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Abstract  The purpose of the present study is to empirically examine the performance of d ifferent kinds of volatility 

modeling and their forecasting performance for the general index of an emerging stock market, namely  Dhaka Stock 

Exchange from the period December 06, 2010 to March 12, 2013. We main ly used Box-Jenkins modeling strategy thereafter 

the volatility model. The descriptive statistics, correlogram, unit root test, ARMA, ARCH, GARCH, TARCH, EGARCH and 

several model selection criteria are used in  this study. The Butterworth filter is used for removing the noise of the re turn series 

of general index. All the parameters in this study are estimated through Maximum Likelihood method. The descriptive 

statistics show general index decrease slightly overtime with positively skewed and leptokurtic. The return series fo llows 

ARMA(1,1) model with volatility provide evidence of the superiority of GARCH(1,1) and GARCH(2,1) over the all order of 

other GARCH models. Finally, we found that the fitted model on filtered general index of Dhaka Stock Exchange are 

ARMA(1,1) with GARCH(1, 1) and GARCH(2,1) model. Th is model can be used for future policy implication through its 

accurate forecast. 
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1. Introduction 

Traditional regression tools have shown their limitation in  

the modeling of high-frequency data, assuming that only the 

mean response could be changing with covariates while the 

variance remains constant over time often revealed to be an 

unrealistic assumption in practice. This fact is particularly 

obvious in series of financial data where cluster of volat ility 

can be detected visually. Indeed, it is now widely accepted 

that high frequency financial returns are heteroskedastic. 

Volatility is understood as the spread of asset returns and 

is closely related to risk. Volat ility has pronounced role in 

modern finance as it is used in multip le risk management 

solutions. Volatility is the most important variable in 

valuating derivative instruments. It has central role in risk 

management, asset valuation and investment in general.  

Most stocks are t raded on exchange, which are p laces 

where buyers  and sellers meet  and  decide on  a p rice. 

Banglades h  has  two  Stock Exchanges , Dhaka Stock 

Exchange (DSE) and Chittagong Stock Exchange (CSE), 

and these exchanges are self-controlled, private sector bodies 

which are obliged to get their functioning policies accepted 

by the SEC. Dhaka Stock Exchange (DSE) is the major stock 

exchange of Bangladesh and founded at Motijheel at the  
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center of the Dhaka town in  1954 where buying and selling  is 

carried out by Computerized Automated Trading System.  

Stock market volatility has been the subject of many 

studies over the past few decades. The main impetus for this 

interest began after the 1987 stock market crash where, for 

example, the Standard & Poor’s (S&P) composite portfolio 

dropped from 282.70 to 224.84 (20.4 %) and the Dow-Jones 

Average fell by 508 points in one day. The term stock market 

volatility refers to the characteristic of the stock market to 

rise or fall sharply in  price within a short-term period (from 

day to day or week to week).  

Generally, increased volatility has been viewed as an 

undesirable consequence of destabilizing market forces such 

as speculative activity, noise trading or feedback trading. 

Increased volatility could come as a result of an innovation, 

by reflecting the actual variab ility of informat ion regarding 

fundamental values. So an increased volatility may not 

necessarily be undesirable, Bollerslev et al[2]. 

On the other hand policymakers may pursue regulatory 

reforms by either trying to reduce volatility directly or by 

assisting financial markets and institutions to adapt to 

increased volatility. In practice policy makers have focused 

on the latter, improving the ability of financial markets and 

institutions to weather increased volatility. For financial 

institutions directly exposed to increased volatility, such as 

depository institutions and market makers, policymakers 

have encouraged greater capitalization. Increased capital 

allows these institutions to weather greater financial 

volatility without incurring the liquid ity and solvency 



230 M Monimul Huq et al.:  Analysis of Volatility and Forecasting General Index of Dhaka Stock Exchange   

 

 

problems that might disrupt the functioning of financial 

markets. 

The topic of volatility is of significant importance to 

anyone involved in the financial markets. In general 

volatility has been associated with risk, and high volatility is 

thought of as a symptom of market  disruption, with securities 

unfairly priced and the malfunctioning of the market as 

whole. Especially, within the derivative security market 

volatility and volatility forecasting is vital as managing the 

exposure of investment portfolios is crucial, Figlewski[7]. 

More recently the literature has focused on the ability to 

forecast volatility of asset returns. There are many reasons 

why forecasting volatility is important according to Walsh 

and Yu-Gen  Tsou[18], for example, option pricing has 

traditionally suffered without accurate volatility forecasts. 

Controlling for estimat ion error in portfo lios constructed to 

minimize ex ante risk, with accurate forecasts we have the 

ability to take advantage of the correlation structure between 

assets. Finally when building and understanding asset 

pricing models we must take into account the nature of 

volatility and its ability to be forecasted, since risk 

preferences will be based on market assessment of volatility. 

There are many researchers analysis the share price index 

and they have noted that ARIMA with GARCH model is 

adequate. The average daily  share price indices of the data 

series of Square Pharmaceuticals Limited (SPL) have been 

used and found that it is non-stationary at level, even after 

log-transformat ion, finally found that the ARIMA (2,1,2) is 

the best model (Paul et al.,[12]). The relat ionship between 

the stock market volat ility and volatility in macroeconomic 

variables such as the real GDP, inflation, and interest rate are 

examine and found that there was a bi-directional causal 

relationship between stock market volat ility and real GDP, 

and the stock prices were not significant in exp laining the 

inflation rate and interest rate, and v ice versa (Oseni and 

Nwosa,[11]). The analysis of daily return of Dhaka Stock 

Market indices include the daily price indices of all securities 

listed on the DSE general, DSI (All Share), DSE top 20 

indices, and Daily indices listed in the market during the past 

11 years and showed that DSE does not follow the random 

walk model and so the Dhaka stock exchange (DSE) is not 

efficient even in weak form (Khandoker et al.[9]). The data 

set of monthly DSE General Index (DSE-GEN) which 

covers the twenty three year long period commencing from 

January, 1987 to March, 2010 showed that it is follows 

random walk model but return  series is not and the monthly  

DSE returns follow Generalized Autoregressive conditional 

Heteroskedasticity (GARCH) properties (Rayhan et al.[17]). 

Rahman et al[15] examined a wide variety of popular 

volatility models with normal, Student-t and GED 

distributional assumption for Chittagong Stock Exchange 

(CSE) and found that Random Walk GARCH 

(RW-GARCH), Random Walk Threshold GARCH 

(RW-TGARCH), Random Walk Exponential GARCH 

(RW-EGARCH) and Random Walk Asymmetric Power 

ARCH (RW-APARCH) models under Student- t
distributional assumptions are suitable for CSE. Rahman et 

al[16] investigated the in-sample and out-of-sample 

forecasting performance of GARCH, EGARCH and 

APARCH models under fat tail and skewed distributions in 

case of Dhaka Stock Exchange (DSE) from the period 

January 02, 1999 to December 29, 2005.  

From the above discussion it seems that volatility is 

important, since it directly and indirectly affects  the financial 

system and the economy as a whole. The main aim of this 

research is to find out the appropriate model for the general 

index of Dhaka Stock Exchange (DSE). A further insight 

into volatility forecasting will be given but first it  is 

necessary to explore the different models used when 

estimating volatility. Therefore , the Object ive of this Study 

is to compare the performance of d ifferent kind of volat ility 

modeling and to establish the forecasting efficiency of the 

fitted model in case of DSE. Rest of the paper is organized as 

follows: Section 2 presents the method and materials, 

Section 3 discuss the empirical results and finally Sect ion 4 

presents the conclusion.  

2. Methods and Materials 

We consider daily stock exchange data (general index) for 

building time series modeling and forecast. To fulfill this 

purpose we collect data from the databank of the Dhaka 

Stock Exchange website address www.dsebd.org/recent_ma

rket_information.php. The data series is from December 06, 

2010 to March 12, 2013 and the length is 541. In analyzing 

general index data, the general index must be converting as 

return series because it is seen as the white noise process 

which indicates that index price is a random walk, the series 

should be identically  and independently distributed with  zero 

mean and constant variance (Akgiray,[1]). A white noise 

suggests that the future values of the expected mean and 

variance of the series cannot be predicted by using past 

values of the series. The return series are constructed using 

DSE general index to allow a market wide measure of 

volatility to be examined. By  convention, the daily returns 

were calculated as the continuously compounded returns 

which are the first difference in logarithm of closing prices of 

DSE general index of successive days: 

)ln()ln()/ln( 11   ttttt GIGIGIGIr  

Generally, the return series (or general index) is random 

but it is widely affected by the noise. Since the main purpose 

of modeling for general index is to find out actual nature 

hence we can apply different filtering for removing noise. 

There are several filter method are available but we only 

consider Butterworth filter in  this study. The Butterworth 

filter proposed by British engineer Stephen Butterworth in 

his paper entitled "On the Theory of Filter Amplifiers” at 

1930 is a type of signal processing filter designed to have as 

flat a frequency response as possible in the pass band. 

Let  us consider a time series  T

ttx
1  for considered as 

filtering. We are interested in isolation component of tx , 
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denoted 
ty  with period of oscillat ions between 

lp  and 

up , where  ul pp2 . 

Consider the following decomposition of the time series  

ttt xyx   

The component 
ty  is assumed to have power only in the 

frequencies in the interval        ,,,  baba . 
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If infinite amount of data is available, then we can use the 

ideal band pass filter tt xLBy )(
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The digital version of the Butterworth high pass filter is 

described by the rational polynomial expression (the filter’s 

z-t ransform) 
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The time domain version can be obtained by substituting z 

for the lag operator L. 

Pollock derives a specialized fin ite-sample version of the 

Butterworth filter on the basis of signal extract ion theory. Let  

ts  be the trend and tc  cyclical component of ty , then 

these components are extracted as 
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If we consider drift is true, then the drift  adjusted series is 

obtained as 
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where tx~  is the undrafted series. 

The software Microsoft Excel, Eviews, R and Microsoft 

Word are used whole analysis and written in this paper. 

2.1. Autoregressive Moving Average (ARMA) Process 

Of course, it is quite likely that a t ime series has 

characteristic of both AR and MA and is therefore ARMA. 

An ARMA process of order p and q is denoted by ARMA(p, 

q) and is written in the form: 

qtqttptptt YYCY    ...... 1111 (1) 

Where C  is constant si '  and si ' are AR and MA 

coefficients, respectively, and, si ' white noise disturbance 

terms. 

In general the ARMA (p, q) process can be written as a 

stationary ARMA process has the following form of 

theoretical ACF and PACF;  

 The theoretical ACF decays, 

 The theoretical PACF are also decays. 

2.2. Autoregressive Conditional Heteroscedastic (ARCH) 

Model 

Let us consider a univariate time series  
ty . If 

1t  is the 

informat ion set (i.e. all the information available) at time 1t , 

we can define its functional form as: 

tttt yEy    ][ 1                  (2) 

where ].[.E  denotes the conditional expectation operator 

and 
t  is the disturbance term (or unpredictable part), with 

0][ tE   and 0][ stE  , st  . 

The t  term in  equation (2) is the innovation of the 

process. The conditional expectation is the expectation 

conditional to all past information availab le at  time  1t . 

The Autoregressive Conditional Heteroscedastic (ARCH) 

process of Engle[5] is any }{ t of the form 

ttt z                           (3) 

where tz  is an independently and identically d istributed 

(i.i.d.) process, 0][ tzE , 1][ tzVar  and where t  

is a time-vary ing, positive and measurable function of the 

informat ion set at time 1t . By defin ition, t  is serially  

uncorrelated with mean zero, but its conditional variance 

equals to 
2

t  and, therefore, may change over time, 

contrary to what is assumed in OLS estimations. Specif ically, 

the ARCH (q) model is given by 

  2

10

2

tit               (4) 

The models considered in this paper are all ARCH-type. 

They differ on the functional form of 
2

t  but the basic 

logic is the same. 

2.3. Generalized ARCH (GARCH) Model  

Engle used the conditional variance to be autoregressive. 

Bollerslev[2] extended Engle’s ARCH to include the lagged 

variance according to ARMA process. Bollerslev’s 

generalized autoregressive conditional heteroskedastic 
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process take the following form. The error process is given 

by 








 
p

ij

jtj

q

i

itit

2

1

2

0

2        (5) 

Using the lag  or backshift operator L , the GARCH (p, q) 

model is  
22

0
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p
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21  based on equation 

(6), it is straightforward to show that the GARCH model is 

based on an infinite ARCH specification. If all the roots of 

the polynomial 0)(1  L  of equation (6) lie outside the 

unit circle, we have 
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which may  be seen as an ARCH(  ) p rocess since the 

conditional variance linearly depends on all prev ious squared 

residuals. GARCH(1,1) model can be obtain from equation 

(5) by using the value 1 qp .  

2.4. Threshold GARCH (TARCH) Model  

TARCH or Threshold ARCH and Threshold GARCH 

were introduced independently by Zakoïan[19] and Glosten, 

et al[6]. The generalized specification for the conditional 

variance is given by: 

2 2 2 2

0

1 1 1

q p r

t j t j i t i k t k t k

j i k

          

  

        (7) 

where 1t , if 0t  

         = 0 otherwise. 

In this model 0it  
and 0it  have differential 

effects on the conditional variance; 0it  has an impact 

of i , while 0it  has an impact of ii   . If 

0i , 0it  increases volatility, and we say that there 

is a leverage effect for the thi   order. If 0i  the 

news impact is asymmetric.  

2.5. Exponential GARCH(EGARCH) Model 

The EGARCH or Exponential GARCH model was 

proposed by Nelson[10]. The specification for condit ional 

variance is: 

2 2
0

1 1 1

log( ) log( )
q p r

t i t k
t j t j i k

j i kt i t k


     

 
 


   

      (8) 

The left hand side of equation (8) is the log of the 

conditional variance. Th is implies that the leverage effect  is 

exponential rather than quadratic and that forecasts of the 

conditional variance are guaranteed to be non-negative. The 

presence of the leverage effects can be tested by the 

hypothesis 0i . The impact asymmetric if 0i . 

3. Results and Discussions 

We collect data o f general index from Dhaka Stock 

Exchange, Bangladesh from December 06, 2010 to March 12, 

2013 with 541 realizations. We d ivided sample into two  parts 

such as first 499 and last 42 samples for training and test 

sample, respectively to permit more efficient model. The 

most popular programming software R and econometrical 

software Eviews used to whole analysis according to 

objective of present research. Throughout this paper, the 

general index is converted into stock returns are defined 

continuously computed or log returns (hereafter returns) at 

time because it is more stable then orig inal general index. It 

has been observed that the return series as well as general 

index is very much affected by noise. So the actual behavior 

of the series is hidden by noise and hence we cannot meet to 

the main objective of analysis. Therefore, we can remove the 

noise from return series using filtered methods. There are 

many methods are available for filtering of a time series, in 

this case we consider Butterworth high pass filter but this 

filter is very  much affected by different values of o rder of 

filter and cut-off frequency. So, we consider different values 

of order of filter and cut-off frequency for filtering return 

series and finally chose the filtered series if it gives smallest 

mean square error. The different values of order of filter and 

cut-off frequency with mean square error are presented in 

Table 1.  

From Table 1, it is clear that the filtered series for 3
rd

 order 

filter with cut-off frequency is 4 (Sl. No. 4) gives smallest 

MSE (mean square error) as considered de-noise actual study 

series. From the selected filtered return series (Sl. No. 4 in 

Table 1), the trend indicated by red color (top of Figure 1) is 

used as study series; cyclical component is ignored and 

indicates noise of original return series. We observed that the 

deviations (cyclical component) are very small. In the next, 

we will be used this filtered return series (trend) for fulfill 

according to our objectives. The Table 2 reports summary 

statistics for the filtered return series of general index. The 

mean and median of daily returns are negative and they are 

not significantly different from zero. It suggests that stock 

prices in  general decrease slightly overtime. The skewness 

and kurtosis parameters respectively measure the asymmetry 

and peakness of the probability distribution of filtered daily 

returns compared with normal curve usually these two 

parameters should be zero and three in normal distribution. 

The Jarque-Bera statistic with skewness and kurtosis are 

used to signify the distribution characteristics of return series. 

In the data set, the evidence for return series indicates 

positively skewness of daily return distribution. In other 

words, return series distribution has significantly fatter tails 
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than the normal distribution. The coefficient of skewness 

indicates that the series typically have asymmetric 

distributions skewed to the right. The kurtosis statistic which 

is equal to 5.52 indicates the leptokurtic characteristic of the 

daily return distribution. The return distribution has a more 

acute peak around the mean than the normal d istribution. The 

implication of non-normality is supported by the 

Jarque-Bera test statistic which points out that the null 

hypothesis of normal distribution is rejected. In accordance 

with the skewness and kurtosis, the Jarque-Bera statistic is 

another evidence to conclude that the daily return  series is 

not normally d istributed. Also from the filtered  return series 

indicates that the series variance is not constant over time 

suggests that models employed need to take into account 

heteroskedaticity issues, indicating the reasonable use of 

GARCH type models (Bollerslev,[2]). 

Researchers are interested in the first step of the analysis 

of any time series is to plot the data to see the visual structure. 

Time series plot gives an initial clue about the nature of the 

series or shows an upward or downward t rend, seasonal or 

cyclical fluctuation etc. Graphical representation suggests 

that the time series is stationary or not. The filtered  return 

series (red color named trend located top of Figure 1) shows 

that the mean returns is constant but the variances change 

over time around some normal level, with large (s mall)  

changes tending to be followed by large (small) changes of 

either sign, i.e. volatility tends to cluster. Periods of high 

volatility can be distinguished from low volatility periods. 

Now ACF and  PACF of the filtered series are p lotted in 

Figure 2 and 3, and see almost all of the coefficients of ACF 

and PACF inside the confidence limits. Again the ACF 

converge to zero  very quickly, which  indicated that the series 

is stationary. 

Finally, unit root test is used to confirm the series is 

stationary or not. The unit  root test results for filtered  return 

series are shown in Tab le 3. The Table 3 showed different 

unit root test with p-values and critical values for filtered 

return series of general index of DSE. The results of 

Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF) and 

Phillips-Perron (PP) tests showed that the filtered series data 

is stationary. So we can say form graphical representation, 

correlogram and unit  root test the filtered data series is 

stationary. We now proceed to build models. Now we can 

build ARMA Model using the filtered daily return series 

because it is stationary at level. Using the Box-Jenkins 

modeling strategy the model ARMA(1,1) is better among the 

various combinations of model parameters p and q of 

ARMA(p,q). Now we want to test whether the 

heteroskedaticity problem is exist or not and that is permit 

using more formal Lagrange mult iplier test for ARCH 

disturbances proposed by Engle[5]. The calculate value of 

test statistics (F-value) of Lagrange multip lier test up to lag 4 

is 80.08300 with probability 0.00000 indicates the presence 

of ARCH effect in the residual series of ARMA(1,1) model.  

Therefore, we have to search the family of GARCH type 

Models. We simultaneously model the mean and the 

variance of Dhaka Stock Exchange, considering the ARCH, 

GARCH, TARCH and EGARCH models for condit ional 

variance. Table 4 present the results from seven alternative 

models including  ARCH(1), ARCH(2), ARCH(3), GARCH 

(1,1), GARCH(2,1), TARCH(1,1) and EGARCH(1,1) 

employed in this dissertation to estimate vo latility for the 

period from December 06, 2010 to January 10, 2013 in 

Dhaka stock Exchange. We already saw that in our data the 

heteroskedastic problem is present. Thus the ARCH class 

models may give the better result. Now we apply the various 

ARCH models under the assumption of normal distribution 

for return data which  gives the results shown in Tab le 4. At 

first we examined symmetric ARCH (1) model. This 

specification gives that the coefficient of ARCH(1) model is 

significant in parameters. Also mean equation with 

ARMA(1,1) model parameters are also significant. We also 

observed ARCH(2), ARCH(3) models where all the 

parameters also significant. But ARCH(4) and higher order 

model parameters are insignificant. 

We also perform a h igher order of GARCH estimat ion 

allowing the ARCH and GARCH term to enter the variance 

equation with more than one lags. Therefore, we then carry 

out the GARCH(1,q) model allowing more lags of GARCH 

terms involved in volatility equation. The coefficients in 

variance equation estimated from GARCH(1,1) and 

GARCH(2,1) models are positive and highly statistically 

significant. However, when the higher order of GARCH 

terms are added into the variance equation, the statistics of 

the new GARCH term is less significant or it makes the other 

terms’ statistic less significant. Thus result suggests that 

GARCH(1,1) and GARCH(2,1) models are sufficient 

enough to capture volatility characteristics of Dhaka Stock 

market without the need of higher-order GARCH models. 

The skewness statistics of the return series which are 

generated in Table 2 and Table 2 imply the asymmetry in the 

data set. Therefore, the asymmetric specifications of 

GARCH model, TARCH and EGARCH, are also employed 

in this dissertation. However, regard ing the results of those 

asymmetric models, the so-called asymmetric effect 

parameter γ is not statistically significant at 10% and 5% 

level for TARCH and EGARCH, respectively. Though, the 

coefficient of mean equation in both models is significant at 

1% level. This implies the weak evidence of asymmetry in 

the return series. In other words, the conditional variance is 

not higher in the presence of negative innovation or the 

market seems not nervous when bad news takes place. The 

finding is interesting because it is likely a phenomenon in 

many mature markets that the investors react more 

dramat ically to negative shocks than positive shocks. 

However, the outcome is consistent with the findings in 

some other emerging markets such as transition markets of 

Central Europe (Haroutounian and Price,[8]). 

According to Chou[3], the sum of ARCH and GARCH 

terms’ coefficients α1 + β1 present the change in the response 

function of shocks to conditional variance per period. 

Poterba and Summber[14] showed that the impact of the 

volatility on stock prices crucia lly  depends on the persistence 

of shocks to variance over a long time. The parameters from 
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Table 4 point out that the sum of α1 and β1 is close to unity 

across the two models including GARCH(1,1), GARCH(2,1) 

models. The h igh persistence of shock to variance is 

supported by previous studies in the case of emerg ing capital 

markets. The finding implies that availab le informat ion is 

relevant in  fo recasting conditional variance at long time 

horizon. 

Generally, coefficients in variance equation obtained from 

two estimation models including GARCH(1,1), GARCH(2,1) 

are highly statistically significant at 1% level. Moreover, the 

higher order GARCH (p ,q) models generate the insignificant 

parameters, indicat ing the sufficiency of GARCH(1,1) and 

GARCH(2,1) in modelling volatility of Dhaka stock index 

returns. Meanwhile, the findings from TARCH and 

EGARCH prov ide weak ev idence of asymmetry in  return 

series, which is consistent with empirical studies in some 

emerging markets. In  Table 5 we examined R-square value, 

Akaike Information Criterion (AIC) and Schwartz -Criterion 

(SC) from different models. From Table 5 we found that the 

value of R-square, AIC and BIC of GARCH(1,1) and 

GARCH(2,1) are almost equal and s mallest of all other 

models. So, we can proceeds these two models for further 

analysis of diagnostic check and forecasting.  

Firstly, we can consider ARMA(1,1) with GARCH(1,1) 

model for diagnostic checking and forecasting. The 

graphical presentation of this fitted model is helpful for 

inspection  the performance of fitted model and presented as 

Figure 4. We observed from Figure 4 which is the plot of 

residual, actual and fitted model data and conclude that the 

GARCH(1,1) model is fit well. Model diagnostic checking is 

an important step for selecting an appropriate  model. Usually 

residual analysis is the best way for model checking. Now 

we shall observe the correlogram, unit root test of residual to 

check it is stationary or not. In order to check the white noise 

property of the estimated ARMA(1,1) with GARCH(1,1) 

model residual, we constructed ACF and PACF of the 

residual series presented by Figure 5 and 6. From Figure 5 

and 6, the ACF and PACF tapper of very quickly, this 

implies that the residual series is stationary. Then we can say 

that the model is appropriate. The Table 6 showed different 

unit root test with p-values and crit ical values for residual of 

ARMA(1,1) with GARCH(1,1) model. The results of 

Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF) and 

Phillips-Perron (PP) tests showed that the residual is 

stationary. So we can say that the assumption of chosen 

model is appropriate. 

To test of ARCH effect in the residual series of fitted the 

ARMA(1,1) with GARCH(1,1) model, we can consider 

Lagrange multiplier (LM) test of the residuals. We observed 

that the calculated value of F statistic for Lagrange multiplier  

test is 0.543470 with associated probability is 0.461348 

indicating no ARCH effect in residuals of ARMA(1,1) with 

GARCH(1,1) model. Therefore, the chosen model for 

volatility may be adequate. The properties of standardized 

residuals are employed to define the best fit data models. 

Standardized residual plot is a very useful tool to check the 

presence of unusual observations. Standardized residual 

from the model in presented in Figure 7 has some positive 

and some negative values that falls in  three standard 

deviation confidence interval except one. But it falls in four 

standard deviation confidence interval. This is the strong 

indication that the ARMA(1,1) with GARCH(1,1) model is 

appropriate. The test of normality in this study we used 

Jarque-Bera test. We observed that the calculate value of 

Jarque-Bera test is 0.533484 with Probability 0.765870 

indicate the null hypothesis ‘The residual series of fitted 

model is normal’ is accepted. Therefore, the estimated 

residuals of the fitted ARMA(1,1) with GARCH(1,1) model 

is normally distributed. 

A forecast is generally defined as a statement concerning 

future events. Forecasting is one of the most common uses of 

econometric methods. According to Akgiray[1], there are 

two reasons why forecasting volatility attracts interests of 

investors. Firstly, good forecast capability  of volat ility 

models provides a practical tool fo r stock market analysis. 

Secondly, as proxy for risk, volatility is related to expected 

returns, hence good forecast models enable investors give 

more appropriate securities pricing strategies. However, 

in-sample and out-of-sample forecast evaluation potentially 

provides more useful comparison. Now we will cheek the 

adequacy of the fitted model using the in-sample and 

out-of-sample, root mean square error, mean absolute error, 

mean absolute percent error, Theil inequality coefficient, 

bias proportion, variance proportion and covariance 

proportion of forecast properties. If the in-sample root mean 

square error, mean absolute error, mean absolute percent 

error, Theil inequality coefficient, bias proportion, variance 

proportion and covariance proportion are greater than the 

out-sample with same criteria then this fitted model is 

adequate. We have used all data from 12/05/2010 to 

01/10/2013 (sample size 499) as the ‘in-sample’ period and 

the out sample data from 01/13/2013 to 03/12/2013 (last 

sample size 42) as the ‘out-of-sample’ period. Now the 

calculated values of forecast properties for in sample and out 

sample are presented in Table 7. From Table 7, the values of 

root mean square error, mean absolute error, mean absolute 

percent error, Theil inequality coefficient, variance 

proportion and covariance proportion for in sample is greater 

than for out sample  implies that the selected model is 

adequate. The bias proportion for in sample is less than out 

sample that is unexpected but that is occurs because the out 

sample size is very smaller compared with in sample. 

Therefore we can say on the basis of forecast properties the 

selected model ARMA(1,1) with GARCH(1,1) is adequate. 

Thus, the forecasting performance of selected model can be 

represented by graphically as Figure 8. The Figure 8 shows 

the actual filtered series, forecasted series and their average 

for the period 01/13/2013 to 03/12/2013. It is evident from 

Figure 8, forecast values, observed values and average 

values are very close to each other. So the model ARMA(1,1) 

with GARCH(1, 1) forecasting performance is reasonable. 

Secondly, we can consider ARMA(1,1) with GARCH(2,1) 

model for diagnostic checking and forecasting. We can 

explain the ARMA(1,1) with GARCH(2,1) model similar 
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way of the ARMA(1,1) with GARCH(1,1) model. The 

graphical presentation of this fitted model represented as 

Figure 9. The fitted model ARMA(1,1) with GARCH(2,1) 

(Figure 9) shows the actual and fitted values of return series 

is very close and the error is very small indicating model is 

fit  well. Now, we shall need to check the estimated residual 

is stationary or not. We can check stationarity of the residual 

series using autocorrelation and partial autocorrelation 

function and unit root test. The autocorrelation and partial 

autocorrelation function of residual series of ARMA(1,1) 

with GARCH(2,1) model presented in Figure 10 and 11. We 

observed the Figure 10 and 11, the spikes of autocorrelation 

and partial autocorrelation function are converse to zero very 

quickly  imply  the residual series is stationary. To conform 

the residual series of ARMA(1,1) with GARCH(2,1) model 

is stationary, we used the formal test of stationary Dickey 

Fuller (DF), Augmented Dickey Fu ller (ADF) and Ph illips 

Perron (PP) tests are presented in Table 8. The null 

hypothesis ‘The residual series contain unit  root’ is rejected 

for all test (DF, ADF and PP test) implies the residual series 

is stationary.  

We observed the return series of general index is contains 

volatility problems so we used the GARCH type of model for 

controlling volat ility effect. So  after such volatility 

modelling we must check whether their volatility effect exist 

or not. The Lagrange mult iplier test is used for testing ARCH 

effect. The calculate value of test statistics (F-value) of 

Lagrange multip lier test with lag 1 is 0.357910 with 

probability 0.549943 imply  the null hypothesis is accepted 

and it is evidence of the absent of ARCH effect in the 

ARMA(1,1) with GARCH(2,1) model of filtered  return 

series. The standardized residual plot is used whether the 

data series contain the some specific values (usually ±3 

standard deviation) otherwise consider as outliers. The 

standardized residual plot for ARMA(1,1) with GARCH(2,1) 

model is presented in Figure 12. From Figure 12, it is clear 

that the all standardized residuals are lies within ( -3 to +3) 

except one. Hence, model is fitted well. The normality of 

residual series can be test using Jarque Bera test statistics. 

The null hypothesis of Jarque Bera test statistics is the 

residual series is normally distributed. The calculated vale of 

Jarque Bera test statistics is 1.231352 with probability 

0.540276 indicating the null hypothesis is accepted that 

means the residual series of ARMA(1,1) with GARCH(2,1) 

model is normally d istributed. 

Finally, we can check the model adequacy using various 

model selection criteria for in-sample and out-sample 

forecast of chosen model. The forecasting evaluation based 

on various forecasting error criteria of ARMA(1,1) with 

GARCH(2,1) model is summarized the in Table 9. We know 

that if the Root mean square erro r, mean absolute erro r,  mean 

absolute percent error, Theil inequality coefficient, bias 

proportion, variance proportion and covariance proportion 

are smaller for out-sample forecast than in-sample forecast 

considered as best model. We observed the Table 9, the all 

value for Root mean square error, mean absolute error, mean 

absolute percent error, Theil inequality coefficient, variance 

proportion and covariance proportion are smaller for 

out-sample fo recast than in-sample forecast but bias 

proportion is reverse. The bias proportion for in sample is 

less than out sample that is unexpected but that is occurs 

because the out sample size is very smaller compared with in 

sample. Hence we can say the chosen ARMA(1,1) with 

GARCH(2,1) model is adequate. The actual, forecast and 

average values for out-sample are presented as Figure 13 and 

indicates the difference between actual and forecast values 

are very small. Therefore, the chosen ARMA(1,1) with 

GARCH(2,1) model is acceptable. 

4. Conclusions 

The general index of stock market is very important index 

for the analysis and predicting investment. The general index 

of Dhaka Stock Market over the time 5 December 2010 to 10 

January 2013 with sample size is 499 were used in this study. 

The preliminary analysis of data set suggests the non-normal 

distribution and strong evidence of GARCH effects in 

filtered general index return series. At the beginning of the 

study general index data of Dhaka Stock Exchange has been 

explored and analyzed using visual inspection of original 

data, return series that is also filtered by using Butterworth 

filter. The filtered return series has constant mean but the 

variance is not constant. To check the stationarity, we 

perform test of correlogram and unit root test which indicate 

that the return series is stationary. Then we construct several 

mean models as well as variance models. Both symmetric 

and asymmetric models used in  this study and finally found 

that the model ARMA(1,1) with GARCH(1,1) and GARCH 

(2,1) are more appropriate model for the general index of 

Dhaka Stock Exchange (DSE) for this study period. This 

result will provide informative guide line for the researchers 

and policymaker. 
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Appendix A 

Table 1.  Butterworth filter with different order, cut -off, drift and mean square error 

Sl. No. 
Filter 

Mean square error 
order of filter cut-off frequency drift 

1 2.5 08 True 0.0004893286 

2 3.0 10 True 0.0004861292 

3 4.0 10 True 0.0004309287 

4 3.0 04 True 0.0002830001 

5 4.0 04 True 0.0002862185 

6 5.0 04 True 0.0003043353 

7 3.0 08 True 0.0004132067 

Table 2.  Descriptive Statistics for daily return series of DSE General Index 

Mean Median Maximum Minimum 
Standard 

Deviation 
Skewness Kurtosis 

Jarque-Bera 

(Probability) 

-0.0128 -0.0127 0.0675 -0.0871 0.0181 0.3813 5.5200 144.1265 (0.000000) 

Table 3.  Unit root  test of filtered return series 

Test Statistics Type Value of Test of Statistics (p-value) 5% Critical Value 

DF 
Intercept -3.383819 -1.941479 

Trend and Intercept -4.312357 -2.890000 

ADF 
Intercept -3.515901 (0.0080) -2.867292 

Trend and Intercept -5.237513 (0.0001) -3.419133 

PP 
Intercept -8.887939 (0.0000) -2.867124 

Trend and Intercept -8.618306 (0.0000) -3.418870 

Table 4.  Maximum Likelihood estimates of several ARCH, GARCH, TARCH and EGARCH models 

Variance Equation Mean Equation 

 α0 α1 β1 β2 γ μ δ 

ARCH(1) 
3.45E-05* 

(2.52E-06) 

0.523860 

(0.072398) 
   

0.698540* 

(0.013911) 

0.996386* 

(0.001086) 

ARCH(2) 
1.10E-05* 

(1.79E-06) 

0.37300* 

(0.08279) 

0.55306* 

(0.10919) 
  

0.913914* 

(0.021207) 

0.996311* 

(0.001496) 

ARCH(3) 
9.92E-06* 

(1.88E-06) 

0.271159* 

(0.077644) 

0.498750* 

(0.105530) 

0.139512** 

(0.063638) 
 

0.900094* 

(0.023818) 

0.996250* 

(0.001463) 

GARCH(1,1) 
2.79E-06* 

(1.01E-06) 

0.331129* 

(0.061278) 

0.641731* 

(0.061126) 
  

0.850720* 

(0.026028) 

0.996228* 

(0.001501) 

GARCH(2,1) 
4.70E-06* 

(1.46E-06) 

0.239440* 

(0.072033) 

0.301172* 

(0.111841) 

0.419825* 

(0.080959) 
 

0.884571* 

(0.024929) 

0.996429* 

(0.001382) 

TARCH(1,1) 
2.85E-06* 

(1.02E-06) 

0.368506*   

(0.116171) 

0.636977* 

(0.06189) 
 

-0.052886 

(0.125141) 

0.848705* 

(0.027126) 

0.996190* 

(0.001533) 

EGARCH(1,1) 
-1.382943* 

(0.323812) 

0.618758* 

(0.093137) 

0.911032* 

(0.027673) 
 

0.03684   

(0.059411) 

0.838958* 

(0.026302) 

0.995943* 

(0.001735) 

Table 5.  The following table gives R-square, AIC and SC of some different models 

Mean Model: ARMA(1,1) with R-square AIC SC 

ARCH(1) 0.788359 -6.955080 -6.921260 

ARCH(2) 0.772460 -7.209147 -7.166872 

ARCH(3) 0.774701 -7.228735 -7.178005 

GARCH(1,1) 0.781359 -7.223132 -7.180857 

GARCH(2,1) 0.777038 -7.237739 7.187009 

Table 6.  ADF and PP test of the residual series of ARMA(1,1) with GARCH(1,1) model 

Test Statistics Value of Test of Statistics (p-value) 5% Critical Value 

DF -4.522314 -1.941479 

ADF -6.750319 (0.0000) -2.867304 

PP -16.57080 (0.0000) -2.867136 
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Table 7.  Results of in-sample and the out-of-sample forecast properties of fitted model 

Model In-sample Out-of-sample 

Root mean square error 0.008453 0.004632 

Mean absolute error 0.005878 0.003497 

Mean absolute percent error 89.94007 14.35268 

Theil inequality coefficient 0.190973 0.090699 

Bias proportion 0.012981 0.123749 

Variance proportion 0.004711 0.000894 

Covariance proportion 0.982308 0.875357 

Table 8.  Unit root test of residual series for ARMA(1,1) with GARCH(2,1) model 

Test Statistics Value of Test of Statistics (p-value) 5% Critical Value 

DF -4.878756 -1.941479 

ADF -7.473892 (0.0000) -2.867304 

PP -17.09875 (0.0000) -2.867136 

Table 9.  Results of in-sample and the out-of-sample forecast properties of fitted model 

Model In-sample Out-of-sample 

Root mean square error 0.008536 0.004541 

Mean absolute error 0.005921 0.003361 

Mean absolute percent error 91.38064 13.83280 

Theil inequality coefficient 0.191102 0.088125 

Bias proportion 0.007633 0.069767 

Variance proportion 0.011672 0.003970 

Covariance proportion 0.980695 0.926263 

Appendix-B 

 
Figure 1.  Plot of Butterworth filter of return series of GI series and deviation from trend 
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Figure 2.  ACF of filtered return data of DSE 

 

Figure 3.  PACF of filtered return data of DSE 

 

Figure 4.  Actual, fitted and residual of ARMA(1,1) with GARCH(1,1) 
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Figure 5.  ACF of residual of ARMA(1,1) with GARCH(1,1) 

 
Figure 6.  PACF of residual of ARMA(1,1) with GARCH(1,1) 

 

Figure 7.  Standardized residual obtained from ARMA(1,1) with GARCH(1,1) model 
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Figure 8.  Forecast, observed and average values of out -of-sample forecast for ARMA(1,1) with GARCH(1,1) model 

 

Figure 9.  Actual, fitted and residual graph for ARMA(1,1) with GARCH (2,1) model 

 
Figure 10.  ACF of residual of ARMA(1,1) with GARCH(2,1) 
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Figure 11.  PACF of residual of ARMA(1,1) with GARCH(2,1) 

 

Figure 12.  Standardized residual plot of ARMA(1,1) with GARCH(2,1) 

 

Figure 13.  Forecast of out of sample of ARMA(1,1) with GARCH(2,1) 
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