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Abstract  This paper presents a reconfigurable and scalable architecture of a high-performance IP switch to improve 
network quality of service (QoS). Quality of services, in terms of delay, through-put and loss rate, can be provided by using a 
mechanism support like scheduling and buffer management architecture of packet switching IP networks. The proposed 
architecture consists of a new memory management data structure based on circular linked lists. The linked lists include 
different priorities levels with a pipelined organization for the reconfigurable priority active queues management. The ar-
chitecture also scales dynamically to support a large number of priority levels and a large queue size. The new data structure 
enables us to configure the architecture based on network service domain. Detailed description of new data structures of the 
proposed algorithms and their corresponding implementations are presented as well. 
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1. Introduction 
The future growth of the Internet requires design and de-

velopment of high-speed IP switch that forward exponen-
tially increasing volume of traffic and provide QoS guaran-
tees at the same time. In this respect, Quality of service (QoS) 
guarantees in term of delay, throughput, and loss rate can be 
provided by using a service discipline at switching nodes in 
packet switching networks. This paper deals with the im-
portant class service disciplines used for output queued 
switches like the Class Based Weighted Fair Queuing and 
Weighted Fair Priority Queuing Techniques. In these service 
disciplines, packets are assigned transmission deadlines (or 
priority indices), and the packet with the earliest deadline (or 
highest priority) is served at first. This approach requires a 
priority queue manager for sorting priority levels and man-
aging queues. Packets from various connections are inter-
leavingly served so that each connection’s QoS requirements 
can be guaranteed by using services disciplines and priority 
queues. In order to achieve QoS guarantees in practice, the 
priority queue manager must be able to support a large buffer 
size in high-speed networks. 

The design of an AQM that implements the dead-
line-ordered service disciplines with a large number of pri-
ority levels, a large buffer size, and a large number of input 
links is not easy to achieve for high-speed packet switching 
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networks. In fact, stored-priority disciplines must always 
choose the packet with smallest deadline or highest priority 
among all prioritized packets in the queue to be served at first. 
If the number of stored packets is M, then the complexity is 
O(logM). The bottleneck comes from the high cost of 
maintaining a high-speed sorting mechanism associated with 
implementing these service disciplines. Moreover, to im-
prove the network performance, a large number of input 
links to an AQM is necessary. However, many proposed 
priority queue designs have limitations in term of priority 
levels number, buffer size, and input links number or band-
width are introduced in the literature[1, 2, 3].  In our ap-
proach, we propose priority AQM architecture for dead-
line-ordered service disciplines that can be used in out-
put-buffered switches to provide QoS guarantees in 
high-speed packet switching networks. In this respect, we 
have to use an insert mechanism in a sorted priority list to 
maintain the highest priority cell in the top instead of com-
monly used shift, compare and RAM-based search mecha-
nisms. This paper, also, presents a novel, highly-scalable 
architecture for a PAQM. Section two of this paper intro-
duces quality of services basics and mechanisms that support 
the QoS. High-performance, QoS-capable data structure of 
the PQM that is the priority circular linked list is represented 
in section three. Then, the implementation of the component 
supporting the QoS management is presented in Section four. 
In section five, design results are presented. Then we present 
the reconfiguration of the architecture to be used in different 
networks domain and finally, the design results related to our 
proposed architecture is presented with some important 
conclusions and remarks. 
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2. Quality of Service Mechanism’S 
Support 

QoS (Quality of Service) is a hot topic in both academic 
and industrial fields for many years. QoS means a series of 
service requirements that networks should satisfy while 
delivering data. It can be represented by: delay, delay jitter, 
loss rate, bandwidth, etc[1]. QoS control is to provide con-
sistent, predictable and controllable data delivery service, 
and to satisfy different application requirements. In fact, the 
application of the QoS philosophy has to guarantee different 
received packets related to different level of services. 

Table 1.  QoS parameters and mechanisms 

QoS 
parame-

ters 

QoS 
mechanisms Guaranteed Statistical Best effort 

Loss Buffer 
management 

Fixed buffer 
allocation 

based on the 
peak rate 

Shared 
buffers 

based on 
average 

rate 

No guar-
anteed 
buffer 

allocation 

Throughp
ut 

Regulation 
(flow shap-

ing) 

Eligibility 
time based 
on a peak 

rate 

Eligibil-
ity time 
based on 
average 

rate 

No regula-
tion re-
sources 

committed 

Delay and 
jitter Scheduling 

Flow always 
scheduled at 

eligibility 
time 

Flow 
scheduled 
at eligi-
bility 
time 

resources 
permit-

ting 

Flow 
scheduled 

if scheduler 
idle 

There’re many mechanisms to support QoS, such as re-
source reservation (RSVP), admission control in Integrated 
Services (IntServ) and traffic shaping/marking in Differen-
tiated Services (DiffServ). The major difference between 
IntServ and Diffserv architecture consists on the granularity 
of service differentiation. The IntServ concept lies in re-
source reservation where each application requests service 
level in term of service rate or end-to-end delay. Conse-
quently, the network has to accept or reject requests ac-
cording to resources availability. However, the IntServ ap-
proach faces potential problems concerning scalability and 
manageability, since all routers must maintain per-flow state. 
The main strength of DiffServ, as proposed by the IETF 
Differentiated Services Working Group[4, 5], is that it al-
lows IP traffic to be classified into a finite number of service 
classes that receive different routing treatments. Routers at 
the network edges classify packets into predefined service 
classes based on requirements and characteristics of associ-
ated application. Core routers forward each packet according 
to its class service. DiffServ model provides service differ-
entiation on each node (Per-Hop behaviors) for large ag-
gregates of network traffic. DiffServ achieves scalability and 
manageability by providing QoS to aggregate traffic (not for 
each application flow). While the common and key ones are 

buffer management and packet scheduling, called interest-
edly “Active Queue Management”. Buffer management 
determines how to allocate buffers and whether to drop an 
arriving packet according to certain policy, which mainly 
influences the loss rate and fairness. In this respect, packet 
scheduling adapts politic transmission of stored packets. It 
serves to control the resource distribution between classes of 
service. This operation is carried out with flow isolation and 
priority levels assignment to find and send highest priority 
packets first. In fact, packet scheduling mainly influences the 
bandwidth, delay/jitter, and fairness. There has been a great 
amount of research work on packet scheduling in the past 
years and many algorithms appeared. The key ideas of most 
packet scheduling algorithms consist in computing an index 
for each queue and sort them. The scheduling decision is 
performed by selecting the queue with the minimum or 
maximum value of these indexes. WRR and DRR are kinds 
of round robin strategy which are easy to implement, but 
have weakness in providing delay guarantee. EDF (Earliest 
Deadline First) and its variants are based on queuing delay. 
Their key ideas consist on allocating a delay parameter Di to 
each queue as the delay up bound, where each arrived packet 
is tagged with the time stamp Ti = Ai + Di : Ai represents the 
arrival time. Consequently, every time the packet with the 
minimum Ti has to be scheduled. In the other way, another 
category of algorithms called PFQ (Packet Fair Queuing) are 
based on service rate. Their key ideas lies in maintaining the 
virtual system time Vi(t), the virtual start time Si(t) and the 
virtual finish time Fi(t) for each queue. Si(t) or Fi(t) is 
computed and the queue with its maximum or minimum 
value is scheduled. One weakness of the PFQ algorithms 
consists on coupling the service rate (bandwidth) and the 
delay that results in the inflexible resource allocation. Floyd 
and Jacobson have proposed a link-sharing and resource 
allocation scheme called class-based queuing (CBQ) which 
employs DRR queuing algorithm and differentiate flows into 
different queue classes. Each queue is serviced in 
round-robin fashion and receives bandwidth equal to its 
allocated share. However, the research work on buffer 
management and packet scheduling are mostly separated 
where they consider only one or some performance metrics 
which is insufficient[6-8]. Since buffer management allows 
the manipulation of en-queuing and packet scheduling con-
cerns the manipulation of de-queuing, which have a tight 
relationship. Consequently, both buffer management and 
packet scheduling mechanisms (which means the active 
queue management) have many effects on almost of the 
performance metrics are unable to meet the QoS requirement 
of today’s applications. 

The table 1 summarizes the characteristics in terms of loss, 
throughput, delay and jitter related to each traffic control 
strategy. We remark that the guaranteed service requires a 
specific treatment in order to satisfy the required service 
compared to the best effort one. Where the QoS mechanisms 
that support QoS parameters is the active queue management 
which consist of buffer management, traffic regulation and 
scheduling the more interesting one in term of performance 
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but needs an important effort to be implemented. 

3. Data Structure of the Priority Circu-
lar Linked List (P-CLL) 

3.1. Description of the Active Queue Manger 

The active queue management requires a specific 
organized data structure related to the selcted scheduling 
algorithm, since it presents its data base. The data structure 
must be structured in a way that all stored packets are visible 
and accessible so that the decision have to be fast and 
effective according to the QoS required for each flow. Thus, 
basic operations like creation, access and release of a service 
flow are achieved in a dynamic way according to the number 
of declared flows and the free memory spaces. Consequently, 
the memory spaces have to be adjustable according to the 
dynamic parameters of the loss management algorithm. The 
number of flows per class is not fixed statically, but can be 
managed dynamically according to the allocated memory. 
To meet these needs, we have used the priority circular 
linked list which ensures the dynamic queues management 
and the reconfiguration of the architecture parameteres. The 
architecture of the active queue manager consists primarily 
on a priority assignement unit, a P-CLL manager and a queue 
controller as depicted in the Figure 1. In this respect, the 
priority asignement unit stamps the incoming packets with a 
certain priority value, which is decided depending upon the 
scheduling algorithm in use. The P-CLL manager 
responsible for the queue managmenet contains the priority 
circular linked list, where each elements in the P-CLL 
represents an active priority level. The queue controller 
maintains a lookup matrix with entries corresponding to each 
priority level. Each priority level gather all packets have the 
same priority. We refer to this list as a priority list. Thus, our 
proposed structure is one of per-priority queuing rather than 
per-flow queuing, and is more general in the sense that it can 
handle many priorities of the same flow. It should be noted 
that at any time, the P-CLL contains only the active priority 
levels for which the priority list is non-empty[9, 1]. 

Generally, the RPAQM maintains a logical queue for each 
flow or session in the data memory. Each queue can be im-
plemented in a linked list with head and tail pointers pointing 
to its head of line (HOL) and tail of line (TOL) packets. An 
idle queue may also be needed to maintain the idle priority 
levels. When a packet arrives at the system, it is stored in the 
corresponding queue. The scheduler queue prioritizes all 
HOL packets, or all eligible HOL packets if a 
shaper-scheduler is implemented, based on their finish times. 
It then chooses the packet with the smallest finish time to 
transmit first. This requires fast sorting or searching opera-
tions and it is one of the challenges in designing a packet 
scheduler. In general, all the HOL packets are first stored in 
the shaper queue. Only those that are currently eligible can 
be moved to the scheduler queue. Some efficient mechanism 
is needed to compare the system virtual time with the start 

times of packets in the shaper queue (i.e., performing the 
eligibility test) and then move eligible packets to the sched-
uler queue. In the worst case, there may be a maximum of 
packets that become eligible. Suppose the scheduler queue 
selects the HOL packet of queue; it determines the head 
pointer associated with queue and then reads out the packet 
using the head pointer. There are more design issues, such as 
handling time-stamp overflow and time-stamp aging prob-
lems. 

 

as
sig

ne
m

en
t U

ni
t Queue 

Controler 

P-CLL 
management 

Output line 
From selector 

buffer memories 

   
Figure 1.  the output queue manager architecture 

3.2. Data Structure of the Active Queue Management 

In order to increase the design performance of the 
per-priority queuing, we have retained the priority circular 
linked list combined with a dedicated data structure which 
implements the reconfigurable priority active queue manager. 
The P-CLL contains only active priorities levels. In this 
respect, data related to each class of service is stored in a 
per-connection data queues, so that each data queue repre-
sents a cell in the priority circular linked list, can be served 
separately. 

When a new packet needs to be inserted into the queue, the 
priority assignment unit stamps the packet with a suitable 
priority value. The queue controller determines whether a 
priority list already exists for the stamped priority value. If it 
does, it simply adds the new packets to the corresponding 
priority list. However, if the list does not exist, the queue 
controller creates a new priority list. It also signals the 
P-CLL manager to perform an en-queue operation, which 
inserts the new priority value into the P-CLL in a sorted 
manner. This operation is done to make sure that the highest 
priority stays at the top of the P-CLL so that when a 
de-queuing of a packet is required, the priority list with the 
highest priority can be rightly accessed. In the other hand, 
when a packet needs to be removed from the queue, the 
P-CLL manager determines the non-empty priority list with 
the highest priority by looking at the topmost element of the 
P-CLL and sends this priority value to the queue controller. 
The queue controller accesses the corresponding priority list 
and removes a single packet from it. When the priority list 
become empty, the P-CLL manager initiates a de-queue 
operation which removes the topmost element from the 
P-CLL while making sure that the P-CLL remains sorted. 

The P-CLL data structure maintains various priority lists 
sorted in the circular linked list. Each en-queue operation 
requires N times to be serviced, where N is the size of the 
P-CLL. However, the emulation of the circular linked list 
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which implements the priority queuing mechanism is easy to 
make and it provides a big save in term of time constraints. 
Furthermore, this structure allows a pipelined implementa-
tion compared with the conventional circular linked list and 
provides a constant time operations. In order to improve the 
performance of our P-CLL, we implement the method of 
insert based on a content addressable memory where each 
priority queuing operation is performed in only one time. 

3.3. The P-CLL Based Priority Queuing Solution 

Using a conventional circular linked list, queuing op-
erations require O(n) steps, where n is the number of 
elements in the circular linked list; (these cannot be easily 
pipelined). On the other hand, architectures such as the 
systolic array and binary heap architectures can be pipe-
lined[6, 10] but have extremely high hardware require-
ments. To support the pipeline organization for queuing 
operations using a circular linked list, a specific data 
structure is required. This will be able to offer constant 
priority queuing operations with a low hardware cost. 
Two main operations have been defined regarding the 
en-queuing and de-queuing operations. 
● The en-queuing operation: To en-queue a new value 

of priority in the circular linked list of the P-CLL, we need to 
find a free cell. This operation is achieved by exploring the 
valid data path from the matrix T values which allows us to 
find the inserted cell address pointer. Then, we carry out the 
updated list to be added to the P-CLL in a sorted manner. The 
insertion position is identified by finding the first least weak 
priority level of non-empty priority list coming just after this 
level. Seeking the matrix T from the inserted value address 
and find the first case contain ‘1’ coming after this address 
corresponding to cell which has the least weak priority. The 
address of priority level founded represents the insertion 
position of the priority level. The addition operation consists 
on reading and writing the bonding pointers of the two cells 
(inserted cell and founded cell) and updating the class de-
scriptor service parameters. The operation of research re-
quires N time, where N is the priority levels number. How-
ever, in the P-CLL, the research operation needs only the 
conversion time of the priority level into address to fetch the 
first non empty cell. We can summarize the required steps 
for inserting a new priority list as the following: 

Step1: 
Request an available free cell 
Read the pointer at the matrix address 
Step2: 
Stamp the packet with a priority value 
Update the flag in the matrix  
Step3: 
Determine the insertion position 
Insert the priority list  
● The de-queuing operation: The de-queuing opera-

tion consists of extracting the cell pointed by the header 
pointer from the P-CLL since it has the highest priority value. 
Then, modify the case in the matrix representing the priority 

level (flag) to ‘0’ making the priority level inactive and 
update the class descriptor service parameters. The de-queue 
operation are summarized below: 

Step1:  
Read the head pointer of the circular linked list 
Add the free cell to the free cell list 
Step2: 
Update the circular linked list 
Update the status flag 
Update the file capacity 

4. Related Works 
Extensive research has been done on the next generation 

of high-speed routers. Nick Mckeown’s group at Stanford 
University did intensive research on high speed switching[11, 
3, 12]. R. Bhagwan proposed a Design of a high-speed 
packet switch for fine-grained quality of service guarantees 
and a fast and scalable priority queue architecture for 
high-speed networks switches[13]. H. Jonathan et al. have 
proposed a design for packet-fair queuing schedulers using a 
RAM-based searching engine[14]. Many other papers and 
proposals are dealing with some key issues in real-time 
packet scheduling, fine grain QoS control, high-speed 
switches for the data path and so on[9, 2]. We present two 
techniques which implements data structure of the AQM 
such as: 
● The calendar queue uses the search-based approach to 

reduce implementation complexity. In the search-based 
approach, time stamps are quantized into integers and are 
used as the address for the priority queue. Each memory 
entity may contain a validity bit and two pointers pointing to 
the head and tail of an associated linked list called the timing 
queue which links the indexes, such as, of each session, 
where the time stamps of the HOL packets are the same. 
Therefore, all the HOL packets are pre-sorted when their 
corresponding session indexes are stored in the calendar 
queue. Finding the next packet with the minimum time stamp 
is equivalent to finding the nonempty timing queue with the 
smallest address. In the search-based approach, the time 
complexity of sorting time stamps is traded with space 
complexity, which is determined by the maximum value of 
the time stamp, say for instance. 
● The Hierarchical Searching (RSE) reorganizes and 

stores all the bits in the calendar queue. Its main function is 
to find a nonempty timing queue that has the smallest finish 
time (address) and to output its address, which is the output 
of the RSE (read operations). It is used to fetch the queue 
index which in turn locates the pointer pointing to queue’s 
HOL packet. 

In a calendar queue, a validity-bit is associated with each 
timing queue, indicating whether this queue is empty or not. 
Since packets are automatically sorted based on their cor-
responding locations in the calendar queue, finding the next 
packet to be transmitted is equivalent to searching the first bit 
in the calendar queue. The key concept of hierarchical 
searching is extended and generalized from the one in the 
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PCAM chip by dividing the total validity-bits in the basic 
searching into multiple groups, which forms a tree data 
structure, where is the maximum value of time stamp. Each 
group consists of a number of bits, so another bit string can 
be constructed at the upper level with its length equal to the 
number of groups at the bottom level. Each bit at the upper 
level represents a group at the bottom level with its value 
equal to the logical OR of all the bits in the group. Further 
grouping can be performed recursively until the new string 
can be placed in a register. Suppose levels are formed from 
the original bit string. There are bits at level, and each of its 
groups has bits. 

The services disciplines implemented in our architecture 
such as CBWFQ and WFPQ also needs to maintain another 
priority queue called shaper queue is implemented as a mul-
titude of priority lists. Each list is associated with a distinct 
value of start time common to all queued packets in this list. 
Using the search-based approach, we can construct a 2-D 
calendar queue based on the start times of the queued packets, 
where the start time and time stamp are used as the column 
and row addresses, respectively, and is the maximum value 
of the start times. All packets with the same start time are 
placed in the same column addressed by and also are sorted 
according to their time stamps. Hence, each column repre-
sents a priority list. Each bit in a column can be located by its 
unique address. Performing the eligibility test is equivalent 
to using the system virtual time as the column address to find 
the nonempty column(s), with their addresses ranging from 
the previous value until the current value of the system vir-
tual time, and then moving packets in these column(s) to the 
scheduler queue. 

5. Implementation of the RPAQM 
All recently proposed packet-scheduling algorithms for 

output-buffered switches that support quality of services 
(QoS) transmit packets in some priority order, e, g, according 
to dead-lines, virtual finishing times, eligibility times, or 
other time stamps that are associated with a packet[5, 10, 15]. 
Since maintaining a sorted priority queue introduces sig-
nificant overhead, much emphasis on QoS scheduler design 
is put on method to simplify the task of maintaining a priority 
queue. The two main metrics for measuring the perform-
ances of a scheduling algorithm: throughput and delay. In 
our architecture we use fast and scalable pipelined priority 
queue architecture for use in high-performance switches with 
support for fine-grained quality of services guarantees. Each 
output port is maintained using an output port manager. The 
output port manager implements mechanisms that support 
the QoS such as buffer management and scheduling which 
are called reconfigurable priority active queue management 
(RPAQM). The architecture implementation includes the 
following blocs: the priority assignment Unit, the P-CLL 
manager Unit, the queue controller Unit and the controller[4, 
16]. 

5.1. Priority assignment module (PA) 

This module stamps packets by a label calculated ac-
cording to the implemented scheduling algorithm. This label 
determines the transmission order of the data packets to the 
output line (Figure 2). This module needs to know the three 
following factors: 
● The weight allotted to the concerned class of service: the 

concept of weight determines the band-width percentage that 
the class is seen allotting. 
● The length of the packet; 
● The interaction with the other concurrent active classes. 
In order to stamps packets by labels, this unit calculates 

the virtual finish time and the virtual start time according to 
the scheduling algorithm (CBWFQ). The calculated value 
related to each assigned packet level represents the trans-
mission order (packets priority). According to these values, 
packets are stored in suitable queues. Since our architecture 
implements Ncs classes of services, the calculation of priority 
values needs a dynamic model uses a data base in order to 
describe the state of each service class and each stored packet. 
This data base is constructed in the P-CLL manager module 
to be consulted and updated by this unit after any operation 
(emission or reception) in order to provide the correct prior-
ity values. The time stamp of a packet is the sum of its virtual 
start time and the time needed to transmit this packet at its 
reserved bandwidth. Packets are served by an increasing 
order of their time stamps. The implementation cost of a 
CBWFQ algorithm is determined by two components: 
computing the system virtual time function and maintaining 
the relative ordering of the packets via their time stamps in a 
priority queue mechanism. 

A Priority Assignment server has N queues to store all 
arrived flows. Each queue i has a minimum bandwidth al-
location, denoted by ri, where i = 0, 1, 2, …, N-1. During any 
time interval when there are exactly n (n inferior or equal to 
N) non-empty queues, the server serves the n HOL packets 
corresponding to the non-empty queues simultaneously. To 
approximate the priority level (label), CBWFQ algorithm 
maintains a system virtual time function V(t), a virtual start 
time Si(t), and a virtual finish time Fi(t) for each queue i. Si(t) 
and Fi(t) are updated on arrival of the HOL packet for each 
queue. A packet departure occurs when its last bit is sent out, 
while an HOL packet arrival occurs in either of two cases: (1) 
a previously empty queue has an incoming packet that im-
mediately becomes the HOL or (2) the packet next to the 
previous HOL packet in a nonempty queue immediately 
becomes the HOL after its predecessor departs. Obviously, a 
packet departure and a packet arrival in Case 2 could happen 
at the same time. Therefore 
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determining V(t) is the major distinction among proposed 
WFQ algorithms[1, 17]. 
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Figure 2: Stored stamped packets in a sorted manner with CBWFQ algo-
rithm 

5.2. P-CLL Manager Module (PM) 

This module implements the selected data structure which 
is based on the priority circular linked list P-CLL. It consists 
of a circular linked list based on the priority levels. Each cell 
of these descriptors of the priority levels has an active pri-
ority level which gathers all packets having the same priority 
level in a circular linked list which is called packet list 
(Figure 3). Every cell related to the packet list contains two 
fields: a bound pointer to its packet list and an address 
pointer to the memory space which stores the packet. The 
cell of the priority list contains several fields which are: a 
head and a tail pointers associated to the priority lists (data 
packets having the same priority value), a bound pointer to 
its class list and an additional field which describes the pri-
ority level value. In the other hand, the service class de-
scriptor cell contains the associated control parameters re-
lated to each class such as the queue average size, the 
probability of reject etc... 

In this respect, our design of the P-CLL manager unit uses 
two separated memories. The first one contains the class of 
service descriptors where the second it contains the priority 
values list. Thus, the first memory is organized as Ncs blocs 
(Ncs: number of service classes), where each bloc has Npc 
fields (Npc: number of control parameters of each service 
class). The second memory which implements the priority 
linked list levels is organized as Npv * 4 fields (Npv: number 
of priority values; one field for the priority value, one for the 
bound pointer and two fields for the head and tail pointer). 
The variation of the memory size depends only on the 
number of service classes for the first memory and the 
number of the priority levels belonging to the second mem-
ory. The size of these memories varies in a linear way ac-
cording to the increase of the number of the priority levels 
managed by this architecture and the services classes’ 
number. 

We used two separated memories in our design for this 
reasons: Firstly, our architecture will be scalable by in-
creasing the memory size with a simple adding of space 
memory to increase the number of priority levels related the 
number of service class. Second, the number of priority 
values belonging to each service class is reserved in a dy-
namic way according to the need for each class of service 
(number of flows treated in each service class): allowance on 

request or dynamic adjustment of the band-width between 
the classes of service. Then, the architecture will be recon-
figurable according to the network domain. And finally, The 
en-queue and de-queue operations of a priority level are 
simple and rapid because the priority level represents its 
address in the memory, so the access to every priority level 
needs only the time to convert the priority level to an ad-
dress[15, 18]. 
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Figure 3.  Structure of the priority circular linked list 

5.3. Queue Controller Module (QC) 

This module is used to control all priority levels related to 
the active queue management: which can be switched be-
tween the active and the inactive state. It is represented by a 
NxN matrix which stores the state of all priority values. 
Every level is described in a case which contain “0” (inactive) 
or “1” (active). Every case is addressed by the priority level. 
When an assigned packet is received, this module seeks in 
the matrix if the priority value is active. If yes, so this module 
launches an addition operation requested by this packet with 
its corresponding priority list. The addition of the packet is 
the access to the priority level list which is addressed by the 
priority level to add the packet to its packet list. In the other 
case, this module inserts (en-queue) this priority value in its 
suitable place in the sorted circular linked list. During the 
en-queuing operation, QC makes level active (case = “1”) in 
the matrix and seeks the first active priority level in the in-
creasing order. This level represents the insertion position in 
the P-CLL which remains the list sorted. During the emission, 
if this packet is the last in the packet list, therefore it launches 
a de-queue operation to make the level of priority inactive 
(case = “0”) in the matrix. The de-queue operation is 
achieved by the update of the P-CLL. 

The design of the queue controller module uses M parallel 
memories (Figure 4) organized as NxN matrix (NxN= Npv is 
the number of priority levels). In this respect, each priority 
level state is described by one bit (case), if the bit = “1” 
indicate that the priority level is active else (bit = “0”) pri-
ority level is inactive (list of queued packets is empty). The 
memory size of this component is equal to the priority level 
number; this capacity increases if the priority values number 
increase. It represents the priority level number treated by 
this architecture[6, 19]. 
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This design facilitates the access to all priority level be-
cause the priority level represents the address in the matrix 
(position in line and position in column). This upgrades the 
throughput of our architecture because it is related with the 
en-queue and de-queue operations. The en-queue operation 
needs only few cycles because at one read cycle we can 
determine the state of N levels which are stored in M parallel 
memories. So founding the insertion position is rapid be-
cause we use M comparators to determine the first active 
priority level. The comparators output the results at one read 
cycle. After five read cycles we declare that the priority level 
will be inserted in the tail of the P-CLL (if the difference 
between the two finish times is greater than 1280 the level is 
posted in the tail of the P-CLL). 

In our design we define the priority levels number as 
65536 level, so the QC is implemented in four parallel 
memories (256x64 bits) to form a 256x256 matrix. The most 
significant byte of the priority level represents the line 
number and the least significant byte represents the column 
number in the matrix. 

 

Lists of queued 
packets 

Queue controller 
matrix 

Active priority 
circuler linked list 

 
5 

7 

10 

25 

33 

54 

Head pointer 

Tail pointer 

Insertion pointer 

List of sorted active priority 
values 

Transmission Ordre 
0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0  

0 0 0 0 1 0 0 0  

0 0 0 0 0 0 0 0  

1 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

…
 

0 0 0 0 1 0 0 0  
0 0 0 1 1 0 0 0  

0 0 0 0 1 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

…
 

1 1 
1 

1 

1 1 

…
.. 

 
Figure 4.  Structure of the queue controller module 

5.4. The Controller Module 

This module ensures the general reconfiguration of the IP 
switch to respond the need of the network administrator. This 
architecture will be used in several domains: DiffServ do-
main, IntServ domain and in very high-speed networks do-
main. For these reasons, our architecture is implemented in a 
reconfigurable FPGA due to the capacity and the speed of 
FPGAs computing. This implementation also enables us to 
reconfigure the IP switch to be used in several network do-
mains. The controller implements the control parameters of 
this architecture. It uses a specific data structure related to 
the circular linked list organization which facilitates the 
reconfiguration of the general controller so that the archi-
tecture ensures the packet switching according to the net-
work domain and class of service requirements[17]. 

6. Reconfiguration of the IP Switch’S 
Data Structure 

Our proposed architecture of the reconfigurable priority 
active queue management[20] is designed in order to be 

reconfigurable according to the network’s domain. This 
architecture integrates many sophisticated functions to 
guarantee the QoS (buffer management and scheduling). In 
each domain we need a data structure to optimize the IP 
switch architecture for delivering packets in required man-
ner.  

6.1. Data Structure in DiffServ (QoS optimization)  
Domain 

The data structure which ensures the QoS guarantees in 
this domain is based on QoS management. This structure 
uses three classes of services: guaranteed service, assured 
service and best effort service. The data structure described 
previously manages NC classes of service, so if we take Nc = 
3, the switch has to manage only three classes of service. 
Each class of service inter-connects a sorted priority list 
pertaining to the same class. In each level of priority a list of 
sorted packets is stored which is depicted in figure 3. This 
structure makes possible to store packets in the order of 
highest priority first and ensures a dynamic band-width 
adjustment which enables us to optimize the use of the 
available band-width. Each class of service has a percentage 
of the available band-width according to its needs. CBWFQ 
scheduling algorithm is the best one to guarantee QoS in 
DiffServ domain, its implementation needs to configure the 
algorithm of management to uses three classes of service and 
to fix their percentage in band-width. Data structure de-
scribed in section III is oriented to this networks domain. 

6.2. Data Structure in IntServ Domain 

The data structure related to the IntServ domain uses two 
classes of service such as guaranteed service and best effort 
service. Consequently, packets are treated in a different way 
according to these two classes indicated below. The corre-
sponding data structure is managed by the scheduling algo-
rithm and the queue management algorithm to send and store 
packets according to the implemented services. In this case, 
queue management algorithm is used for all possible con-
figurations, but the Weighted Fair Priority Queuing (WFPQ) 
is used as the scheduling algorithm to this domain. Our basic 
architecture maintains Nc classes of service implemented in 
a circular linked list structure with Nc services class’s de-
scriptors. As a result, it is quite simple to change the context 
of our application to pass from the configuration of Nc ser-
vice classes to the two service classes’ one. Figure 5 repre-
sent the data structure of this domain interconnecting two 
classes of services: Best Effort class contains only one level 
priority and guaranteed service class gathers many priority 
levels. Each priority level gathers packets having the same 
priority. This configuration is carried out if we adjust the 
selection algorithm to assigns packets only to the two classes 
of services and assigns (0%) of bandwidth to the other 
classes. Then in the emission of packets, the scheduling 
algorithm sends highest priority packets first, where highest 
priority levels belong to the guaranteed service class (PQ). 
Packets in this class are treated in a different way according 
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to the WFQ approach. 
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Figure 5.  data structure in IntServ domain 

6.3. Data Structure in very High-speed Networks   
Domain 

The data structure in high-speed networks uses only one 
service class which is the best effort. Packets are treated in 
very high-speed since parameters of QoS are respected. 
Therefore, the scheduling algorithm to be implemented in 
this domain is based on the FIFO algorithm, where packets 
are treated in the order of their arrival (First In First Out). 
The reconfiguration of the RPAQM requires the following 
modifications: 
● Make the storage average size of the other classes to 

zero (0%). Packets are stored in the Best effort class of ser-
vice which has the 100% of the available bandwidth. 
● Assign the same priority value to all arrived packets to 

be stored in the same priority level list instead of requiring 
several priority level lists. Packets are treated in identical 
manner according to their arrival order. 

The data structure in this domain is implemented using 
only one circular linked list pointed by two pointers; a head 
pointer which points packets to be sent by the scheduling 
algorithm and a tail pointer which ensures the storage of the 
arrived packets. Arrived packets are stored in the tail of the 
list whereas packets to be sent are in heading of the linked 
list. The figure 6 shows the data structure related to the 
RPAQM used in high-speed networks. It uses three lists 
which are the class of service list (contain control parame-
ters), the active priority list used to store all arrived packets 
in FIFO techniques, and the linked list gather all received 
packets. The linked list of free priority levels is not used. 
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Figure 6.  data structure in high-speed networks 

7. Design Results of the Proposed 
RPAQM 

7.1. Design Methodology 

In general, the process of designing a system will proceed 
from a behavioral to a physical representation, gaining im-
plementation details along the way. High level synthesis 
converts a behavioral specification of a digital system into an 
equivalent RTL design that meets a set of stated performance 
constraint[2]. The designer describes his system with a high 
level specification at one of abstraction levels. This descrip-
tion with a HDL (Hardware Description Language) is syn-
thesized using existent synthesis tool allowing passage to the 
next abstraction level until reaching either integration in 
ASIC or implementation in FPGA. After design verification, 
a design compiler is used to perform logic synthesis. The 
logic synthesis tool starts with two kinds of information: an 
RTL specification given in VHDL and a functional unit 
library that can include complex functional units. The RTL 
description accesses these function blocks through VHDL 
procedure calls. For each procedure or function used, the 
library must include at least one functional unit able to 
execute the corresponding operation[20, 21]. 

7.2. Results 

For the implementation of RPAQM architecture, a de-
scription in VHDL is carried out at the RTL level and is 
simulated using ModelSim simulator. This approach has 
permitted to evaluate the behavior of each component alone 
as well as the interaction of the overall architecture with all 
interconnected components. The implemented components 
can integrate basic standard elements with a known behavior 
such as adders, comparators, MUX, etc, or other elements 
where their behaviors have to be defined like sequencer, 
specific interface and telecommunication operators. Our 
proposed solutions have to give answers for all questions 
related to the design specification and the time constraints 
required by the application context. In order to emulate the 
environment of our architecture, we have used some file of 
test containing the entries stimuli with the overall VHDL 
description to constitute the validation virtual prototyping IP 
switching system. 
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Figure 7.  Architecture of the RPAQM in the RTL level 

Our architected uses hybrid model of control which com-
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bines the control dominated and the memory dominated 
model. This target architecture has to respond to both the 
time constraints and the memory saving for the overall data 
computing operations. Furthermore, in order to make better 
the organization of our architecture in order to be easily 
extensible, we have control part, the data path part and the 
interface part. This separation is also justified to automate 
the process of design thereafter. Consequently, our proposed 
RPAQM architecture of the integrated protocols related to IP 
switch consists on a set of interface and control components. 
This architecture is capable to transmit data and control 
information in two directions between distant communica-
tion entities. This architecture as depicted in Figure 
7includes the following parts: 
■ The memory part Our proposed architecture is based 

on the QoS dynamic management. This brings us to define 
the suitable data structure and to choose the appropriate 
technique. Memories are used to implement selected tech-
niques for QoS optimization. 
■ The finite state machine (FSM): it receives the primi-

tive of the system and defines the primitive execution order. 
■ The sequencer (SM) it allows the generation of all 

necessary commands and control signals for the data path 
operation. 
■ The data path (DP): In order to perform all operations 

required by the entire architecture, this module contains an 
interface on one hand to registers and on other hand to 
dedicated and standard operators (counters addition, etc…). 
■ The controller: To reconfigure architecture according 

to the need for the QoS management, and to administer these 
memories a general controller is designed to assure the dy-
namic QoS management.  
■ Assignment priority (AP): implements the dynamic 

model of the priority level calculus. 
■ Queue controller (QC): implements the queue con-

troller module. 
■ The network interface: This unit is responsible for the 

reception/emission of data from the network inter-
face/buffers. 

Table 2.  synthesis results of the AQM architecture 

Logic Utilisation Used Avalable Utilisation 
Number of Slice Registres 3806 207360 1% 

Number of Slice LUTs 26818 207360 12% 
Number of fully used 

LUT-FF pairs 3308 27316 12% 

Number of bonded IOBs 845 1200 70% 
Number of 

BUFG/BUFGCTRLs 16 32 50% 

Number of DSP48Es 14 192 7% 

The design is simulated and synthesized using ISE design 
foundation. The results of these operations are presented in 
table 2. The final ASIC has been implemented using an 
FPGA Virtex 5. The number of slice Luts used is 20126, and 
the number of slice registers used is 3806. This circuit op-
erates with clock frequency of 250 MHz and allows the cells 
transfer on 2 Gbit/s. It can process 65536 priority levels and 

requires three types of cache memories: the first one has 
128x32Bits size to be used by the Assignment Priority (AP) 
module; the second one has 256x64 bits size. The Queue 
Controller (QC) module uses four parallel memories to 
construct a 256x256 matrix which holds 65536 priority lev-
els. The third memory has 64x32 bits size used to reconfig-
ure the FPGA, it has the parameters of each service domain 
to be configured and installed. 

8. Conclusions 
QoS guarantees in high-speed packet switched networks 

still remain a huge challenge for network designers. Since 
most of service disciplines for providing QoS are dead-
line-ordered and specified for output queues, RPAQM be-
comes an essential component for high performance packet 
networks. The RPAQM must be designed not only to support 
many priority levels, large buffer size, many input links, and 
high bandwidth but also to support scalability and recon-
figurability. 

In this paper, we have proposed a scalable and a recon-
figurable PAQM architecture for IP switches that can handle 
a large number of priorities in different network domains. In 
addition, we have proposed three architectures in which 
scalable PAQM’s can be reconfigured to support QoS 
guarantees. The IP switch can therefore be used efficiently in 
a high-speed packet switch providing fine-grained quality of 
service guarantees. In addition, to be very fast and recon-
figurable, the architecture also scales very well to a large 
number of priority levels and to large queue sizes. We re-
marks that the proposed architectures (data structures in 
different domains) have not great difference in term of 
hardware description and conception, but they have great 
difference in active queue management in packet networks 
switches. Switching packets represents the essential pa-
rameters to guarantee QoS which are the scheduling algo-
rithm and buffer management. These parameters are con-
figured differently in the proposed architectures which are 
based in the implemented data structure (P-CLL). Data 
structure enables us to support these configurations which 
increase performances architectures cited below. However, 
in the first architecture we implement the CBWFQ sched-
uling algorithm, the second architecture uses the WFPQ 
algorithm and the last architecture uses the FIFO algorithm. 
Our current implementation is described in VHDL language 
at RTL levels, synthesized in a low level and mapped to 
FPGA architecture. 
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