
International Journal of Control Science and Engineering 2020, 10(2): 23-30

DOI: 10.5923/j.control.20201002.01

Continuous Lyapunov Controlled Non-linear System

Optimization Using Deep Learning with Memory

Amr Mahmoud
1,*

, Youmna Ismaeil
2
, Mohamed Zohdy

1

1Department of Electrical and Computer Engineering, Oakland University, Rochester, MI, USA
2Department of Computer Science, Saarland University, Saarbrucken, Germany

Abstract Initially selected system and controller parameters don't often guarantee continued system stability and

performance mainly due to the introduction of unexpected system disturbances or unknown system dynamics. In this research

we present a novel approach for detecting early failure indicators of non-linear highly chaotic system and accordingly predict

the best parameter calibrations to offset such instability using deep machine learning regression model. The approach

proposed continuously monitors the system and controller signals. The Re-calibration of the system and controller parameters

is triggered according to a set of conditions designed to maintain system stability without compromise to the system speed,

intended outcome or required processing power. The deep neural model predicts the parameter values that would best

counteract the expected system in-stability. To demonstrate the effectiveness of the proposed approach, it is applied to the

non-linear complex combination of Duffing-Van der pol oscillators. The approach is also tested under different scenarios the

system and controller parameters are initially chosen incorrectly or the system parameters are changed while running or new

system dynamics are introduced while running to measure effectiveness and reaction time.

Keywords System parameterization, Deep Machine Learning, Complex system, Non-linear controller, Duffing-van der

pol, Lyapunov control

1. Introduction

Lyapunov control has been proven successful in

controlling highly chaotic non-linear oscillators [1] [2] [3].

One of the fundamentals that contribute to the success or

failure of any type of control strategy is the controller and

system parameters. Therefore, researchers have explored

different methods to find the precise parameters that would

lead to achieving the best system results [4] [5].

One of the methods utilized to achieve the previously

mentioned goals is Genetic algorithm (GA). GAs have been

successful in cases where all the system dynamics are

clearly defined and known to some extent or with systems

where limited system disturbances are introduced and minor

parameter tuning is required [6] [7]. In some cases, several

system assumptions are needed in order to allow the GA to

run successfully.

Due to some of the limitations found in using GAs such

as inability to quickly converge to the final solution or adapt

to unknown system dynamics or unknown disturbances.

Researchers though after different approaches that wouldn't

reduce the system agility and at the same time would be

* Corresponding author:

amahmoud@oakland.edu (Amr Mahmoud)

Received: Sep. 22, 2020; Accepted: Oct. 16, 2020; Published: Oct. 26, 2020

Published online at http://journal.sapub.org/control

able to handle unknown system characteristics. A hybrid

approach of Fuzzy Control and GAs was researched in [8]

but system linearization is a requirement in order to use the

previously mentioned method [8].

Another approach that is recently being researched is

the use of Machine Learning to enhance the controller

performance. For example, through the use of Episodic

learning [9] [10]. Most recently, there is the introduction

neural Lyapunov control which proposes the use of deep

learning to find the control and Lyapunov functions. The

approach mentioned in [9] [10] is suitable for find the best

system parameters that would initially lead the system to

stability and reduced the system error. The problem with

approach in [9] [10] is that it assumes that the system is

deterministic, time invariant, and affine in the control input.

while in real life situation external perturbations might

occur resulting in system failure at any moment while the

system is running [11] [12]. The approach proposed in [25]

[26] and [27] attempts to predict the control and Lyapunov

functions that would lead to system stability but under

specific conditions where the system dynamics are

deterministic in nature. The approach proposed in this

research is novel to the best of our knowledge in that it

discards the assumption of an ideal environment or fully

known system dynamics and seeks continuous enhancement

of the controller outcome through continuous monitoring

of the system error, refence signal, system dynamics and

24 Amr Mahmoud et al.: Continuous Lyapunov Controlled Non-linear

System Optimization Using Deep Learning with Memory

control signal and accordingly adjust the system and

controller parameters to improve the controller performance

without the need to disrupt the system output.

The focus of the research is to allow the Deep Learning

Algorithm to learn the system from a continuously

improving dataset and according to the slope of the output

error the algorithm relearns the system and collects the

needed information.

The proposed method is applied to a non-linear chaotic

combined system of Duffing and Van der pol oscillators

[24]. The aforementioned system was chosen to test the

Deep learning algorithm response to unpredicted system

disturbances and unknown system dynamics [21] [22] [23].

An algorithm was developed to aid and trigger the

Deep Neural Network when needed to adapt to new

system dynamics and according to pre-set conditions. The

algorithm records and feeds an updated data set to the DNN

in order to relearn the system dynamics if certain conditions

are detected to be true. Once the process of retraining is

complete, the algorithm generates a random array of

parameters and the array of parameters is fed to the DNN to

predict the output error. If the DNN predicts that the error

slope will be reduced from the current value improving the

performance of the system, then the suggested controller

parameters are allowed to be set as the new controller

parameters. Otherwise the algorithm would create a new

array set of randomly generated parameters and re-feed

them to the DNN to provide its predictions in a continuous

loop. Once the controller parameters are updated the

algorithm monitors the actual error compared to the

predicted error to determine the network viability and

accordingly if the error difference is greater than a set value

the algorithm would trigger a retraining request of the

DNN.

2. Lyapunov Control on Duffing -
Vanderpol Oscillator Model

An easy way to comply with the paper formatting

requirements of SAP is to use this document as a template

and simply type your text into it.

This section provides an overview of the Duffing-Van der

pol system dynamics. Duffing-Van der pol mathematical

model is

𝒙 + 𝜹𝒙 + 𝝐𝟏(𝒙𝟐𝒙 + 𝒙𝒙 𝟐) + 𝝐𝟐𝒙
𝟑 = 𝝁 𝒕 + 𝜸 𝐜𝐨𝐬 𝝎𝒕 (1)

It combines both non-linear stiffness and non-linear

damping Equ.1. Setting

𝑥 = 𝑥2 (2)

and

𝒙 = 𝒙𝟏 (3)

Therefore

𝒙 𝟏 = 𝒙𝟐 (4)

𝑥 2 =
1

1+𝜖1𝑥2
 𝛿𝑥 − 𝜖1𝑥𝑥

2 − 𝜖2𝑥
3 + 𝜇 𝑡 + 𝛾 cos 𝜔𝑡 (5)

we get the state space model

𝑥 1
𝑥 2

 =
𝑥2

1

1+𝜖1𝑥2
 𝛿𝑥2 − 𝜖, 𝑥𝑥2

2 − 𝜖2𝑥
3 (6)

𝑦 =
𝑥1

𝑥2
 (7)

3. Lyapunov Controller Design

In this section we give an overview of the controller

design. The controller is designed with the purpose of

achieving Duffing- van der pol oscillator system stability at

an increased forcing frequency. Desired state qd and actual

state q.

e = qd − q (8)

A control LYAPUNOV candidate is then chosen to be

V =
1

2
 γ1ⅇ + γ2ⅇ (9)

As shown from Equ.11, the transient behavior of the error

dynamics can be influenced by a suitable choice of the CLF

and gamma parameters, respectively Equ.10. Therefore, the

CLF has been chosen to be positive definite for all

x, x (10)

taking the time derivative of V Eqn.9

V = (γ1 + γ2e) (γ1e + γ2e) (11)

V = −kV (12)

which is globally exponentially stable as V is globally

positive definite. Hence, by substitution in Eqn.11 we find

the control law Eqn.13.

𝑢 =
1+𝜖1𝑥2

𝛾2
(
𝑘

2
𝛾1e +

𝑘

2
𝛾2e + 𝛾1e + 𝛾2𝑥 𝑑𝑒𝑠) − 𝑃 𝑐𝑜𝑠 𝜔𝑡 +

𝛿𝑥 + 𝑥 + 𝜖1𝑥 𝑥
2 + 𝜖2𝑥

3 (13)

4. Simulation Results for Unoptimized
System

Figure 1. Reference signal (dotted green) 5th harmonic function with

amplitudes of 0.1, 0.5 and 1 and Lyapunov controller output (red) for t=2.5s

Section 4 will provide an overview of the results after

running the system with the Lyapunov controller and

manually selecting the parameters that lead to reduced error

across the time frame of 2.5s. The Duffing- van der pol

oscillator model was ran with the following selection of

 International Journal of Control Science and Engineering 2020, 10(2): 23-30 25

parameters. δ=0.5, ε1=1.6, ε2=-0.8, P=3, ω=10 and the

control parameters γ1 =12, γ2 =4, k=115. The parameters

were manually adjusted and tuned to give low error 1 and

high stability 2.

Figure 2. Phase portrait showing a stable system with no interference

under the harmonic reference signal t=2.5s

5. Lyapunov Controller
Parameteroptimization

5.1. Overview

The process of selecting the proper Sigmas to reduce the

error of the model can be modelled as an exhaustive search

problem. Where several Sigmas are tried and the one

that results in a reduction in the system error is selected.

Though this process results in the best Sigmas, yet it is time

consuming. To overcome this problem, we developed a deep

learning model that researches different system and

controller parameters.

A given sigma is good if it reduces the error of the system.

The pipeline is presented in Fig. 5. Initially, the model is run,

and the system error is monitored. If the error surpasses a

curtain threshold the neural network is queried for a sigma

that would reduce the system error given the current state of

the system. The algorithm for the entire process is defined

below. The network proposed in Fig.3 is initially trained and

then used to predict new Sigmas; Sigma 1 (s1), and Sigma 2

(s2) if the system error (sys err) exceeds a given threshold

(0.8).

The network is then given the current state of the system in

terms of time (t), position (p), velocity (v), and the randomly

generated (s1) and its corresponding (s2) and it predicts the

system error. If the predicted error is less than the current

system error, then the system is updated with the newly

generated Sigmas that are speculated to reduce the error.

Every iteration the newly generated Sigmas are their

corresponding system parameters are stored. After each

100 iterations the system is probed for perturbations by

computing the average of the system error throughout the

previous 100 iterations (avg sys err) if this error is larger than

the previous system average (prev sys avg) the network is

retrained on a portion of the old data (Memo) used in

previous training as well as the data from the previous 100

iterations (new data). The motive behind using the old data

as well as the new data is to avoid catastrophic forgetting as

mentioned in [14].

The idea of using a memory is usually known as

self-refreshing memory and was initially introduced and

tested in [15] [16] [17]. The idea here is that even when there

are perturbations they might not last for so long and

consequently we don’t want the network to lose its ability to

predict the System error if the system parameters return back

to norm after the network was retrained several times.

Memory = 10% of the old training data (prev sys avg =

system error average) of the training data initialization.

Algorithm 1. Adaptive Algorithm Steps for Sigma prediction

5.2. Dataset

The Time, Error, velocity, position and control signal

were collected every 1 millisecond and added into an array of

values. The dataset was split into 60% training and 40% test.

A continuous update to the dataset is done according to

the calculated error slope every 10ms (100 iterations) as

explained above.

5.3. Network Architecture

The network architecture is in Fig. 3 The network is

composed of 5 blocks (15 layers). The number of layers 15

was chosen for its efficiency and high performance. It was

found that if a lower number of layers is used the DNN

26 Amr Mahmoud et al.: Continuous Lyapunov Controlled Non-linear

System Optimization Using Deep Learning with Memory

performance was affected and when a higher number of

layers was used it had no effect on the performance but

reduced the DNN efficiency. A block is composed of 3

layers: a fully connected convolution layer followed by batch

normalization layer and rectified linear unit (RELU) in

Eqn.14.

output = max(0.0,input) (14)

The batch normalization layer allows us to use higher

learning rates as it makes ensures that activations are not too

high or low. The RELU is a nearly linear function in the

sense that it is a piece wise linear function with two linear

pieces. This feature increases its capability to preserve many

of the properties that make linear models easy to optimize

with gradient based methods as well as the properties that

make linear models generalize well. The last block has a

dropout layer aside from the fully connected convolution

layer and a regression layer to predict the error. Dropout [18]

is a regularization method that was developed to solve the

problem of overfitting. The overfitting problem occurs when

the neural network learns every minor detail in the training

data. The effect of such a behaviour is that the network will

have high accuracy on the training data but very low

accuracy on the test data. This means that the network

is unable to generalize on unforeseen data. The proposed

solution for this problem is the dropout technique. The

dropout technique ignores a number of layer outputs

randomly. Such a behaviour makes the layer appear as and

be treated-as a layer with a different number of nodes and

connectivity to the prior layer. Consequently, each update

to a layer during training is performed with a different

“perspective” of the configured layer. The regression layer

computes the mean squared error loss. The network is trained

to learn a function F in Eqn.15.

F : (t,x,v,s1,s2) → e (15)

Where s1 and s2 are the two Sigmas, t is the time and e is

the error of the model.

5.4. Network Training and Testing

The network is initially trained for 5 epochs using Adam

optimization algorithm. The learning rate is initially set to

0.001 and is reduced by a factor of 0.2 every 5 epochs. This

allows large weight changes in the beginning of the learning

process and small changes or fine-tuning towards the end of

the learning process. This gives more time for fine-tuning.

While the model is running if the system error passes a given

threshold the Neural network is used to choose two Sigmas

that would lower the error. This is done by selecting a

uniformly distributed random number in the interval [-50, 50]

for s1.

The restriction of s1 and s2 was added later in the research

to avoid the genetic algorithm and DNN going into a

continuous loop of changing the Sigmas to find the perfect

candidate. It was also found that the smaller the sigma the

better the system outcome but in order to maintain controller

flexibility the range was set to [-50, 50] to account for

unexpected changes in the system behaviour. The network

does not pass the proposed Sigma 1 and Sigma 2 to the

model and controller unless Sigma 1 and Sigma 2 are

predicted to reduce the system error. This helps in tuning the

entire pipeline to take small/large steps to change the

behaviour of the duffing van der pol model given that sudden

large changes in the Sigmas may result in system failure. The

idea behind predicting the error and not the Sigmas is the fact

that we can have more than one error for a given Sigma,

which gives more flexibility for choosing the range of

sigmas to consider. The root of the mean square error graph

for the first 5 epochs are plated in Fig. 4. The results show

that the neural network presented in Fig. 5 was able to predict

the error with an error of 0.03564.

Figure 3. Neural network used for predicting the best Sigmas that would

result in a decrease in the system error. The input to the network is the time

(t), displacement (x), velocity (v), Sigma 1 (s1), Sigma 2 (s2) and the output

is the expected system error (Error) for the system. s2 = - s1/8

Input Data

Error

 International Journal of Control Science and Engineering 2020, 10(2): 23-30 27

Figure 4. Neural network used for predicting the best Sigmas that would

result in a decrease in the system error. The input to the network is the time

(t), displacement (x), velocity (v), Sigma 1 (s1), Sigma 2 (s2) and the output

is the expected system error (Error) for the system

6. Results and Discussion

In Fig. 5 the system is shown to go into instability and fails

0.3 seconds from start due to the use of unfit Sigma 1 = 100

and Sigma 2 = 0.6 while in Fig. 5 we show that using the

proposed deep neural network to predict the appropriate

Sigma 1 and Sigma 2 lead to stabilizing the system and

maintaining the system error under the set threshold.

The results show the efficiency of the neural network in

predicting the error given the sigma, as well as the efficiency

of the algorithm in preventing the system from failing

likewise in continuously enhancing its performance by

keeping the system error as low as possible. On the other

hand, maintaining a constant sigma results in large system

error and the system might eventually fails.

Figure 5. The system error goes to infinity as shown when the algorithm is

not applied

Figure 6. The system error after using the neural network in Fig. 7 to get a

good estimate of s1 and s2

6.1. Algorithm Reaction to Parameter Sabotage

Figure 7. Error uptick at t = 0.8867

Figure 8. The Algorithm reacting to the sudden change by adjusting

Sigma 1

28 Amr Mahmoud et al.: Continuous Lyapunov Controlled Non-linear

System Optimization Using Deep Learning with Memory

To elaborate on the ability of the proposed solution to

tackle mid system instability or sudden changes. The system

parameters are manually overwritten while the system is

running to measure the NN and Algorithm effectiveness in

returning the system to stability.

As demonstrated by Figs 7 and 8 the deep network was

able to predict the best parameters to re-establish stability of

the system and controller within 0.4 ms.

6.2. Improving the System Performance

In this section we show the ability of the proposed method

in finding the best system parameters while the system and

controllers are running.

Figure 9. The Algorithm reacting to the sudden change by adjusting s2

Figure 10. Phase diagram of the algorithm before and after finding the

optimal system parameters for the conditions which shows major

improvement compared to Fig.4

6.3. Network Retraining

During the re-training phase of the neural network we

noticed that without the use of the memory it might take

longer and, in some cases, go into an infinite state without

finding the optimum solution. The speed with which the

system returns back to it stable state affects the retraining

phase as we only consider the change in the average of the

system error. If the difference between the previous system

error average and the new system error average is not large

enough then the condition for retraining won’t be met and the

system will get stuck trying to find a pair of Sigmas that

would result in error reduction. This won’t be possible

without memory because the moment the network is

retrained the new data overwrites the information learned by

the network. The use of memory allows the network to

remember the stable and perturbed history of the system

parameters.

Figure 11. s1 and s2 are changed while the system is running to improve

performance and reduce error

Figure 12. Error is shown to be reduced from the starting point by

updating the system parameters and the algorithm is successful in maintain

the error within bounds

 International Journal of Control Science and Engineering 2020, 10(2): 23-30 29

Figure 13. Re-training to improve the deep neural network performance

in order to adapt to the introduction of new system dynamics

7. Conclusions and Future Work

Lyapunov control was applied to Duffing- van der pol

oscillator model that is experiencing chaotic behaviour. The

study shows the effectiveness of deep learning combination

with nonlinear Lyapunov control in finding the best

parameters to maintain system stability. The study shows

that deep learning with the proposed algorithm enables the

user to effortlessly find the best parameters for the controller

and the system initially and recalibrate the parameters if any

disturbances or new dynamics are introduced to the system.

In future work we would like to investigate the effect of

changing the control strategy according to the type of

instability detected. We speculate that depending on the type

of perturbations and system dynamics, changing the control

strategy might be more effective than changing the

parameters only. Future considerations include a network

that can determine which control strategy would have the

highest impact on returning the system to stability and cause

error reduction. The proposed approach can be aided with the

use of generative adversarial networks (GAN).

REFERENCES

[1] A. Harb, A. Zaher and M. Zohdy, “Nonlinear Recursive
Chaos Control”, Proc. of ACC, Anchorage, AL, USA, pp
2251-2254.

[2] A. Harb, A. Zaher and, A. Al-Qaisia and M. Zohdy,
“Estimation based Control of Chaotic Duffing Oscillators”.

[3] Kovacic, I.; Brennan, M.J., eds. (2011), The Duffing
Equation: Nonlinear Oscillators and their Behavior, Wiley, pp.
392.

[4] K. Tomita (1986): ”Periodically forced nonlinear oscillators”.
In: Chaos, Ed. Arun V. Holden. Manchester University Press,
ISBN 0719018110, pp. 213–214.

[5] T. Alain, K. Timoleon “Chaos generalized synchronization of
coupled Mathieu-Van der Pol and coupled Duffing-Van der
Pol systems using fractional order derivative” Chaos, Solitons
and Fractals Volume 98, May 2017, pp. 88–100, ELSevier.

[6] S. S. Ge, T. H. Lee and G. Zhu, ”Genetic algorithm tuning of
Lyapunov-based controllers: an application to a single-link
flexible robot system,” in IEEE Transactions on Industrial
Electronics, vol. 43, no. 5, pp. 567-574, Oct. 1996,
doi: 10.1109/41.538614.

[7] V. Giordano, D. Naso and B. Turchiano, ”Combining Genetic
Algorithms and Lyapunov-Based Adaptation for Online
Design of Fuzzy Controllers,” in IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol.
36, no. 5, pp. 1118-1127, Oct. 2006,
doi: 10.1109/TSMCB.2006.873187.

[8] R. Wai and C. Tu, ”Development of Lyapunov-Based Genetic
Algorithm Control for Linear Piezoelectric Ceramic Motor
Drive,” in IEEE Transactions on Industrial Electronics,
vol. 54, no. 5, pp. 2566-2582, Oct. 2007,
doi: 10.1109/TIE.2007.899934.

[9] A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue and A. D.
Ames, ”Episodic Learning with Control Lyapunov
Functions for Uncertain Robotic Systems*,” 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), Macau, China, 2019, pp. 6878-6884,
doi: 10.1109/IROS40897.2019.8967820.

[10] St éphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the fourteenth
international conference on artificial intelligence and
statistics, pages 627–635, 2011.

[11] St éphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell.
No-regret reductions for imitation learning and structured
prediction. CoRR, abs/1011.0686, 2010.

[12] Aaron D Ames, Kevin Galloway, Koushil Sreenath, and
Jessy W Grizzle. Rapidly exponentially stabilizing control
lyapunov functions and hybrid zero dynamics. IEEE
Transactions on Automatic Control, 59(4): 876–891, 2014.

[13] Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo
Tabuada. Control barrier function based quadratic programs
for safety critical systems. IEEE Transactions on Automatic
Control, 62(8): 3861–3876, 2017.

[14] McCloskey, M. and Cohen, N. (1989) Catastrophic
interference in connectionist networks: The sequential
learning problem. In G. H. Bower (ed.) The Psychology of
Learning and Motivation, 24, 109-164.

[15] Robins, A. (1995). Catastrophic Forgetting, rehearsal and
pseudorehearsal. Connection Science, 7, 123-146.

[16] Robins, A. (1996). Consolidation in Neural Networks and in
the Sleeping Brain. Connection Science, 8(2), 259-276.

[17] Ans, B., and Rousset, S. (2000). Neural networks with a
self-refreshing memory: Knowledge transfer in sequential
Learning tasks without catastrophic forgetting. Connection
Science, 12, 1-19.

[18] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever and
R. Salakhutdinov, ”Dropout: A simple way to prevent neural
networks from overfitting”, J. Mach. Learn. Res., vol. 15, no.
1, pp. 1929-1958, 2014.

30 Amr Mahmoud et al.: Continuous Lyapunov Controlled Non-linear

System Optimization Using Deep Learning with Memory

[19] Alghassab, M., Mahmoud, A. and Zohdy, M.A. (2017)
Nonlinear Control of Chaotic Forced Duffing and Van der
Pol Oscillators. International Journal of Modern Nonlinear
Theory and Application, 6, 26-37.

[20] Thompson, J.M.T. and Stewart, H.B. (2002) Nonlinear
Dynamics and Chaos. John Wiley & Sons, New York.

[21] Zaher, A.A., Harb, A.M. and Zohdy, M.A. (2004) Recursive
Backstepping Control of Chaotic Duffing Oscillators.
Proceedings of the 2004 American Control Conference, 5,
4302-4306.

[22] Harb, A., Zaher, A. and Zohdy, M. (2002) Nonlinear
Recursive Chaos Control. Proceedings of the 2002 American
Control Conference, 8-10 May 2002.
https://doi.org/10.1109/acc.2002.1023974.

[23] Zaher, A.A. (2011) Secure Communication Using Duffing
Oscillators. IEEE International Conference on Signal and
Image Processing Applications (ICSIPA), KualaLumpur,

563-568. https://doi.org/10.1109/ICSIPA.2011.6144150.

[24] Li, J. and Shen, Y. (2009) The Study of Weak Signal
Detection Using Duffing Oscillators Array. IEEE Circuits
and Systems International Conference on Testing and
Diagnosis, Chengdu, 28-29 April 2009, 1-4.

[25] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural
lyapunov control. In Advances in Neural Information
Processing Systems, 2019.

[26] Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning
control lyapunov functions from counterexamples and
demonstrations. Autonomous Robots, 43(2): 275–307, 2019.

[27] Spencer M. Richards, Felix Berkenkamp, and Andreas
Krause. The lyapunov neural network: Adaptive stability
certification for safe learning of dynamical systems. In
Proceedings of The 2nd Conference on Robot Learning,
volume 87 of Proceedings of Machine Learning Research,
pages 466–476, 29–31 Oct 2018.

Copyright © 2020 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

