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Abstract  Initially selected system and controller parameters don't often guarantee continued system stability and 

performance mainly due to the introduction of unexpected system disturbances or unknown system dynamics. In this research 

we present a novel approach for detecting early failure indicators of non-linear highly chaotic system and accordingly predict 

the best parameter calibrations to offset such instability using deep machine learning regression model. The approach 

proposed continuously monitors the system and controller signals. The Re-calibration of the system and controller parameters 

is triggered according to a set of conditions designed to maintain system stability without compromise to the system speed, 

intended outcome or required processing power. The deep neural model predicts the parameter values that would best 

counteract the expected system in-stability. To demonstrate the effectiveness of the proposed approach, it is applied to the 

non-linear complex combination of Duffing-Van der pol oscillators. The approach is also tested under different scenarios the 

system and controller parameters are initially chosen incorrectly or the system parameters are changed while running or new 

system dynamics are introduced while running to measure effectiveness and reaction time. 
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1. Introduction 

Lyapunov control has been proven successful in 

controlling highly chaotic non-linear oscillators [1] [2] [3]. 

One of the fundamentals that contribute to the success or 

failure of any type of control strategy is the controller and 

system parameters. Therefore, researchers have explored 

different methods to find the precise parameters that would 

lead to achieving the best system results [4] [5].  

One of the methods utilized to achieve the previously 

mentioned goals is Genetic algorithm (GA). GAs have been 

successful in cases where all the system dynamics are 

clearly defined and known to some extent or with systems 

where limited system disturbances are introduced and minor 

parameter tuning is required [6] [7]. In some cases, several 

system assumptions are needed in order to allow the GA to 

run successfully.  

Due to some of the limitations found in using GAs such 

as inability to quickly converge to the final solution or adapt 

to unknown system dynamics or unknown disturbances. 

Researchers though after different approaches that wouldn't 

reduce the system agility and at the same time would be  
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able to handle unknown system characteristics. A hybrid 

approach of Fuzzy Control and GAs was researched in [8] 

but system linearization is a requirement in order to use the 

previously mentioned method [8].  

Another approach that is recently being researched is  

the use of Machine Learning to enhance the controller 

performance. For example, through the use of Episodic 

learning [9] [10]. Most recently, there is the introduction 

neural Lyapunov control which proposes the use of deep 

learning to find the control and Lyapunov functions. The 

approach mentioned in [9] [10] is suitable for find the best 

system parameters that would initially lead the system to 

stability and reduced the system error. The problem with 

approach in [9] [10] is that it assumes that the system is 

deterministic, time invariant, and affine in the control input. 

while in real life situation external perturbations might 

occur resulting in system failure at any moment while the 

system is running [11] [12]. The approach proposed in [25] 

[26] and [27] attempts to predict the control and Lyapunov 

functions that would lead to system stability but under 

specific conditions where the system dynamics are 

deterministic in nature. The approach proposed in this 

research is novel to the best of our knowledge in that it 

discards the assumption of an ideal environment or fully 

known system dynamics and seeks continuous enhancement 

of the controller outcome through continuous monitoring  

of the system error, refence signal, system dynamics and 
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control signal and accordingly adjust the system and 

controller parameters to improve the controller performance 

without the need to disrupt the system output. 

The focus of the research is to allow the Deep Learning 

Algorithm to learn the system from a continuously 

improving dataset and according to the slope of the output 

error the algorithm relearns the system and collects the 

needed information.  

The proposed method is applied to a non-linear chaotic 

combined system of Duffing and Van der pol oscillators 

[24]. The aforementioned system was chosen to test the 

Deep learning algorithm response to unpredicted system 

disturbances and unknown system dynamics [21] [22] [23]. 

An algorithm was developed to aid and trigger the    

Deep Neural Network when needed to adapt to new  

system dynamics and according to pre-set conditions. The 

algorithm records and feeds an updated data set to the DNN 

in order to relearn the system dynamics if certain conditions 

are detected to be true. Once the process of retraining is 

complete, the algorithm generates a random array of 

parameters and the array of parameters is fed to the DNN to 

predict the output error. If the DNN predicts that the error 

slope will be reduced from the current value improving the 

performance of the system, then the suggested controller 

parameters are allowed to be set as the new controller 

parameters. Otherwise the algorithm would create a new 

array set of randomly generated parameters and re-feed 

them to the DNN to provide its predictions in a continuous 

loop. Once the controller parameters are updated the 

algorithm monitors the actual error compared to the 

predicted error to determine the network viability and 

accordingly if the error difference is greater than a set value 

the algorithm would trigger a retraining request of the 

DNN. 

2. Lyapunov Control on Duffing - 
Vanderpol Oscillator Model 

An easy way to comply with the paper formatting 

requirements of SAP is to use this document as a template 

and simply type your text into it. 

This section provides an overview of the Duffing-Van der 

pol system dynamics. Duffing-Van der pol mathematical 

model is 

𝒙 + 𝜹𝒙 + 𝝐𝟏(𝒙𝟐𝒙 + 𝒙𝒙 𝟐) + 𝝐𝟐𝒙
𝟑 = 𝝁 𝒕 + 𝜸 𝐜𝐨𝐬 𝝎𝒕  (1) 

It combines both non-linear stiffness and non-linear 

damping Equ.1. Setting 

𝑥 = 𝑥2                  (2) 

and 

𝒙 = 𝒙𝟏                  (3) 

Therefore  

𝒙 𝟏 = 𝒙𝟐                 (4) 

𝑥 2 =
1

1+𝜖1𝑥2
  𝛿𝑥 − 𝜖1𝑥𝑥 

2 − 𝜖2𝑥
3 + 𝜇 𝑡 + 𝛾 cos 𝜔𝑡   (5) 

we get the state space model 

 
𝑥 1
𝑥 2

 =  
𝑥2

1

1+𝜖1𝑥2
 𝛿𝑥2 − 𝜖, 𝑥𝑥2

2 − 𝜖2𝑥
3          (6) 

𝑦 =  
𝑥1

𝑥2
                       (7) 

3. Lyapunov Controller Design 

In this section we give an overview of the controller 

design. The controller is designed with the purpose of 

achieving Duffing- van der pol oscillator system stability at 

an increased forcing frequency. Desired state qd and actual 

state q. 

e = qd − q                 (8) 

A control LYAPUNOV candidate is then chosen to be 

V =
1

2
 γ1ⅇ + γ2ⅇ              (9) 

As shown from Equ.11, the transient behavior of the error 

dynamics can be influenced by a suitable choice of the CLF 

and gamma parameters, respectively Equ.10. Therefore, the 

CLF has been chosen to be positive definite for all 

x, x                    (10) 

taking the time derivative of V Eqn.9 

V  = (γ1 + γ2e) (γ1e + γ2e )       (11) 

V  = −kV               (12) 

which is globally exponentially stable as V is globally 

positive definite. Hence, by substitution in Eqn.11 we find 

the control law Eqn.13. 

𝑢 =
1+𝜖1𝑥2

𝛾2
(
𝑘

2
𝛾1e +

𝑘

2
𝛾2e + 𝛾1e + 𝛾2𝑥 𝑑𝑒𝑠 ) − 𝑃 𝑐𝑜𝑠 𝜔𝑡 +

𝛿𝑥 + 𝑥 + 𝜖1𝑥 𝑥
2 + 𝜖2𝑥

3                 (13) 

4. Simulation Results for Unoptimized 
System 

 

Figure 1.  Reference signal (dotted green) 5th harmonic function with 

amplitudes of 0.1, 0.5 and 1 and Lyapunov controller output (red) for t=2.5s 

Section 4 will provide an overview of the results after 

running the system with the Lyapunov controller and 

manually selecting the parameters that lead to reduced error 

across the time frame of 2.5s. The Duffing- van der pol 

oscillator model was ran with the following selection of 
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parameters. δ=0.5, ε1=1.6, ε2=-0.8, P=3, ω=10 and the 

control parameters γ1 =12, γ2 =4, k=115. The parameters 

were manually adjusted and tuned to give low error 1 and 

high stability 2. 

 

Figure 2.  Phase portrait showing a stable system with no interference 

under the harmonic reference signal t=2.5s 

5. Lyapunov Controller 
Parameteroptimization 

5.1. Overview 

The process of selecting the proper Sigmas to reduce the 

error of the model can be modelled as an exhaustive search 

problem. Where several Sigmas are tried and the one    

that results in a reduction in the system error is selected. 

Though this process results in the best Sigmas, yet it is time 

consuming. To overcome this problem, we developed a deep 

learning model that researches different system and 

controller parameters.  

A given sigma is good if it reduces the error of the system. 

The pipeline is presented in Fig. 5. Initially, the model is run, 

and the system error is monitored. If the error surpasses a 

curtain threshold the neural network is queried for a sigma 

that would reduce the system error given the current state of 

the system. The algorithm for the entire process is defined 

below. The network proposed in Fig.3 is initially trained and 

then used to predict new Sigmas; Sigma 1 (s1), and Sigma 2 

(s2) if the system error (sys err) exceeds a given threshold 

(0.8).  

The network is then given the current state of the system in 

terms of time (t), position (p), velocity (v), and the randomly 

generated (s1) and its corresponding (s2) and it predicts the 

system error. If the predicted error is less than the current 

system error, then the system is updated with the newly 

generated Sigmas that are speculated to reduce the error. 

Every iteration the newly generated Sigmas are their 

corresponding system parameters are stored. After each  

100 iterations the system is probed for perturbations by 

computing the average of the system error throughout the 

previous 100 iterations (avg sys err) if this error is larger than 

the previous system average (prev sys avg) the network is 

retrained on a portion of the old data (Memo) used in 

previous training as well as the data from the previous 100 

iterations (new data). The motive behind using the old data 

as well as the new data is to avoid catastrophic forgetting as 

mentioned in [14]. 

The idea of using a memory is usually known as 

self-refreshing memory and was initially introduced and 

tested in [15] [16] [17]. The idea here is that even when there 

are perturbations they might not last for so long and 

consequently we don’t want the network to lose its ability to 

predict the System error if the system parameters return back 

to norm after the network was retrained several times.  

Memory = 10% of the old training data (prev sys avg = 

system error average) of the training data initialization. 

 

Algorithm 1.  Adaptive Algorithm Steps for Sigma prediction 

5.2. Dataset 

The Time, Error, velocity, position and control signal 

were collected every 1 millisecond and added into an array of 

values. The dataset was split into 60% training and 40% test. 

A continuous update to the dataset is done according to   

the calculated error slope every 10ms (100 iterations) as 

explained above. 

5.3. Network Architecture 

The network architecture is in Fig. 3 The network is 

composed of 5 blocks (15 layers). The number of layers 15 

was chosen for its efficiency and high performance. It was 

found that if a lower number of layers is used the DNN 
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performance was affected and when a higher number of 

layers was used it had no effect on the performance but 

reduced the DNN efficiency. A block is composed of 3 

layers: a fully connected convolution layer followed by batch 

normalization layer and rectified linear unit (RELU) in 

Eqn.14. 

output = max(0.0,input)         (14) 

The batch normalization layer allows us to use higher 

learning rates as it makes ensures that activations are not too 

high or low. The RELU is a nearly linear function in the 

sense that it is a piece wise linear function with two linear 

pieces. This feature increases its capability to preserve many 

of the properties that make linear models easy to optimize 

with gradient based methods as well as the properties that 

make linear models generalize well. The last block has a 

dropout layer aside from the fully connected convolution 

layer and a regression layer to predict the error. Dropout [18] 

is a regularization method that was developed to solve the 

problem of overfitting. The overfitting problem occurs when 

the neural network learns every minor detail in the training 

data. The effect of such a behaviour is that the network will 

have high accuracy on the training data but very low 

accuracy on the test data. This means that the network     

is unable to generalize on unforeseen data. The proposed 

solution for this problem is the dropout technique. The 

dropout technique ignores a number of layer outputs 

randomly. Such a behaviour makes the layer appear as and 

be treated-as a layer with a different number of nodes and 

connectivity to the prior layer. Consequently, each update  

to a layer during training is performed with a different 

“perspective” of the configured layer. The regression layer 

computes the mean squared error loss. The network is trained 

to learn a function F in Eqn.15. 

F : (t,x,v,s1,s2) → e          (15) 

Where s1 and s2 are the two Sigmas, t is the time and e is 

the error of the model. 

5.4. Network Training and Testing 

The network is initially trained for 5 epochs using Adam 

optimization algorithm. The learning rate is initially set to 

0.001 and is reduced by a factor of 0.2 every 5 epochs. This 

allows large weight changes in the beginning of the learning 

process and small changes or fine-tuning towards the end of 

the learning process. This gives more time for fine-tuning. 

While the model is running if the system error passes a given 

threshold the Neural network is used to choose two Sigmas 

that would lower the error. This is done by selecting a 

uniformly distributed random number in the interval [-50, 50] 

for s1.  

The restriction of s1 and s2 was added later in the research 

to avoid the genetic algorithm and DNN going into a 

continuous loop of changing the Sigmas to find the perfect 

candidate. It was also found that the smaller the sigma the 

better the system outcome but in order to maintain controller 

flexibility the range was set to [-50, 50] to account for 

unexpected changes in the system behaviour. The network 

does not pass the proposed Sigma 1 and Sigma 2 to the 

model and controller unless Sigma 1 and Sigma 2 are 

predicted to reduce the system error. This helps in tuning the 

entire pipeline to take small/large steps to change the 

behaviour of the duffing van der pol model given that sudden 

large changes in the Sigmas may result in system failure. The 

idea behind predicting the error and not the Sigmas is the fact 

that we can have more than one error for a given Sigma, 

which gives more flexibility for choosing the range of 

sigmas to consider. The root of the mean square error graph 

for the first 5 epochs are plated in Fig. 4. The results show 

that the neural network presented in Fig. 5 was able to predict 

the error with an error of 0.03564. 

 

 

Figure 3.  Neural network used for predicting the best Sigmas that would 

result in a decrease in the system error. The input to the network is the time 

(t), displacement (x), velocity (v), Sigma 1 (s1), Sigma 2 (s2) and the output 

is the expected system error (Error) for the system. s2 = - s1/8 

Input Data 

Error 
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Figure 4.  Neural network used for predicting the best Sigmas that would 

result in a decrease in the system error. The input to the network is the time 

(t), displacement (x), velocity (v), Sigma 1 (s1), Sigma 2 (s2) and the output 

is the expected system error (Error) for the system 

6. Results and Discussion 

In Fig. 5 the system is shown to go into instability and fails 

0.3 seconds from start due to the use of unfit Sigma 1 = 100 

and Sigma 2 = 0.6 while in Fig. 5 we show that using the 

proposed deep neural network to predict the appropriate 

Sigma 1 and Sigma 2 lead to stabilizing the system and 

maintaining the system error under the set threshold. 

The results show the efficiency of the neural network in 

predicting the error given the sigma, as well as the efficiency 

of the algorithm in preventing the system from failing 

likewise in continuously enhancing its performance by 

keeping the system error as low as possible. On the other 

hand, maintaining a constant sigma results in large system 

error and the system might eventually fails. 
 

 

Figure 5.  The system error goes to infinity as shown when the algorithm is 

not applied 

 

Figure 6.  The system error after using the neural network in Fig. 7 to get a 

good estimate of s1 and s2 

6.1. Algorithm Reaction to Parameter Sabotage 

 

Figure 7.  Error uptick at t = 0.8867 

 

Figure 8.  The Algorithm reacting to the sudden change by adjusting 

Sigma 1 
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To elaborate on the ability of the proposed solution to 

tackle mid system instability or sudden changes. The system 

parameters are manually overwritten while the system is 

running to measure the NN and Algorithm effectiveness in 

returning the system to stability. 

As demonstrated by Figs 7 and 8 the deep network was 

able to predict the best parameters to re-establish stability of 

the system and controller within 0.4 ms. 

6.2. Improving the System Performance 

In this section we show the ability of the proposed method 

in finding the best system parameters while the system and 

controllers are running. 

 

 

Figure 9.  The Algorithm reacting to the sudden change by adjusting s2 

 

Figure 10.  Phase diagram of the algorithm before and after finding the 

optimal system parameters for the conditions which shows major 

improvement compared to Fig.4 

6.3. Network Retraining 

During the re-training phase of the neural network we 

noticed that without the use of the memory it might take 

longer and, in some cases, go into an infinite state without 

finding the optimum solution. The speed with which the 

system returns back to it stable state affects the retraining 

phase as we only consider the change in the average of the 

system error. If the difference between the previous system 

error average and the new system error average is not large 

enough then the condition for retraining won’t be met and the 

system will get stuck trying to find a pair of Sigmas that 

would result in error reduction. This won’t be possible 

without memory because the moment the network is 

retrained the new data overwrites the information learned by 

the network. The use of memory allows the network to 

remember the stable and perturbed history of the system 

parameters. 

 

 

Figure 11.  s1 and s2 are changed while the system is running to improve 

performance and reduce error 

 

Figure 12.  Error is shown to be reduced from the starting point by 

updating the system parameters and the algorithm is successful in maintain 

the error within bounds 
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Figure 13.  Re-training to improve the deep neural network performance 

in order to adapt to the introduction of new system dynamics 

7. Conclusions and Future Work 

Lyapunov control was applied to Duffing- van der pol 

oscillator model that is experiencing chaotic behaviour. The 

study shows the effectiveness of deep learning combination 

with nonlinear Lyapunov control in finding the best 

parameters to maintain system stability. The study shows 

that deep learning with the proposed algorithm enables the 

user to effortlessly find the best parameters for the controller 

and the system initially and recalibrate the parameters if any 

disturbances or new dynamics are introduced to the system. 

In future work we would like to investigate the effect of 

changing the control strategy according to the type of 

instability detected. We speculate that depending on the type 

of perturbations and system dynamics, changing the control 

strategy might be more effective than changing the 

parameters only. Future considerations include a network 

that can determine which control strategy would have the 

highest impact on returning the system to stability and cause 

error reduction. The proposed approach can be aided with the 

use of generative adversarial networks (GAN). 
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