
American Journal of Database Theory and Application 2021, 6(1): 1-15

DOI: 10.5923/j.database.20210601.01

An Effective Database Change Management System

Shirish Patil

Database Administrator / Lead Enterprise Data Architect, Sitek Inc, USA

Abstract Change Management Systems or a version control mechanism is the pillar stone of success for any software

development effort. Rapid changes and concurrent streams of development due to business complexity, legal, or any other

reason needs the best version control mechanism to manage these changes. Business changes more often than not results in

modifications for the underlying database system as that is where the data is stored. Very few organizations realize that how

difficult it is to undo a database change in a relational database management system (RDBMS) [1]. If by mistake an incorrect

version of the application code is deployed, the correct version can be re-deployed and for the most part, everything will be

fine. Whereas incorrect database change can be destructive, incur partial data loss to a complete data loss, or even result in

database restore. That is a huge cost to pay in absence of effective change management system. In today’s software

organizations, time-to-market is paramount [2]. To achieve this, organizations develop software in a highly aggressive

schedule with multiple streams (or releases) being worked upon concurrently. This provides a huge challenge to ensure that

only the exact change(s) are deployed in various Development, Test, Performance, Pre-Production, and Production

environment. This is where a Database Change Management System can help and this document explains exactly how that

can be done.

Keywords RDBMS, Database, SDLC, Change Management, Data Cloning, CI/CD

1. Introduction

The software development process involves developing

programs using a programming language to implement

business requirements so that the services can be delivered

to the users. These delivered pieces of software or services

involves storing and processing information and data. This

data is stored within the data structures or databases, which

can be a relational database or a NoSQL database.

Managing the changes to the data structures (database tables

and columns) on how the data will be stored or retrieved is

extremely challenging with concurrent software releases

and a large number of changes. For this very reason,

managing the database changes in an efficient manner is

extremely critical for the success of any software

development organization. This work aims at addressing

these challenges and how to effectively manage with a

flexible, license-free, feature-rich solution.

2. Challenges in Software Development

Before diving into the Database Change Management

Solution, let’s briefly understand the setup of a software

organization and how the actual development and

* Corresponding author:

patil.shirish@outlook.com (Shirish Patil)

Received: Jan. 21, 2021; Accepted: Feb. 3, 2021; Published: Feb. 6, 2021

Published online at http://journal.sapub.org/database

deployment takes place. Every business requirement is

developed into a software code which then eventually gets

released or deployed into a production version of the

application used by end-users.

Most software development organization will have these

environments [3]: Local, Development, System Integration

Test (SIT), User Acceptance Test (UAT), Performance

Test/Load and Stress Test (LaST), Pre-Production, and

Production. Each one of these environments have a unique

purpose and most often being used by different set of

users/teams. Local and Development environments are

mainly used by teams writing the software programs,

converting the business requirements into technical

solutions. SIT and UAT are the environments used by

testing teams to ensure that the developed solutions meet

the business requirements as documented. Performance test

or LaST environment is used to ensure that the solution is

scalable under higher load, pre-production is used to do

a dry-run of production deployment of the changes. The

production environment is where the final set of tested and

approved changes are deployed for end-users to use. What

change or number of changes a particular environment is

ready to accept depends on the team capacity, urgency of

business requirement as well as the readiness of the change

itself. It is very common for each of the environments,

except production to be at a different set of changes.

Managing these different sets of changes and deploying

only what is required and approved to be deployed is

enormously challenging.

2 Shirish Patil: An Effective Database Change Management System

Multiple teams work on these environments

simultaneously with a primary goal of delivering quality

software for end-users. They develop changes which have

to be implemented across these environments. It becomes

extremely critical for the organization that the correct list of

changes gets implemented to the correct environment.

Depending on the software development methodology used;

Waterfall, Agile or Hybrid, there are unique challenges

faced by technology teams.

Software development is an evolving process [4].

Depending on the business and scale of the organization,

there may be one team working on several sets of

environments or many teams working on several set of

environments. Code development and test process is

iterative and should be completed well ahead than the

actual production deployment day. This gives the

technology group a window to deploy and test the

production ready code in a pre-production environment for

identifying/resolving any issues upfront, before the code is

deployed for end-users to use. This process is called a

dry-run. In the absence of this process, a failure in

production environment can render the product or services

unusable for the end-users leading to huge financial losses

or loss of reputation [5].

Let’s understand this with an example of an organization

deploying 6 major releases to production in a year, each one

in approximately 2 months. Figure 1(a).

Every 2 months, on the marked date above, developed

and tested features for that release will be deployed to

production. It is not necessary that this development and

testing of the code will only begin after the end of the

previous release. More often than not, the development and

testing efforts overlap with each other. Figure 1(b) explains

it.

This is where the complexity is. These simultaneous

efforts, either by the same set of resources, or different,

need a highly specialized skillset in ensuring that the

environment where code and database changes are to be

deployed is available for the teams to work on. Any

downtime is a huge cost to the organization as the average

cost of downtime is $9,000 per minute [6]. Version control

systems play an important role to ensure only the intended

changes are implemented. Agile software development

exponentially increases the complexity as many sprint

teams can work on the same set of database objects when

developing for the associated user stories. These user stories

may be directly delivering the features and functionality for

the services of the organization which in-turn may impact

the revenue or goodwill of the company.

Database change management can make-or-break in such

scenarios and impact the service delivery capabilities. This

solution addresses and solves the challenges discussed

above and enables the organization efficiently manage

the most critical aspect of their system development

lifecycle. This solution is intended to provide flexibility,

enhance capabilities, save cost and deliver database changes

accurately and efficiently.

Figure 1(a). Release Dates for Production

Figure 1(b). Development and Test Timelines

 American Journal of Database Theory and Application 2021, 6(1): 1-15 3

3. This Solution

Database is the backbone of any software [7]. Data is

stored and processed within the database. Better design and

architecture of a database results in application scalability

and performance to meet the Service Level Agreements –

SLAs. For small databases with few objects, it may be ok

(although error-prone) to have minimum version control,

but when the number of objects grows drastically resulting

from exponential organization growth or rapid requirement

changes, it becomes difficult to manage changes on the

database. These events can result in several new database

objects being added to a release or changes into existing

objects or a mix of both. Any of these changes may

significantly impact the performance of an application

and an incorrect change implementation can disrupt

organization’s ability to deliver its services to customers.

The disruption can cause loss of revenue and may impact

organization’s reputation as well. To mitigate such risks, a

sound database change management system is needed to

ensure that only the intended changes are deployed. That is

exactly what this solution does.

With its rich features, flexibility to customize, and

cost-effectiveness, this solution immediately adds value to

the software toolset of any organization. The following

sections will elaborate on the features, framework,

architecture, algorithm of the solution, and how-to

configure, implement and maintain this solution. We will

also understand the benefits of the program and will

conclude with an understanding of which type of

organizations are best suited to use this solution.

3.1. Features

Features are a major differentiator for any software

solution. When procuring a software product from external

software vendors, companies often compare features of one

over another to decide which one to buy and which is best

suitable to fulfil their requirements [8]. The solution having

rich features and ease of use are in high demand. Such

solutions enhance the organization’s capabilities to deliver

services to their end-users much quicker and efficiently.

This Database Change Management System is a very

simple yet highly effective solution and has extremely

desirable features: Cost-Effective, Change Tracking,

Requirement Traceability, Change Inventory, Customization

and Replication, Master List and Auditing, Environment and

Application Specific, Automation, Compatibility with

External Tools, Database refresh compatible, Continuous

Integration Continuous Deployment (CI/CD) and Training

Dataset Plug-in.

Each of the features listed above are highly desirable and

needed by the software development teams in accurately

developing and deploying the database changes across

multiple environments and releases. The majority of the

database teams manage the changes manually and deploy the

database scripts manually. The scripts are stored in the

folders and then picked up manually to execute during the

deployment. Manual execution is always error-prone when

the teams are dealing with a large number of changes or even

with a small number of changes but a large number of

environments.

Following sections discuss in detail about the features of

this solution.

3.1.1. Cost-Effective

Whenever an organization evaluates commercial software

they need to work within the approved budget as the

licensing, maintenance, and support cost can take away a

significant chunk of their budget. This solution resolves the

issue by being a no-cost solution for the organization. The

two components of the solution, scripting language and the

database, are flexible as such that the companies can use any

scripting language they currently use or an open-source

scripting language. The database can be any relational

database currently being used in the organization, which can

act as the repository for the master data and configuration

data for the solution. Such a robust solution with no cost

associated with it is a distinct advantage for the companies as

the saved funds can be repurposed for other initiatives.

3.1.2. Customization and Replication

Sometimes an application may need custom changes

which does not apply to other application’s database change

management solution. That is where this solution stands out.

Each application has its own version of application-specific

executable database change management solution. Any

custom changes can be made to the specific version without

impacting other versions. This outstanding capability

provides superior flexibility to the teams as they have the

freedom to enhance and modify the solution as required. As

the solution is developed in the native scripting language and

a relational database, customizing the solution is very easy.

When an organization starts developing a completely new

application or a new module, the technology teams can easily

replicate the code and configuration of this database change

management solution to create a new version for the new

application. This replication is rapid, easy, and less complex.

Organizations can replicate as many times as needed and for

as many applications as needed. There is no limitation on the

number of versions created. Again, a distinguished feature to

help organizations with the cost impact of customization.

With a licensed product, any such customization would incur

cost, per new application.

3.1.3. Change Tracking with Requirement Traceability

Each change is assigned an intelligent number which in

itself explains the release and how many changes are in the

release up to this number. For example, if it is a 16th change

in the 51st release of the application, the build number for

this change will be 5100016. The last 3 digits in this

numbering scheme belong to the number of changes in a

4 Shirish Patil: An Effective Database Change Management System

particular release, with the first 2 being the release number.

3rd and 4th digits are for intermediate releases such as 51.1

or 51.1.1.

When a particular build is created it is always tagged with

the business requirement number for traceability. With

hundreds of changes being developed for multiple releases

having this technical change to business requirement

mapping always helps in understanding why a particular

change was implemented.

3.1.4. Change Inventory, Master List, and Auditing

The metadata belonging to every change for each release

is stored in the master repository. Each application gets its

own set of tables to store metadata and hence stays

completely independent of each other. The master list of all

the changes is used to compare with the changes in the

specific environment and the difference defines what are

the pending changes to be applied. Implementation details of

each environment is stored and hence provides critical

auditing details as to when the changes were implemented,

how long the changes took, etc. The auditing information is

captured for each change with the log of execution on a

specific environment, which provides critical root-cause

analysis functionality when the teams are trying to resolve a

particular issue.

3.1.5. Environment and Application Specific

Each application gets its own set of scripts. This helps in

keeping application-specific changes to the tool contained to

itself and independent. There are checks and balances inbuilt

into the solution so that the scripts designed for application A

will not execute on application B and vice-versa. The scripts

can be easily enhanced to implement an application-specific

change to its own set of tools. The following image (figure 2)

depicts how changes are propagated across a single

application environment for a particular release.

Development teams need control to implement specific

changes to specific environments only when they are

required. This tool can apply selective changes to selective

environments. An outstanding feature that is not often found

in such no-cost solutions.

3.1.6. Automation

The scripts can be manually executed to apply the required

number of changes. Only the highest build number needs to

be provided as a parameter to the tool and internal

automation will check the number of builds created for

the application, compare them with the builds already

implemented in the target environment and then generate an

executable script to apply the pending builds, up to the

provided build number. This automation helps in applying

all the builds in single execution vs applying each one

individually.

3.1.7. Compatibility with External Tools

Since this solution is developed using a scripting language,

it is very easy to integrate it with other external tools. A

simple call to the executable script along with required

parameters, will be able to run this tool from another

software.

3.1.8. Database Refresh Compatible

As part of the testing initiatives, most often, environments

like User Acceptance, Integration Test and Performance

Test needs data from the Production Environment. A very

common method used to ensure the test environments are

production-like environments are testing produces good

results, the test environments are refreshed using a copy

of production environment. Generally, the production

environment does not have changes that are currently being

developed for future releases and that need testing. When

such refreshes happen, it also overwrites the metadata within

the environment from the one in the production. This change

management solution has inbuilt capabilities to manage and

resolve such issues by re-configuring the metadata within the

environment to appropriate levels.

Figure 2. Database Change Implementation for Single Application Across Environments

 American Journal of Database Theory and Application 2021, 6(1): 1-15 5

3.1.9. CI/CD

Continuous Integration Continuous Deployment (CI/CD)

is becoming increasingly popular [9] and this database

change management solution is completely compatible with

CI/CD processes and tools. The executable can be directly

called by the CI/CD tools during the deployment. The tool

has built-in capabilities to generate logs, identify success or

failures and send notifications, which is an integral feature

for continuous integration continuous deployment process.

3.1.10. Data Cloning

Training employees on new features of the software

application/services is integral to the success of any

organization [10]. Specifically, within government agencies,

when a new version of the software is released the client

or citizen-facing employees need to be trained on the new

features so that they can efficiently help the citizens. To

get trained in a real-life like scenarios, the application needs

to have real-life like datasets. This database change

management solution has a plug-in that can be integrated

within the application to generate new datasets by

completely obfuscating PII data such as SSN, DOB’s. The

same type of dataset can be generated for all the trainees of

the same class as they are all trained at the same time, which

allows the instructor and trainees to have a constructive

training session and clear doubts about the new features

upfront. This process works based on a golden data set called

a golden case, which is used to produce multiple new copies

of the same dataset with new identifiers.

Figure 3(a). Conceptual Representation

Figure 3(b). Overall Flow of the Process

6 Shirish Patil: An Effective Database Change Management System

Figure 3(a) illustrates a conceptual representation of how

this plug-in works. This includes how users can request to

clone data after specifying the environment and number of

clones, their email address. The webpage also provides

capability to schedule the clones in the future. This is

especially helpful when there are a large number of training

sessions scheduled and datasets need to be prepared. The

plug-in processes each of the requests sequentially and

scheduling capabilities help to mitigate the limitation due to

sequential processing.

3.2. Framework

This solution needs one master database to host the related

metadata. This framework can be accessed to identify the

configuration of any environment, or even all environments

for a specific release. Some applications are a mix of

individual separate applications that communicate with each

other in terms of finally delivering the functionality to

end-user.

This individual metadata can be categorized as following:

a. Database

b. Server

c. Schema’s or Database Users where objects will be

hosted

d. Peripheral users to maintain security: Read-Write or

Read-Only users

e. Application

f. Environment: Dev, Test, Performance, Pre-Prod,

Production, Training etc

g. Application-Database Change Master list for each

application

3.3. Algorithm and Code

An algorithm is a finite sequence of well-defined,

computer-implementable instructions, typically to solve a

class of problems or to perform a computation [11].

Algorithms are always unambiguous and are used as

specifications for performing calculations, data processing,

automated reasoning, and other tasks. The algorithm for

this database change management solution explains in detail

the logical steps of the solution. This Database Change

Management Solution is a two-step solution: Step 1 is to

package a particular database change or changes into a single

build and Step 2 is the deployment process where one or

more of these packaged database builds are deployed. Let’s

understand each of these steps in detail.

Setting up the database build is the first step in the process.

During a software development cycle, business requirements

are discussed and converted into technical implementations

which include software code and database code. Finalized

database design for a particular business requirement results

from several discussions between data architects, developers,

business analysts, and functional teams. This finalized

database design is a must for the code to work without errors

and for delivering the required functionality. Above (figure

5(a)) is the pseudocode for how the finalized database

change is packaged into a build that is error-free and ready to

be deployed. These simple steps allow the users to quickly

utilize the pre-built code and only making minimum changes

that are specific to this new database build.

While creating the new build most of the logic and

identifiers for audit and logging purpose is already updated

by the tool. The only manual changes required are the

executable SQL statements related to the new database built.

Figure 5(b) represents the code that is used to create a new

database build for the application called APP1, where the

executable located, and what are the contents of a sample

build. Figure 5(c) has the code which gets executed

(setupbuild.ksh) to create a build.

Figure 4. Representative Framework for 3 Applications

https://en.wikipedia.org/wiki/Well-defined

 American Journal of Database Theory and Application 2021, 6(1): 1-15 7

Figure 5(a). Algorithm/Pseudocode for Creating Database Build

Figure 5(b). Database Build Creation Scripts, Directory & Sample Build

Once the database build is created, the files are checked

for any errors and the errors are resolved, the builds are ready

to be applied to any environment for that application, APP1

in this case. If the organization is developing multiple

independent applications then each of these applications will

have a separate directory under the “/home/dbchanges”

directory. There is no limitation on how many applications

can be supported using this solution. This method allows

separation of database changes for each application and

allows the team for easy maintenance and search capabilities,

which is a must if there are 100’s of changes being

created/implemented per application per release.

The second part of this solution allows multiple database

changes to be implemented in a single execution. This step is

further subdivided into two parts: the first one is the

implementation of the required number of changes (database

builds) and the second part is to set/reset the access

privileges for authorized database and application users. As

discussed in section 3.1.5, each environment has varying

needs of how many changes can be accepted by the

respective team, even when they are of the same application

and same release. The development team may continue

8 Shirish Patil: An Effective Database Change Management System

developing new changes in the development environment(s)

whereas Integration and Testing teams may not be ready for

all the changes which are developed. Hence there is a need to

only deploy the changes in an environment when that

specific team is ready for the changes. The number of

changes can be either selective changes ranging from very

few to all of the changes developed.

This database change management system allows the user

to specify the target build number and automatically prepare

the executable for implementing all the changes from the

current build number of the environment to the target build

number. It is important to remember that the changes are

applied sequentially. If the user intends to disable or not

apply a particular change to a particular environment, then

it needs to be turned off from the generated executable for

that environment.

The tool has internal steps to verify few items before it

starts executing. These checks and balances are very critical

for the integrity of the environment. Any implementation of

a non-required change in the environment can lead to

downtime in the environment and even to a complete restore

of the database. The framework starts first with ensuring that

the application on which the database change management

system is being executed is of the same type for which the

system was created. This allows to prevent inadvertent

implementation of a change of one application to another.

Once this check is passed, the framework checks for the

current build number within the environment, and the build

number for that environment in the master configuration

matches.

Figure 5(c). Representative Code for Creating a Database Build

 American Journal of Database Theory and Application 2021, 6(1): 1-15 9

Figure 5(d). Check for Production Environment and Application Type

Figure 5(e). Build# Matches Between What is in Environment vs. Master

Only when these two preliminary checks are passed, the

framework proceeds with generating the executable script

for the number of changes requested. There are additional

checks to prevent the execution in a production environment.

Each one of these prevention and protection mechanism are

configurable as we can see in the figures 5(d) and 5(e). In the

event of a build# mismatch between the Metadata DB and

the application environment or if the application type is not

the same as the application for which this database change

management system is built, the script will terminate. The

application type mismatch issue can be resolved simply by

using the correct database change management system.

Build number mismatch issue can occur if the application

environment was refreshed from another and the build

numbers were not reset. Database refresh is a very common

occurrence where testing environments are often refreshed

from a production environment to test with real data. In such

a scenario, the build number of the production environment

will be in the test environment and hence the build number

for the test environment in the Metadata DB will need to be

reset to match with what is in the environment. After this

correction the execution of the scripts can proceed.

Implementing the requested number of changes works on

the basic principle of Change Management. In any change

management system, there is a Master List which contains

the list of all the changes and then there are environments or

components where these changes are to be applied. Once the

user provides the required target change number for the

environment, the Change Management system compares the

target change number with the master list and current change

10 Shirish Patil: An Effective Database Change Management System

number of the environment and provides the required list of

changes to be applied. This comparison is the core logic of

any change management system and plays a vital role in this

database change management system as well. The master list

of database changes(builds) is stored in the Metadata DB.

Once created this list is untouched for updates, maintaining

the integrity of this foundational component of the database

change management system. Only new changes are added to

this list as and when they are created.

Figure 5(f). Flowchart of Database Change Management System Process

Figure 5(g). Database Change Management System Driver Script

 American Journal of Database Theory and Application 2021, 6(1): 1-15 11

The script also has some additional in-built sub-modules

to process the request seamlessly without any manual

intervention from the user. Some examples of such

sub-modules are: password extraction for the application

schema, setting up the log file location, setting up the logfile

name for audit purposes, setting up database link from the

environment to the metadata database, cleaning up database

link, auto-apply of the final generated executable file. Here is

the flow chart (figure 5(f)) of how each component of this

system interacts with each other and how the system works.

Figure 5(g) has the representative code of the database

change management system driver script.

As explained in the above flowchart (figure 5(f)), if the

process is completed and all the errors (if any) are resolved,

then the last step will be to ensure that the changes

implemented are accessible by the authorized users –

application users and direct database users. To accomplish

this, users need to execute a specific script that also uses

Metadata DB to extract the list of Read-Only and

Read-Write users for the specific application and specific

environment. The access privileges may vary based on the

environment. For example, Production and Production-like

environments may have more restrictions on access whereas

lower-level environments such as Dev and Test may have

relaxed access. This different level of needs is captured and

configured within the Metadata DB, which is then used by

the tool. This tool first generates the SQL statements to

assign privileges to the users and roles. Once the SQL script

is generated for all required users and roles, then it gets

executed.

3.4. Setup and Implementation

If we want to use the tool efficiently and effectively, then

setting it up accurately is extremely crucial. Any

mis-configuration can prevent the tool from being executed.

The two main components of Setup and Implementation are:

Metadata DB and Script locations on the server.

Metadata DB hosts all the common configuration tables

such as environments, databases, servers, user credentials,

dependent users, application types, current build numbers,

master list of database changes per application, etc. All of

this information and metadata is hosted in a database user

named “TOOLS”, which is like a master key for all the

information. This user should not be allowed to be accessed

by anyone else other than authorized users as this hosts the

highly secured database user credentials information for all

the environments, including Production. Since database

objects are hosted within the users called owner accounts,

which should only be accessed by administrators, who

controls the changes to the database structures. No one else

should be able to modify the structure of database objects.

Some of the Metadata DB tables are as follows:

ENVIRONMENTS: This table stores all the information

about the environments, such as: application, current build#,

environment type, owner credentials, read/read-write users’

credentials, database, application roles (read, read-write).

HOSTS: This table stores the information about all the

servers being used.

INSTANCES: This table stores data about all the database

instances and on which servers they are hosted.

APP1_BUILDS: This is the master list table. It stores all

the database changes for the application, APP1 in this case. If

there are additional applications, specific tables would need

to be created. Such as APP2_BUILDS, APP3_BUILDS etc.

for applications APP2 and APP3, respectively. This table is

the heart of the database change management system.

DEPENDENT_ENVIRONMENTS: This table stores the

cross dependency between the environments. In a complex

environment, one application may need to access the data in

other applications or there may be several application users

using the same application database schema. This table

stores the interdependency and mark the dependencies as

read-only or read-write. This table is the key for setting up

the access privileges on the objects once the database

changes are deployed.

The above tables are hosted in the Master configuration

Metadata DB. There are other tables that are local to

environments and stores environment specific metadata.

These are the second piece of the puzzle which is solved

when generating the pending changes list for any

environment.

These tables are:

LAST_DB_CHANGE: This table is a single record table

and always stores the latest database change build number.

For the database change management system to proceed

further, the build number in this table and the build number

in the Environments table should match.

DB_CHANGE_RECORDS: This table stores all the

changes implemented within an application database

environment.

The above two tables play a key role when the database

environment is refreshed from another database environment.

These application-specific tables and the master

configuration tables should be in sync for the solution to

proceed further. This particular capability provides an extra

verification mechanism before the system generates the

executable for the pending changes. Accurate configuration

of the above set of tables is a must for the database change

management system to function without errors.

For the scripting portion of the solution, the scripts can be

hosted on any Unix based server. The scrip for each

application will have its dedicated home directory where the

driver script will be hosted. Each database change build has a

separate directory with a shell script and a SQL script. This is

also hosted under the home directory of the application.

3.5. Software Replication

Replication simply refers to creating another copy exactly

the same as the original one. This system allows to replicate

itself and create copies that can be used for other applications.

There are certain configuration steps that the users would

need to follow to create a working copy of this solution.

12 Shirish Patil: An Effective Database Change Management System

These steps include creating the new application-specific

configuration tables in the metadata database as discussed in

the “Setup and Implementation” section, copying over the

shell scripts to a new directory for the new application,

replacing all the application-specific references from the

original application to the new application and creating

initial database build for application setup. As figure 6

indicates, there is a specific directory for application “app1”,

which hosts all the app1 related scripts. The database

changes which are packaged into specific builds are hosted

within this home directory. While replicating the solution,

the entire app1 directory can be copied over except the

underlying directories for app1 specific database changes.

3.6. On-Going Use, Maintenance, Enhancements

The command-line interface offers an easy to use option

where authorized users can pass the application environment

id and the target build number to the driver script. As

explained in figure 7, the tool will then perform the

preliminary verification steps and then generate an

executable command as the output. The total number of

pending builds for this environment and the individual builds

will be listed. Once the tool completes execution, it syncs up

the final build number in the master metadata tables and

within the environment itself. This is to ensure that the next

execution’s initial check for build# verification passes

through.

The tool will provide complete command after

“EXECUTE COMMAND” as highlighted in red in Figure 7.

This is the only command which needs to be executed to

apply all the builds required up to the target build number.

When the build is being executed, users can simultaneously

monitor the execution with the “tail” command. Runtime

monitoring is not necessary as the complete execution log

will be stored in the log directory and can be reviewed later.

If there are errors during the execution, an email with the

errors will be sent to the configured distribution list.

Figure 6. Application Directory for Replication

Figure 7. Executing the scripts

 American Journal of Database Theory and Application 2021, 6(1): 1-15 13

There are additional configuration options with this

solution such as AUTO_APPLY and BASELINE. These

options are available for configuring the solution when used

with other software’s within the organization. This allows

the database change management system to be executed

without manual intervention and also to be compatible with

CI/CD tools. Organizations can leverage this functionality to

scale up their software development speed and delivery.

Users also have the capability to disable a specific build by

uncommenting the “exit” command which is included at the

beginning of each build. This allows the user to seamlessly

execute multiple builds and skip specific builds that needs

any corrections or maintenance. The builds can be

permanently disabled as well using this mechanism if the

changes are no longer required for the release.

3.7. Benefits

This database change management system provides

outstanding benefits which are top of the field in the area of

database change management. The accuracy with which this

system can deploy database changes across the various

environments and releases makes it highly appealing for

organizations doing software development. The change(s)

will be applied to the specific application, for a specific

release, and on a specific environment (Dev, Test,

Performance, etc..).

The accuracy of implementation is coupled with detailed

auditing functionality. Users can configure how long they

would like to store the log files of execution, essentially

allowing them to store logs indefinitely. These log files

provide crucial metadata and execution sequence which is

helpful when the teams are trying to debug and resolve any

particular issue. Long term storage enables the organization

with the data to go back even several years and reference, if

needed. Logfiles of individual execution also provides the

ability to compare the execution of same build across

multiple environment.

Figure 8. Benefits (1/2)

Figure 9. Benefits (2/2)

14 Shirish Patil: An Effective Database Change Management System

The solution guarantees that the requested build(s) will be

applied to the intended environment and this environment

only. This high confidence comes with no-cost associated.

Generally, softwares have a licensing cost as well as

enhancements and customization cost. Any change to the

initially licensed version comes with a cost for the users and

they have to completely depend on the software vendor for

doing the customization and provide the new version. If the

organization changes its mind in between or have another

change, there is a cost associated to implement. This system

comes with no licenses no cost. Anyone, individual or

organizations, who can successfully implement the solution,

can use it without paying a single penny for its licenses.

The solution can be replicated as and when needed

without worrying about the cost as well as any enhancements

or changes to specific versions can be done without incurring

any cost. As far as the users understand the internal workings

and logic of the system, they are free to make any changes, as

per their requirements, for as many times as they want.

Change made to one version of the system does not impact

another version. For example, if the organization is using this

system for two applications; APP1 and APP2, a customized

change for APP1 has no impact on the code of the system for

APP2 and its metadata. Each replicated version is

completely independent from another having its own set of

code and metadata.

Each change or database build within the database change

management system is tagged with the business requirement

number. This unique feature provides complete requirement

traceability. When there are hundreds of changes associated

with a release, users can filter and search based on business

requirement numbers to easily trace back the technical

database change to specific business requirements. This

feature is extremely helpful when debugging issues and

performing root-cause analysis (RCA).

The solution can be used as an API and can be easily

integrated with other tools used within the organization.

This allows the organization to scale their CI/CD toolset

by incorporating database change management in the

integration and deployment process.

All types of SQL statements can be included in the builds.

Where there are data changes, changes to database structures

or applying referential integrity constraints. This solution is

equally effective for DML’s and DDL’s. This means that

there is a single source of repository for all types of database

changes for the organization, which is easily searchable

based on key-words. This is a highly desirable feature when

it comes to Root Cause Analysis (RCA) during critical

production issues or resolving issues during development

and test cycles.

The tool also provides a capability to generate

production-like datasets to be used for training purposes.

This plugin allows to configure which attributes are key

identifiers, the logic to generate new identifiers, mask

personally identifiable information (PII) for data security,

and generate multiple datasets quickly. This way

organization can replicate the data for as many trainees as

required based on a given golden dataset.

The code for builds, driver scripts for the application(s),

log files, metadata tables, application-specific changes never

expires. This no-expiration benefit allows the organization

to preserve and keep the whole suite of changes as long as

they want. The scripts require very minimum storage and can

be kept forever without any corruption concerns.

4. Applicable Industries and Domains

A solution or program is supplementary useful when more

industries, companies working with varied domains of

software development can use it. The value of such solutions

increases exponentially. This database change management

solution comes under the above category and is above and

beyond useful for all types of software development. If the

organization is involved in any type of software development

that requires managing database changes with it, this

solution stands out as the front runner, given the cost (which

is zero), features, and its benefits to the organization.

The wide application of this solution is due to its

flexibility of separating the driving scripts and how database

changes are packaged for implementation. The database

changes can belong to any type of industry, be it healthcare,

insurance, automobile, transportation, aviation, integrated

eligibility, manufacturing, research, or any other type. If

there are database changes to be managed and the application

uses a relational database management system, this system

can be implemented. Start-up’s as well as established

large-scale organizations, this solution can help both of them

with equally outstanding capabilities and performance.

5. Conclusions

Database changes are an integral part of the software

development process and are foundational. Any organization

involved in software development does database changes

to implement the business requirements. These database

changes can be industry-specific, business requirement

specific, and/or required for regulatory compliance.

Effectively storing the business data and be able to retrieve it

within the SLAs is paramount to the success of a company.

Such requirements call for a need for a solution that can

manage the underlying data structures as well as keep up

with accommodating and implementing the new changes.

This particular solution has the unique capability to be

applicable for any industry or any domain and is not limited

to a specific type of industry. From the very small-scale

startup to a massively large organization managing only a

few database changes to hundreds and thousands of database

changes per release, this database change management

system has worked with the same efficiency and

performance regardless of the number of changes being

processed through it.

This solution can serve uniformly well for public and

private sector companies across the USA and around the

 American Journal of Database Theory and Application 2021, 6(1): 1-15 15

world. These organizations can be government organizations

and agencies, healthcare, insurance, travel, maritime services,

software consulting, transportation, data analytics &

visualization, supply chain etc... The flexibility offered by

the system to accommodate any industry-specific changes

and still perform the database change management

functionality renders it highly appealing to one and all.

REFERENCES

[1] Alex Yates, http://workingwithdevs.com/rolling-back-databa
se-changes/, 2017.

[2] John Carbone, https://www.eetimes.com/timing-to-market-is
-everything/#, EE Times, 2012.

[3] Steven Curtis,https://medium.com/swlh/environments-in-sof
tware-development-cf84adbbf197, Medium, 2020.

[4] Geoffrey Elliott, Global Business Information Technology:
an integrated systems approach. Pearson Education. p.87.,
2004.

[5] Managewell, http://managewell.net/?p=1157, 2011.

[6] Atlassian, https://www.atlassian.com/incident-management/
kpis/cost-of-downtime, Gartner, 2016.

[7] M Sullivan, https://pubmed.ncbi.nlm.nih.gov/10119686/,
1991.

[8] Chris Doig, https://www.cio.com/article/2917796/why-comp
aring-enterprise-software-products-with-each-other-doesnt-i
dentify-best-fit-software.html, 2015.

[9] Isaac Sacolick, https://www.infoworld.com/article/3271126/
what-is-cicd-continuous-integration-and-continuous-delivery
-explained.html, 2020.

[10] David A. Garvin, https://hbr.org/1993/07/building-a-learning
-organization, 1993.

[11] “The Definitive Glossary of Higher Mathematical Jargon —
Algorithm". Math Vault. August 1, 2019.

Copyright © 2021 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

http://workingwithdevs.com/rolling-back-database-changes/
http://workingwithdevs.com/rolling-back-database-changes/
http://workingwithdevs.com/rolling-back-database-changes/
http://workingwithdevs.com/rolling-back-database-changes/
https://www.eetimes.com/timing-to-market-is-everything/
https://www.eetimes.com/timing-to-market-is-everything/
https://www.eetimes.com/timing-to-market-is-everything/
https://www.eetimes.com/timing-to-market-is-everything/
https://medium.com/swlh/environments-in-software-development-cf84adbbf197
https://medium.com/swlh/environments-in-software-development-cf84adbbf197
https://medium.com/swlh/environments-in-software-development-cf84adbbf197
https://medium.com/swlh/environments-in-software-development-cf84adbbf197
http://managewell.net/?p=1157
https://www.atlassian.com/incident-management/kpis/cost-of-downtime
https://www.atlassian.com/incident-management/kpis/cost-of-downtime
https://www.atlassian.com/incident-management/kpis/cost-of-downtime
https://www.atlassian.com/incident-management/kpis/cost-of-downtime
https://pubmed.ncbi.nlm.nih.gov/10119686/
https://www.cio.com/article/2917796/why-comparing-enterprise-software-products-with-each-other-doesnt-identify-best-fit-software.html
https://www.cio.com/article/2917796/why-comparing-enterprise-software-products-with-each-other-doesnt-identify-best-fit-software.html
https://www.cio.com/article/2917796/why-comparing-enterprise-software-products-with-each-other-doesnt-identify-best-fit-software.html
https://www.cio.com/article/2917796/why-comparing-enterprise-software-products-with-each-other-doesnt-identify-best-fit-software.html
https://www.cio.com/article/2917796/why-comparing-enterprise-software-products-with-each-other-doesnt-identify-best-fit-software.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://hbr.org/1993/07/building-a-learning-organization
https://hbr.org/1993/07/building-a-learning-organization
https://hbr.org/1993/07/building-a-learning-organization
https://hbr.org/1993/07/building-a-learning-organization
https://mathvault.ca/math-glossary/#algo
https://mathvault.ca/math-glossary/#algo
http://creativecommons.org/licenses/by/4.0/

