibility times, or
other time stamps that are associated with a packet[5, 10, 15].
Since maintaining a sorted priority queue introduces sig-
nificant overhead, much emphasis on QoS scheduler design
is put on method to simplify the task of maintaining a priority
queue. The two main metrics for measuring the perform-
ances of a scheduling algorithm: throughput and delay. In
our architecture we use fast and scalable pipelined priority
queue architecture for use in high-performance switches with
support for fine-grained quality of services guarantees. Each
output port is maintained using an output port manager. The
output port manager implements mechanisms that support
the QoS such as buffer management and scheduling which
are called reconfigurable priority active queue management
(RPAQM). The architecture implementation includes the
following blocs: the priority assignment Unit, the P-CLL
manager Unit, the queue controller Unit and the controller[4,
16].

5.1. Priority assignment module (PA)

This module stamps packets by a label calculated ac-
cording to the implemented scheduling algorithm. This label
determines the transmission order of the data packets to the
output line (Figure 2). This module needs to know the three
following factors:
● The weight allotted to the concerned class of service: the

concept of weight determines the band-width percentage that
the class is seen allotting.
● The length of the packet;
● The interaction with the other concurrent active classes.
In order to stamps packets by labels, this unit calculates

the virtual finish time and the virtual start time according to
the scheduling algorithm (CBWFQ). The calculated value
related to each assigned packet level represents the trans-
mission order (packets priority). According to these values,
packets are stored in suitable queues. Since our architecture
implements Ncs classes of services, the calculation of priority
values needs a dynamic model uses a data base in order to
describe the state of each service class and each stored packet.
This data base is constructed in the P-CLL manager module
to be consulted and updated by this unit after any operation
(emission or reception) in order to provide the correct prior-
ity values. The time stamp of a packet is the sum of its virtual
start time and the time needed to transmit this packet at its
reserved bandwidth. Packets are served by an increasing
order of their time stamps. The implementation cost of a
CBWFQ algorithm is determined by two components:
computing the system virtual time function and maintaining
the relative ordering of the packets via their time stamps in a
priority queue mechanism.

A Priority Assignment server has N queues to store all
arrived flows. Each queue i has a minimum bandwidth al-
location, denoted by ri, where i = 0, 1, 2, …, N-1. During any
time interval when there are exactly n (n inferior or equal to
N) non-empty queues, the server serves the n HOL packets
corresponding to the non-empty queues simultaneously. To
approximate the priority level (label), CBWFQ algorithm
maintains a system virtual time function V(t), a virtual start
time Si(t), and a virtual finish time Fi(t) for each queue i. Si(t)
and Fi(t) are updated on arrival of the HOL packet for each
queue. A packet departure occurs when its last bit is sent out,
while an HOL packet arrival occurs in either of two cases: (1)
a previously empty queue has an incoming packet that im-
mediately becomes the HOL or (2) the packet next to the
previous HOL packet in a nonempty queue immediately
becomes the HOL after its predecessor departs. Obviously, a
packet departure and a packet arrival in Case 2 could happen
at the same time. Therefore

{ }






−

−
=

2

1

caseinarrivalpacketfor,)t(iF

caseinarrivalpacketfor,)t(iF),t(Vmax
)t(iS

ir

k
iL

)t(iS)t(iF +=

Where Fi(t) is the finish time of queue before the update
and Li

k is the length of the HOL packet for queue. The way of

 Electrical and Electronic Engineering 2012, 2(2): 68-77 73

determining V(t) is the major distinction among proposed
WFQ algorithms[1, 17].

 135

 145

 50

S
ch

ed
u

le
r

 30 90

 110 70

 155

Queue 1 (50% BP)

Queue 2 (25% BP)

Queue 3 (25% BP)

 30 50 70 90 110 135 145 155

Transmission ordre

Finish time

Figure 2: Stored stamped packets in a sorted manner with CBWFQ algo-
rithm

5.2. P-CLL Manager Module (PM)

This module implements the selected data structure which
is based on the priority circular linked list P-CLL. It consists
of a circular linked list based on the priority levels. Each cell
of these descriptors of the priority levels has an active pri-
ority level which gathers all packets having the same priority
level in a circular linked list which is called packet list
(Figure 3). Every cell related to the packet list contains two
fields: a bound pointer to its packet list and an address
pointer to the memory space which stores the packet. The
cell of the priority list contains several fields which are: a
head and a tail pointers associated to the priority lists (data
packets having the same priority value), a bound pointer to
its class list and an additional field which describes the pri-
ority level value. In the other hand, the service class de-
scriptor cell contains the associated control parameters re-
lated to each class such as the queue average size, the
probability of reject etc...

In this respect, our design of the P-CLL manager unit uses
two separated memories. The first one contains the class of
service descriptors where the second it contains the priority
values list. Thus, the first memory is organized as Ncs blocs
(Ncs: number of service classes), where each bloc has Npc
fields (Npc: number of control parameters of each service
class). The second memory which implements the priority
linked list levels is organized as Npv * 4 fields (Npv: number
of priority values; one field for the priority value, one for the
bound pointer and two fields for the head and tail pointer).
The variation of the memory size depends only on the
number of service classes for the first memory and the
number of the priority levels belonging to the second mem-
ory. The size of these memories varies in a linear way ac-
cording to the increase of the number of the priority levels
managed by this architecture and the services classes’
number.

We used two separated memories in our design for this
reasons: Firstly, our architecture will be scalable by in-
creasing the memory size with a simple adding of space
memory to increase the number of priority levels related the
number of service class. Second, the number of priority
values belonging to each service class is reserved in a dy-
namic way according to the need for each class of service
(number of flows treated in each service class): allowance on

request or dynamic adjustment of the band-width between
the classes of service. Then, the architecture will be recon-
figurable according to the network domain. And finally, The
en-queue and de-queue operations of a priority level are
simple and rapid because the priority level represents its
address in the memory, so the access to every priority level
needs only the time to convert the priority level to an ad-
dress[15, 18].

1s

t C
la

ss

of
 se

rv
ic

e
3rd

 C
la

ss

of
 se

rv
ic

e

Lists of queued
packets

…
..

Transmission Ordre

5

7

10

25

33

54

Head pointer

Tail pointer

Insertion pointer

Class of services
descriptors

Free priority circular
linked list

2n
d

Cl
as

s
of

 se
rv

ic
e

Active Priority circular
linked list

Figure 3. Structure of the priority circular linked list

5.3. Queue Controller Module (QC)

This module is used to control all priority levels related to
the active queue management: which can be switched be-
tween the active and the inactive state. It is represented by a
NxN matrix which stores the state of all priority values.
Every level is described in a case which contain “0” (inactive)
or “1” (active). Every case is addressed by the priority level.
When an assigned packet is received, this module seeks in
the matrix if the priority value is active. If yes, so this module
launches an addition operation requested by this packet with
its corresponding priority list. The addition of the packet is
the access to the priority level list which is addressed by the
priority level to add the packet to its packet list. In the other
case, this module inserts (en-queue) this priority value in its
suitable place in the sorted circular linked list. During the
en-queuing operation, QC makes level active (case = “1”) in
the matrix and seeks the first active priority level in the in-
creasing order. This level represents the insertion position in
the P-CLL which remains the list sorted. During the emission,
if this packet is the last in the packet list, therefore it launches
a de-queue operation to make the level of priority inactive
(case = “0”) in the matrix. The de-queue operation is
achieved by the update of the P-CLL.

The design of the queue controller module uses M parallel
memories (Figure 4) organized as NxN matrix (NxN= Npv is
the number of priority levels). In this respect, each priority
level state is described by one bit (case), if the bit = “1”
indicate that the priority level is active else (bit = “0”) pri-
ority level is inactive (list of queued packets is empty). The
memory size of this component is equal to the priority level
number; this capacity increases if the priority values number
increase. It represents the priority level number treated by
this architecture[6, 19].

74 Hattab Guesmi et al.: Design of a Qos-Based Reconfigurable Priority Active Queue Management for IP Networks

This design facilitates the access to all priority level be-
cause the priority level represents the address in the matrix
(position in line and position in column). This upgrades the
throughput of our architecture because it is related with the
en-queue and de-queue operations. The en-queue operation
needs only few cycles because at one read cycle we can
determine the state of N levels which are stored in M parallel
memories. So founding the insertion position is rapid be-
cause we use M comparators to determine the first active
priority level. The comparators output the results at one read
cycle. After five read cycles we declare that the priority level
will be inserted in the tail of the P-CLL (if the difference
between the two finish times is greater than 1280 the level is
posted in the tail of the P-CLL).

In our design we define the priority levels number as
65536 level, so the QC is implemented in four parallel
memories (256x64 bits) to form a 256x256 matrix. The most
significant byte of the priority level represents the line
number and the least significant byte represents the column
number in the matrix.

Lists of queued
packets

Queue controller
matrix

Active priority
circuler linked list

5

7

10

25

33

54

Head pointer

Tail pointer

Insertion pointer

List of sorted active priority
values

Transmission Ordre
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

…

0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

…

1 1
1

1

1 1

…
..

Figure 4. Structure of the queue controller module

5.4. The Controller Module

This module ensures the general reconfiguration of the IP
switch to respond the need of the network administrator. This
architecture will be used in several domains: DiffServ do-
main, IntServ domain and in very high-speed networks do-
main. For these reasons, our architecture is implemented in a
reconfigurable FPGA due to the capacity and the speed of
FPGAs computing. This implementation also enables us to
reconfigure the IP switch to be used in several network do-
mains. The controller implements the control parameters of
this architecture. It uses a specific data structure related to
the circular linked list organization which facilitates the
reconfiguration of the general controller so that the archi-
tecture ensures the packet switching according to the net-
work domain and class of service requirements[17].

6. Reconfiguration of the IP Switch’S
Data Structure

Our proposed architecture of the reconfigurable priority
active queue management[20] is designed in order to be

reconfigurable according to the network’s domain. This
architecture integrates many sophisticated functions to
guarantee the QoS (buffer management and scheduling). In
each domain we need a data structure to optimize the IP
switch architecture for delivering packets in required man-
ner.

6.1. Data Structure in DiffServ (QoS optimization)
Domain

The data structure which ensures the QoS guarantees in
this domain is based on QoS management. This structure
uses three classes of services: guaranteed service, assured
service and best effort service. The data structure described
previously manages NC classes of service, so if we take Nc =
3, the switch has to manage only three classes of service.
Each class of service inter-connects a sorted priority list
pertaining to the same class. In each level of priority a list of
sorted packets is stored which is depicted in figure 3. This
structure makes possible to store packets in the order of
highest priority first and ensures a dynamic band-width
adjustment which enables us to optimize the use of the
available band-width. Each class of service has a percentage
of the available band-width according to its needs. CBWFQ
scheduling algorithm is the best one to guarantee QoS in
DiffServ domain, its implementation needs to configure the
algorithm of management to uses three classes of service and
to fix their percentage in band-width. Data structure de-
scribed in section III is oriented to this networks domain.

6.2. Data Structure in IntServ Domain

The data structure related to the IntServ domain uses two
classes of service such as guaranteed service and best effort
service. Consequently, packets are treated in a different way
according to these two classes indicated below. The corre-
sponding data structure is managed by the scheduling algo-
rithm and the queue management algorithm to send and store
packets according to the implemented services. In this case,
queue management algorithm is used for all possible con-
figurations, but the Weighted Fair Priority Queuing (WFPQ)
is used as the scheduling algorithm to this domain. Our basic
architecture maintains Nc classes of service implemented in
a circular linked list structure with Nc services class’s de-
scriptors. As a result, it is quite simple to change the context
of our application to pass from the configuration of Nc ser-
vice classes to the two service classes’ one. Figure 5 repre-
sent the data structure of this domain interconnecting two
classes of services: Best Effort class contains only one level
priority and guaranteed service class gathers many priority
levels. Each priority level gathers packets having the same
priority. This configuration is carried out if we adjust the
selection algorithm to assigns packets only to the two classes
of services and assigns (0%) of bandwidth to the other
classes. Then in the emission of packets, the scheduling
algorithm sends highest priority packets first, where highest
priority levels belong to the guaranteed service class (PQ).
Packets in this class are treated in a different way according

 Electrical and Electronic Engineering 2012, 2(2): 68-77 75

to the WFQ approach.

Sotred packets
linked lists

…
..

Transmission order

5

7

10

25

33

54

HOL pointer

TOL Pointer

Insertion Pointer

1èr
e C

la
ss

e
of

se

rv
ic

e

2èm
e C

la
ss

e
of

 se
rv

ic
e

class of services lists

Free priority levels
linked list

Sorted active priority levels
linked list

Figure 5. data structure in IntServ domain

6.3. Data Structure in very High-speed Networks
Domain

The data structure in high-speed networks uses only one
service class which is the best effort. Packets are treated in
very high-speed since parameters of QoS are respected.
Therefore, the scheduling algorithm to be implemented in
this domain is based on the FIFO algorithm, where packets
are treated in the order of their arrival (First In First Out).
The reconfiguration of the RPAQM requires the following
modifications:
● Make the storage average size of the other classes to

zero (0%). Packets are stored in the Best effort class of ser-
vice which has the 100% of the available bandwidth.
● Assign the same priority value to all arrived packets to

be stored in the same priority level list instead of requiring
several priority level lists. Packets are treated in identical
manner according to their arrival order.

The data structure in this domain is implemented using
only one circular linked list pointed by two pointers; a head
pointer which points packets to be sent by the scheduling
algorithm and a tail pointer which ensures the storage of the
arrived packets. Arrived packets are stored in the tail of the
list whereas packets to be sent are in heading of the linked
list. The figure 6 shows the data structure related to the
RPAQM used in high-speed networks. It uses three lists
which are the class of service list (contain control parame-
ters), the active priority list used to store all arrived packets
in FIFO techniques, and the linked list gather all received
packets. The linked list of free priority levels is not used.

Queued packet
list

Transmission ordre
of stored Packets

1

Header and tail
pointer

C
la

ss
e

of

se
rv

ic
e

Class of service list

Linked List of free
priority levels

The only active priority
level

Figure 6. data structure in high-speed networks

7. Design Results of the Proposed
RPAQM

7.1. Design Methodology

In general, the process of designing a system will proceed
from a behavioral to a physical representation, gaining im-
plementation details along the way. High level synthesis
converts a behavioral specification of a digital system into an
equivalent RTL design that meets a set of stated performance
constraint[2]. The designer describes his system with a high
level specification at one of abstraction levels. This descrip-
tion with a HDL (Hardware Description Language) is syn-
thesized using existent synthesis tool allowing passage to the
next abstraction level until reaching either integration in
ASIC or implementation in FPGA. After design verification,
a design compiler is used to perform logic synthesis. The
logic synthesis tool starts with two kinds of information: an
RTL specification given in VHDL and a functional unit
library that can include complex functional units. The RTL
description accesses these function blocks through VHDL
procedure calls. For each procedure or function used, the
library must include at least one functional unit able to
execute the corresponding operation[20, 21].

7.2. Results

For the implementation of RPAQM architecture, a de-
scription in VHDL is carried out at the RTL level and is
simulated using ModelSim simulator. This approach has
permitted to evaluate the behavior of each component alone
as well as the interaction of the overall architecture with all
interconnected components. The implemented components
can integrate basic standard elements with a known behavior
such as adders, comparators, MUX, etc, or other elements
where their behaviors have to be defined like sequencer,
specific interface and telecommunication operators. Our
proposed solutions have to give answers for all questions
related to the design specification and the time constraints
required by the application context. In order to emulate the
environment of our architecture, we have used some file of
test containing the entries stimuli with the overall VHDL
description to constitute the validation virtual prototyping IP
switching system.

²²

C
on

tr
ol

le
r

FSM SM

DP

In
et

w
or

k
in

te
rf

ac
e

B

ac
k

pl
an

e

E
xt

er
na

l m
em

or
ie

s

…
.

C
on

tr
ol

le
r

FSM SM

DP

N
et

w
or

k
in

te
rf

ac
e

E
xt

er
na

l m
em

or
ie

s

 AP

Internal
memory

QC

 4
Memorie
s

QC

 4
Memorie
s

 AP

Internal
memory

Figure 7. Architecture of the RPAQM in the RTL level

Our architected uses hybrid model of control which com-

76 Hattab Guesmi et al.: Design of a Qos-Based Reconfigurable Priority Active Queue Management for IP Networks

bines the control dominated and the memory dominated
model. This target architecture has to respond to both the
time constraints and the memory saving for the overall data
computing operations. Furthermore, in order to make better
the organization of our architecture in order to be easily
extensible, we have control part, the data path part and the
interface part. This separation is also justified to automate
the process of design thereafter. Consequently, our proposed
RPAQM architecture of the integrated protocols related to IP
switch consists on a set of interface and control components.
This architecture is capable to transmit data and control
information in two directions between distant communica-
tion entities. This architecture as depicted in Figure
7includes the following parts:
■ The memory part Our proposed architecture is based

on the QoS dynamic management. This brings us to define
the suitable data structure and to choose the appropriate
technique. Memories are used to implement selected tech-
niques for QoS optimization.
■ The finite state machine (FSM): it receives the primi-

tive of the system and defines the primitive execution order.
■ The sequencer (SM) it allows the generation of all

necessary commands and control signals for the data path
operation.
■ The data path (DP): In order to perform all operations

required by the entire architecture, this module contains an
interface on one hand to registers and on other hand to
dedicated and standard operators (counters addition, etc…).
■ The controller: To reconfigure architecture according

to the need for the QoS management, and to administer these
memories a general controller is designed to assure the dy-
namic QoS management.
■ Assignment priority (AP): implements the dynamic

model of the priority level calculus.
■ Queue controller (QC): implements the queue con-

troller module.
■ The network interface: This unit is responsible for the

reception/emission of data from the network inter-
face/buffers.

Table 2. synthesis results of the AQM architecture

Logic Utilisation Used Avalable Utilisation
Number of Slice Registres 3806 207360 1%

Number of Slice LUTs 26818 207360 12%
Number of fully used

LUT-FF pairs 3308 27316 12%

Number of bonded IOBs 845 1200 70%
Number of

BUFG/BUFGCTRLs 16 32 50%

Number of DSP48Es 14 192 7%

The design is simulated and synthesized using ISE design
foundation. The results of these operations are presented in
table 2. The final ASIC has been implemented using an
FPGA Virtex 5. The number of slice Luts used is 20126, and
the number of slice registers used is 3806. This circuit op-
erates with clock frequency of 250 MHz and allows the cells
transfer on 2 Gbit/s. It can process 65536 priority levels and

requires three types of cache memories: the first one has
128x32Bits size to be used by the Assignment Priority (AP)
module; the second one has 256x64 bits size. The Queue
Controller (QC) module uses four parallel memories to
construct a 256x256 matrix which holds 65536 priority lev-
els. The third memory has 64x32 bits size used to reconfig-
ure the FPGA, it has the parameters of each service domain
to be configured and installed.

8. Conclusions
QoS guarantees in high-speed packet switched networks

still remain a huge challenge for network designers. Since
most of service disciplines for providing QoS are dead-
line-ordered and specified for output queues, RPAQM be-
comes an essential component for high performance packet
networks. The RPAQM must be designed not only to support
many priority levels, large buffer size, many input links, and
high bandwidth but also to support scalability and recon-
figurability.

In this paper, we have proposed a scalable and a recon-
figurable PAQM architecture for IP switches that can handle
a large number of priorities in different network domains. In
addition, we have proposed three architectures in which
scalable PAQM’s can be reconfigured to support QoS
guarantees. The IP switch can therefore be used efficiently in
a high-speed packet switch providing fine-grained quality of
service guarantees. In addition, to be very fast and recon-
figurable, the architecture also scales very well to a large
number of priority levels and to large queue sizes. We re-
marks that the proposed architectures (data structures in
different domains) have not great difference in term of
hardware description and conception, but they have great
difference in active queue management in packet networks
switches. Switching packets represents the essential pa-
rameters to guarantee QoS which are the scheduling algo-
rithm and buffer management. These parameters are con-
figured differently in the proposed architectures which are
based in the implemented data structure (P-CLL). Data
structure enables us to support these configurations which
increase performances architectures cited below. However,
in the first architecture we implement the CBWFQ sched-
uling algorithm, the second architecture uses the WFPQ
algorithm and the last architecture uses the FIFO algorithm.
Our current implementation is described in VHDL language
at RTL levels, synthesized in a low level and mapped to
FPGA architecture.

REFERENCES
[1] N. Ni, L-N Bhuyan “fair scheduling and buffer management

in internet router” article, conference on computer computing,
INFOCOM2002, vol3, New York, June 2002.

[2] N. I. S. Hwang, B. Hwang, P. M. Chang, C.Y. Wang,

 Electrical and Electronic Engineering 2012, 2(2): 68-77 77

“QoS-Aware Active Queue Management for Multimedia
Services over the Internet”, Proceedings of the International
Multi-Conference of Engineers and Computer Scientists, vol.
2, Hong Kong, 2010.

[3] R. Bhagwan and B. Lin, “Design of a high-speed packet
switch for fine-grained quality of service guarantees”, journal,
IEEE International conference on communication (ICC’00),
New Orleans, vol3, pp 1430-1434, 2000.

[4] S. Paul, A. J. Pan, and R. Jain “Architecture of the future
network and the next generation internet: a survey”, journal,
Computer communications, volume 34, issue 1, 15 January
2011.

[5] F. Ren, C. Lin, B. Wei, “a robust active queue management
algorithm in large delay networks”, article, computer com-
munications 28 (485-493), 2005.

[6] Z. Mammeri, “framework for parameter mapping to provide
end-to-end QoS guarantees in IntServ/DiffServ architectures”,
article, computer communications 28 (1074-1092), 2005.

[7] P. Giaccone “Queueing and scheduling algorithms for per-
formance routers” thesis of polytechnic university of Torino,
Itali, February 2002.

[8] S. Floyd, R. Gummadi, and S. Shenker “adaptive RED: an
algorithm for increasing the robustness of RED’s active
queue management” rapport, longer technical report, 1 au-
gust 2001.

[9] B. Abbasov and, S. Korukoglu, “Effective RED: An algo-
rithm to improve RED's performance by reducing packet
loss”, Journal of Network and Computer Applications, vol. 32,
pp. 703-709, May 2009.

[10] S. Wallner, “A configurable system-on-chip architecture for
embedded and real-time applications: concepts, design and
realization” article, Journal of Systems Architecture, Volume
51, Issues 6-7, Pages 350-367, June-July 2005.

[11] M. franklin, P. Crowley, H. Hadimioglu, P. Onufryk “net-
work processor design”, book, computer sciences, issue and
practice volume 2, 2004.

[12] Michael V. Lau, S. Shieh, P-F. Wang, B. Smith, D. Lee, J.
Chao, B. Shung and C-C Shih, “Gigabit Ethernet switches
using a shared buffer architecture”, article, IEEE Communi-
cation magazine, p-p 76-84, December 2003.

[13] A. C-K. Kam “efficient scheduling algorithms for quality of
services guarantees in the internet” thesis of Massachust
technology institute, April 2000.

[14] N. Seitz, NTIA/ITS, “ITU-T QoS standards for IP-based
networks” article, IEEE communication magazine, pp 82-89,
June 2003.

[15] S. Pillalamarri, S. Ghosh, “high-speed networks: definition
and fundamental attributes”, article, computer communica-
tions 28 (956-966), 2005.

[16] H. Jonanthan Chao, Yau-Ren Jenq, Xiaolei Gue and Cheuk H.
Lam “design of packet-faire queuing schedulers using a
RAM-based searching engine” IEEE journal on selected ar-
eas in communications. Vol. 17, No. 6, pp. 1105-1125, June
1999.

[17] K. Nisar, A. M.Said and H. Hasbullah, “An efficient Voice
Priority Queue (VPQ) Scheduler Architectures and Algo-
rithm for VoIP over WLAN Networks”, Computer Science
Letters, vol.2, Sept. 2010.

[18] A. Baghdadi, « Exploration et conception systématique
d’architectures multiprocesseurs monopuces dédiées à des
applications spécifiques », thesis of national polytechnic in-
stitute of Grenoble, 14 mai 2002.

[19] P. Gupta and N. Mckeown “algorithms for packet classifica-
tion”, journal, IEEE Network, mars 2001.

[20] H. Guesmi, R. Djemal, B. Bouallegue, J-P. Diguet, R. Tourki,
“high performance architecture of integrated protocols for
encoded video application”, article, computer standards and
interface 26 (301-315), 2004.

[21] H. Guesmi, R. Djemal, B. Bouallegue, H. Youssef et R.
Tourki, " Architecture d’un routeur IP de haute performance
optimisée pour la différentiation de qualité de service",
Premier Congres International IEEE de Signaux, Circuits Et
Systèmes (SCS’04), Monastir - Tunisia, 18 - 21 March 2004.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4SYCR02-1&_user=3592718&_coverDate=05%2F31%2F2009&_alid=1549632070&_rdoc=10&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6902&_sort=d&_st=13&_docanchor=&view=c&_ct=60&_acct=C000052544&_version=1&_urlVersion=0&_userid=3592718&md5=95b372d3c291b627054baeccc2350460&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4SYCR02-1&_user=3592718&_coverDate=05%2F31%2F2009&_alid=1549632070&_rdoc=10&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6902&_sort=d&_st=13&_docanchor=&view=c&_ct=60&_acct=C000052544&_version=1&_urlVersion=0&_userid=3592718&md5=95b372d3c291b627054baeccc2350460&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4SYCR02-1&_user=3592718&_coverDate=05%2F31%2F2009&_alid=1549632070&_rdoc=10&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6902&_sort=d&_st=13&_docanchor=&view=c&_ct=60&_acct=C000052544&_version=1&_urlVersion=0&_userid=3592718&md5=95b372d3c291b627054baeccc2350460&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1F-4F3FF3D-4&_user=3433074&_handle=V-WA-A-W-AU-MsSAYZW-UUA-U-AAWAVEABVE-AAAEUDWAVE-ADVDAUVYZ-AU-U&_fmt=full&_coverDate=07%2F31%2F2005&_rdoc=3&_orig=browse&_srch=%23toc%235673%232005%23999489993%23597355!&_cdi=5673&view=c&_acct=C000053505&_version=1&_urlVersion=0&_userid=3433074&md5=678df4f6d20ac3e6b30b0011414dd02c#vt1
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5673&_auth=y&_acct=C000053505&_version=1&_urlVersion=0&_userid=3433074&md5=aafbffd59ae67493ce8a1bc62b37cb5c
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235673%232005%23999489993%23597355%23FLA%23display%23Volume_51,_Issues_6-7,_Pages_347-450_(June-July_2005)%2BMReconfigurable_embedded_systems%3A_Synthesis,_design_and_application%2BMEdited_by_H._Selvaraj,_L._Jozwiak%23tagged%23Volume%23first%3D51%23Issues%23first%3D6%23last%3D7%23spans%3D2%23date%23(June-July_2005)%23specissname%23Reconfigurable_embedded_systems%3A_Synthesis,_design_and_application%23specisseditor%23Edited_by_H._Selvaraj,_L._Jozwiak%23&_auth=y&view=c&_acct=C000053505&_version=1&_urlVersion=0&_userid=3433074&md5=b27f9b7ef2195fa331b57e6cc6011eb0
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235673%232005%23999489993%23597355%23FLA%23display%23Volume_51,_Issues_6-7,_Pages_347-450_(June-July_2005)%2BMReconfigurable_embedded_systems%3A_Synthesis,_design_and_application%2BMEdited_by_H._Selvaraj,_L._Jozwiak%23tagged%23Volume%23first%3D51%23Issues%23first%3D6%23last%3D7%23spans%3D2%23date%23(June-July_2005)%23specissname%23Reconfigurable_embedded_systems%3A_Synthesis,_design_and_application%23specisseditor%23Edited_by_H._Selvaraj,_L._Jozwiak%23&_auth=y&view=c&_acct=C000053505&_version=1&_urlVersion=0&_userid=3433074&md5=b27f9b7ef2195fa331b57e6cc6011eb0
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235673%232005%23999489993%23597355%23FLA%23display%23Volume_51,_Issues_6-7,_Pages_347-450_(June-July_2005)%2BMReconfigurable_embedded_systems%3A_Synthesis,_design_and_application%2BMEdited_by_H._Selvaraj,_L._Jozwiak%23tagged%23Volume%23first%3D51%23Issues%23first%3D6%23last%3D7%23spans%3D2%23date%23(June-July_2005)%23specissname%23Reconfigurable_embedded_systems%3A_Synthesis,_design_and_application%23specisseditor%23Edited_by_H._Selvaraj,_L._Jozwiak%23&_auth=y&view=c&_acct=C000053505&_version=1&_urlVersion=0&_userid=3433074&md5=b27f9b7ef2195fa331b57e6cc6011eb0

	1. Introduction
	2. Quality of Service Mechanism’S Support
	3. Data Structure of the Priority Circular Linked List (P-CLL)
	3.1. Description of the Active Queue Manger
	3.2. Data Structure of the Active Queue Management
	3.3. The P-CLL Based Priority Queuing Solution

	4. Related Works
	5. Implementation of the RPAQM
	5.1. Priority assignment module (PA)
	5.2. P-CLL Manager Module (PM)
	5.3. Queue Controller Module (QC)
	5.4. The Controller Module

	6. Reconfiguration of the IP Switch’S Data Structure
	6.2. Data Structure in IntServ Domain

	7. Design Results of the Proposed RPAQM
	7.1. Design Methodology
	7.2. Results

	8. Conclusions

