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Abstract  This article presents the application of integrating real-time optimization with model-predictive control on a 

hydrocracking unit on a model case refinery in the Middle East. Real-time optimization (RTO) provides technological 

excellence that helps to maximize the contribution of the plant to the business profit, provides best-in-class performance, 

optimizing the plant operation, enhancing safety and reliability. The main objective of RTO implementation on refinery 

processes was to optimize the operation by applying online rigorous nonlinear closed-loop optimization technology. RTO 

contributed to optimize key process operating variables by shifting the unit margin toward the optimum, and operation was 

better placed to challenge targets and operating conditions, driving the plant toward a more profitable operating regime and 

bringing the higher benefits. The steady-state and kinetic models were developed and used by RTO to improve the yield of 

high value products by maximizing the economic objective function to enhance the yields of diesel and gasoline. Increasing 

the feed rate subject to unit constraints and catalyst run length was another objective of RTO implementation. In addition, 

potential RTO applications have been highlighted in this article for achieving CO2 emission reduction using two different 

approaches: improvement of energy efficiency and application of CO2 capture and conversion technologies. This application 

will integrate model predictive control (MPC) with RTO with an ultimate aim to maximize an economic objective function to 

reduce CO2 emission.  

Keywords  Real-time optimization, Model-predictive control, Hydrocracker, Refinery processes, Inferential model, 

Economic objective function, CO2 emissions 

 

1. Introduction 

The integration of real-time optimization (RTO) and 

control systems for an optimal plant operation is still an open 

research problem and attempts have been made to address 

the integration task in a systematic way. Use of RTO is the 

process of finding the set of conditions required to obtain the 

best economic result for a given condition; a method of 

determining a set of operating targets for the online control 

system to achieve the maximum profit possible within 

constraints and practical limits of the process equipment 

while keeping all the products at specifications [1,2,3]. RTO 

systems are advanced techniques or algorithms which 

evaluate process conditions and find an optimum solution to  

 

* Corresponding author: 

dr.ansarirm@yahoo.com (Rashid M. Ansari) 

Published online at http://journal.sapub.org/control 

Copyright ©  2020 The Author(s). Published by Scientific & Academic Publishing 

This work is licensed under the Creative Commons Attribution International 

License (CC BY). http://creativecommons.org/licenses/by/4.0/ 

enhance the performance of the plant.  

The real-time optimization strategies [1,2,3,4,5] have been 

designated in the literature by real-time optimization [6] or 

online optimization [7,8,9,10]. The model-based technique, 

is the most common RTO strategy available in commercial 

RTO systems [11,12,13] are widely used in the petroleum 

refineries [14,15,16,17], but may also be found in other 

sectors of the industry [18]. 

The RTO provides superior performance due to the use of 

process and kinetic models which are integrated into RTO 

framework [19,20]. This integration of accurate process 

models provides a platform to perform the real-time 

otimization and improves the overall performance of the 

plant to maximize the yield of high value products. [21,22].  

The factor of plant-model mismatch is also important in 

real-time optimization applications as the more accurate are 

the process and kinetic models, the better will be the 

performnce of RTO [23,24,25,26]. This will also require 

modelling techniques to take into account the process 

constraints which will guarantee the optimality of process 

operation [27,28,29,30]. 
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The other advantage of RTO is that it integrates process 

measurements into the optimization framework; ensuring 

process optimization does not rely exclusively on an 

inaccurate process model but also on process information 

stemming from measurements. In literature, various RTO 

techniques are available [31] and can be categorized into two 

broad families depending if the process model is used 

(explicit optimization) or not used (implicit optimization).  

The present work aims at presenting the implementation 

techniques and performance evaluation of RTO systems on a 

hydrocracking unit on a model case refinery in the Middle 

East. The aim is to highlight some features of RTO systems, 

which have brought higher benefits to the refinery by 

maximizing the economic objective functions. In addition, 

potential RTO applications have been highlighted for 

achieving CO2 emission reduction using two different 

approaches: improvement of energy efficiency and 

application of CO2 capture and conversion technologies. 

This application will integrate MPC with real-time 

optimization with an ultimate aim to maximize an economic 

objective function to reduce the CO2 emission.  

2. RTO Integration with Automation 
Systems  

In the first place, the basic instrumentation and control 

layer is established for the plant by installing the distributed 

control system (DCS) so that all the specifications of the 

units are met and plant operation is stabilized and runs safely 

and smoothly. The next step is to implement advanced 

process control technologies at the plant. That control layer 

takes care of process constraints, interactions and future 

consequences of the current actions in the operation of the 

process units. 

This control layer is called model predictive control and 

inferential models, which form a closed loop quality control 

system on the unit. The next control layer is real-time 

optimization, which provides a global view and incorporates 

different aspects and interrelations among processes in a 

model to compute operational decisions that optimize 

process efficiency and economy.  

The Figure 1 shows various layers of automation 

integrated with real-time optimization. The refinery LP 

model will set the target for optimizer, which will use the 

steady-state and kinetic models to provide the optimized set 

points for a multivariable controller (MVC) to implement the 

processing units using a DCS as a platform. The inferential 

models interfacing with MVC form a closed-loop quality 

control system.  

It is also important to know that multivariable control is a 

pre-requisite for RTO implementation and, therefore, a good 

multivariable control application should be in place on the 

unit before planning to implement RTO project. There are 

two conceptual ideas, which will follow the discussions 

between multivariable control and RTO applications.  

The multivariable control is designed in such a way that it 

holds the plant at constraints such as high compressor speed, 

column pressure drop, maximum valve position or maximum 

reactor temperature (run-away reaction). Nonlinear RTO 

models calculate optimum when it is between bounds or 

change position. While MVC pushes the plant to constraints, 

real-time optimization keeps on searching for an optimum 

solution, which may not be at constraints but somewhere else 

in the operating region of the unit.  

 

Figure 1.  Real-time optimization integrating with the system of automation  
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3. Integration of Inferential Models  

General Description 

Integration of inferential models with a model-predictive 

control system is important as it closes the quality    

control loop between the two systems. The inferential 

models or Robust Quality Estimator (RQE) uses selected 

measurements (such as feed rate, temperature, pressure, etc.) 

to predict the real value of a critical product property or 

complex process variable that cannot be measured online,  

or is measured infrequently with potential large time delay. 

In a typical application, RQE provides a continuous 

real-time calculated value for closed loop control. It can cope 

with nonlinear systems, varying gains and uncertain process 

dynamics. This unique feature makes the model-predictive 

controller robust to varying process conditions and 

nonlinearities.  

If a certain process variable is well correlated with some 

other particular parameters, it is assumed that the general QE 

equation can be written as 

   BiasKCMLnCMCQE kx

kkjjii *)(**
 

 

Figure 2.  System of inferential model and its development procedure 

Where, 

QE  is the estimate of the process variable 

Ci, j, k are trend coefficients 

Mi, j, k are measured or calculated process variables 

Xk  are exponentiation coefficients 

Bias is a calibration constant 

The different terms of the above equation represent a 

combination (linear with respect to the parameters) of 

process measurements such as pressure compensated 

temperature, feed flow, rundown rates, separation index 

terms (such as reflux, reboil or stripping steam ratios), and 

absolute pressure. For the flow data, the logarithmic value is 

often applied whereas for temperatures sometimes an 

exponential term is used for “contaminant” qualities such as 

ASTM color. In many applications the only measurements 

used are pressure corrected column tray or overhead 

temperatures. 

The inferential models are regularly updated based on 

laboratory measurements or online analyzer. Currently, the 

most common approach is to correct the calibration factor 

bias. The RQE provides a second updating mechanism based 

on the Kalman filter. It will correct all the coefficients and 

the bias term of the regression. This makes RQE an adaptive 

estimator. Figure 2 gives a simplified example of the 

systematic approach to construct the naphtha FBP inferential 

model with process variables such as pressure-compensated 

temperature, pressure of the column and reflux ratios.  

The model is updated using laboratory results. A system of 

inferential model update is shown in the lower section of 

Figure 2, providing laboratory result as a basis to update the 

predicted values and a first-order filter to compensate for the 

noise in the flow measurements. The average deviation from 

the laboratory results is only 2°C, and considering the 

repeatability of  4°C in naphtha FBP laboratory results, this 
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prediction can be considered very accurate. The details of 

this system are given by Ansari and Ghazzawi [32]. 

4. Process Description  

The hydrocracker unit (HCU) of the model case refinery 

has a maximum feed capacity of 27,500-28,500 barrels per 

stream day. The HCU consists of three major sections: 

reactor section, debutanizer, and main column. The 

operation objective of the hydrocracker unit is to maintain 

the feed flow at the required rate, while maximizing the 

gasoline or diesel yield, subject to the products qualities of 

the main fractionator. The key focus of RTO implementation 

was to provide a combination of operating conditions, which 

will support an increase in each reactor temperature and 

maximize the economic objective function to enhance the 

yield of gasoline or diesel products. 

Therefore, raising the first stage (DHC) reactor 

temperature will enhance the diesel yield while raising the 

second stage (HC) reactor temperature will increase the 

gasoline yield. In total three MVC applications were 

identified in the site survey to achieve the goal of higher 

reactor conversion and yield and these applications were 

reactor section control; main column control and debutanizer 

control. 

The reaction section controller is designed to meet the 

following process operating objectives: 

1.  In current operation, the fresh feed is fixed and so is 

the main fractionator bottom fuel oil draw of. The 

main objective is to maintain the higher conversion  

if the bottom level is controlled well. So maximizing 

the yield (or maximizing the Delta T) is the main 

economic target in this application. Which stage Delta 

T should be maximized that will be based on the 

operation mode, gasoline or diesel. 

2.  Stabilize the reactor temperature profile based on the 

operation mode.  

3.  Maintain the quench valve position as high limit to 

keep the sufficient capacity in case reactor 

temperature run-away reaction takes place. 

5. Current Operating Strategy 

The current HCU operating strategy at model case refinery 

can be summarized as follows: 

  Maximize the unit throughput, while respecting unit 

constraints and required catalyst run length. 

  Adjust the stage 1 or stage 2 reactor severities, to meet 

the requirements of two main modes, maximum 

naphtha or maximum diesel. 

  Optimize the circulating refluxes in the product 

fractionator, to reduce energy costs. 

The average unit stream time is 92% (including the effects 

of catalyst run length), which is equivalent to 336 days per 

year. 

6. Hydrocracker Process Constraints  

Table 1 gives the HCU-reactor constraints, Table 2 gives 

the HCU-main fractionator constraints, and Table 3 gives the 

main constraints on HCU-debutanizer, imposed on the 

controllers during the design stage. These constraints were 

discussed with the operations on the reactor systems to keep 

the reactor bed temperature within the specified limits and to 

keep significant quench tolerance to protect run-away 

reaction. 

Table 1.  Hydrocracker Reactor Constraints 

Constraint Limit Comments 

Reactor bed temperature <460°C  

Differential Temperature of each 

reactor: Delta T 
<50°C  

Crossover Temperature of stage 1 <60°C 
Delta T = outlet T of Rx2 - inlet T of Rx1, then 

identify the constraints 

Crossover Temperature of stage 2 <40°C Delta T = outlet T of Rx4 - inlet T of Rx3 

Quench flow valve position <30% 
Keeps sufficient quench tolerance to protect 

reaction run away 

System Pressure >140 kg/cm2 Hydrogen makeup compressor limiting 

Table 2.  Main Fractionator Constraints 

Constraint Limit Comments 

Reflux <200 m3/h Maximum reflux allowed protects the main fractionator from flooding. 

HN 95% point <175°C 

HN 95% point controlled range 170~175°C. For gasoline mode, the 

control purpose is to maximize gasoline yield, therefore the HN 95% 

point would reach to HILimit (<175°C). 

HN 95% point >170°C 

HN 95% point controlled range 170~175°C. For diesel mode, the control 

purpose is to maximize diesel yield, therefore HN 95% point would be 

LOLimit (>170°C). 
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Table 3.  The Debutanizer main constraints 

Constraint Limit Comments 

%iC5 in LPG <2% (vol)  

IBP of MF >30°C  

7. Steps of Online Closed-loop 
Optimization  

The following is a simplified description of the steps of 

operations involved in online closed-loop optimizations:  

the data reconciliation; rating case, base case; constraint 

calculation; optimization case and implementation. Figure 3 

shows these steps starting from steady-state detection to 

implementation – downloading the targets to the control 

system.  

8. Steady-state Detection (SSD) 

The steady-state detection has a great influence on RTO 

performance but is not discussed in detail in the RTO 

literature. In the current RTO application, the “statistical 

method” of steady-state detection is discussed as follows: 

The total variance of a signal x for a data window with n 

points is given by the sample variance (s2) according to:  

 

Where X is the sample mean, while the variance of the 

difference between two successive points is expressed by: 

 

These two variances give rise to the statistic R, which is 

eventually expressed as C, defined as: 

 

There is an extra option, where the user may define a 

tuning parameter, TSM, which changes the definition of R in 

the following way: 

 

Then, the signal is static if R is greater than a critical value 

Rc (or if C is lower than a critical value Cc). 

9. Data Reconciliation 

Data reconciliation involves mass and heat balances 

around each and every piece of equipment in the unit,  

which is fully consistent with the overall balances [34].  

The benefits include consistency and accuracy of yield 

calculations and targeted instrument maintenance. When 

data present significant uncertainty, data reconciliation is the 

first step to be applied in a model-based approach to process 

optimization. The target is to estimate consistent values of  

all plant variables from available online measurements based 

on a process model. Soderstrom et al. [35] highlighted that  

if measurement errors resulting from poor instrument 

calibration are not considered, the data reconciliation step or 

subsequent parameter estimation step will not provide 

meaningful answers.  

 

Figure 3.  Steps of online closed loop optimization 
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Figure 4.  A block diagram representing the RTO and regulatory feedback system 

The redundancy in measurements is required by data 

reconciliation system. Therefore, it is important to have 

accurate, consistent and robust estimations so that modelling 

errors may be minimized, irrespective of process 

disturbances, measurement noise, etc. It also updates certain 

unknown model parameters.  

The combination of RTO and regulatory control can be 

considered similar to cascade control system as shown in 

Figure 4. The outer RTO loop will operate more slowly than 

the inner loop, and a poor design of this interaction will result 

in poor performance. The dynamic controller handles the 

transformation between the steady-state model used in RTO 

and the actual dynamic operation of the process. If the RTO 

model and dynamic model have very different gains, the 

resulting combination can perform poorly. As in cascade 

control, the inner loop should be faster than the outer loop; 

otherwise poor closed-loop performance may result [36]. 

In the rating case the rating of the equipment is identified 

and in the base case the economic objective function is 

introduced and measurement offsets are calculated. The 

benefits of these steps include online calculations of unit 

margin and additional targeted instrumentation maintenance.  

The constraint calculations include equipment 

constraints, control constraints, process constraints and 

economic constraints. The benefits of this step includes 

active constraint tracking and focused debottlenecking. In 

optimization step, the effect of multiple independents is 

observed on economic objective functions to achieve the 

maximum profit and, finally, the targets of optimized 

solutions are downloaded in the implementation step.  

10. Application of RTO to Reduce CO2 
Emission  

The following steps would be required to apply real-time 

Optimization application on the refinery processes to reduce 

CO2 emissions.  

  Developing the process models for all the potential 

units with CO2 emissions 

  Integration of RTO with MPC to optimize the operation  

  Integrating CO2 inferential models with MPC 

  Maximizing economic objective function with a CO2 

emission level constraint 

  Improving energy efficiency to reduce the overall CO2 

emissions 

The RTO application on CO2 emissions reduction would 

first require modelling refinery processes to identify 

promising units with higher emissions to be targeted for CO2 

reduction in the refinery. At the same time, tools for 

achieving CO2 emissions reduction will be developed for 

two different approaches: improvement of energy efficiency 

and application of CO2 capture and conversion technologies.  

Among the refinery processes, it has been identified that 

units with larger furnace systems, such as a crude oil 

distillation unit, are the most energy intensive processes in 

the refinery; fouling of the heat exchanger leads to increases 

in the operating cost and carbon emission. In addition, a 

majority of energy input to hydrocracking and catalytic 

reforming is in burning coke off the catalyst and catalyst 

regeneration respectively. Meanwhile, the hydrogen 

production generates a large amount of CO2 by the method  

of steam methane reforming, which is the most common 

reaction for the hydrogen production.  

To solve the problem for CO2 reduction in the typical 

refinery process, the multivariable control applications  

need to be developed on various potential units of the 

refinery to achieve CO2 reduction. The model-predictive or 

multivariable control has already been implemented in one 

of the refineries in the Middle East on a crude distillation unit 

[37,38,39], on a catalytic reforming unit [40,41], and on a 

hydrocracking unit [42]. 

The multivariable control applications on these units   

are forming closed-loop quality control systems with the 

inferential models [43,44]. The multivariable control 

applications on these units may be modified to include CO2 

variable in the controller design. In addition, an inferential 

model for CO2 would be required to be developed to form   

a closed-loop control system [32]. Real-time optimization 

applications will be required to be extended to other 
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processing units with larger emissions of CO2 such as crude 

distillation and catalytic reforming. Edgar et al. [45] have 

listed six steps that should be used in solving any practical 

optimization problems. A summary of the procedure with 

comments related to RTO is given below: 

Step 1. Identify the process variables. The important 

input and output variables for the process must be identified. 

These variables are employed in the objective function and 

the process model. 

Step 2. Select the objective function. To arrive at a single 

objective function based on operating profit, the quantity and 

quality of each product must be related to the consumption of 

utilities and the feedstock composition. The specific 

objective function selected may vary depending on plant 

configuration as well as the supply/demand situation. 

Step 3. Develop the process model and constraints. 

Steady-state process models are formulated, and operating 

limits for the process variables are identified. The process 

model can be based on the physics and chemistry of the 

process or it can be based on empirical relations obtained 

from experimental process data. Inequality constraints arise 

because many physical variables, such as composition or 

pressure, can only have positive values; or there may be 

maximum temperature or maximum pressure restrictions. 

These inequality constraints are a key part of the 

optimization problem statement and can have a profound 

effect on the optimum operating point. In most cases, the 

optimum lies on a constraint. 

Step 4. Simplify the model and objective function. Before 

undertaking any computation, the mathematical statement 

developed in steps 1-3 may be simplified to be compatible 

with the most effective solution techniques. A nonlinear 

objective function and nonlinear constraints can be 

linearized to use a fast, reliable optimization method such as 

linear programming. 

Step 5. Compute the optimum. This step involves 

choosing an optimization technique and calculating the 

optimum set points to be implemented by model-predictive 

controller. Most of the literature on the subject of 

optimization is concerned with this step such as developing 

efficient and robust numerical methods for optimization 

calculations [60].  

Step 6. Perform sensitivity studies. It is useful to know 

which parameters offer an optimization problem and are the 

most important in determining the optimum. By varying 

model and cost parameters individually and recalculating the 

optimum, the most sensitive parameters can be identified. 

11. Results & Discussion 

In relation to the benefits of RTO implementation on 

model case refinery in the Middle East, it was observed that 

benefits obtained mainly from reactors weighted average bed 

temperature (WABT) independent variables. The WABT set 

points were implemented at each run and reached by the 

multivariable control applications. The feeds were limited by 

the constraints but contributed at the profit. The main 

fractionator was the most constraining factor, mainly in the 

LDO and HDO sections. The benefits were achieved without 

compromising run length and have been obtained by 

maintaining the WABT and varying the operating conditions 

to improve product values. 

It was one of the findings from RTO simulation data that 

by decreasing the indirect recycle flow (IDR) from 50 m3/hr 

to 48 m3/hr, substantial benefits can be achieved through 

higher unit margins and these economic gains are maximum 

when HDO rundown flow is unconstrained. In general, the 

RTO benefits come from the following improvements: 

1.  Improve the yield of high value products by 

maximizing the economic objective function to 

maximize diesel or gasoline on the hydrocracker. 

2.  Increase the federate subject to unit constraints and 

catalyst run length. 

3.  Adjust the bed inlet temperature to maintain a desired 

WABT and protects against constraints such as 

hydrogen quench and delta temperature limits. 

4.  Improve catalyst life by maintaining the reactor bed 

temperature profile.  

The development and implementation of RTO systems for 

the hydrocracking unit was an outcome of great team work 

and collaboration between industrial and vendor teams over 

a couple of years. This has brought substantial benefits to the 

operation of the refinery. It has increased the production   

of high value products such as diesel and gasoline by 

maximizing the economic objective functions, using RTO 

techniques.  

The Figure 5 shows the inferential model of gasoline, 95% 

point of heavy naphtha (similar model was developed for  

LN 95%) compared with the laboratory results in main 

fractionator of Hydrocracker unit which was developed 

using inferential modelling techniques and formed a quality 

control system with model predicticve control and integrated 

with RTO to maximize the yield of gasoline as shown in 

Figure 6 [42]. 

12. Diesel 90% Specification Control 

The objective of HDO90% control is to keep the quality of 

HDO90% within the specified range using the model 

predictive control and inferential model in a closed-loop 

control system. The Figure 7 shows that the diesel 

(HDO90%) is well controlled between the limits 350-352C. 

RTO maximizes the diesel when it is accurately controlled 

between these limits [42]. 

The optimized-based study of CO2 reduction strategies in 

the refinery is currently undertaken which will bring together 

other processes to form a large-scale optimization solution to 

enhance the performance of all the processing units in the 

refinery.  
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Figure 5.  Inferential model for gasoline (HN 95% - hydrocracking) 

 

Figure 6.  Maximization of gasoline production with RTO application 

 

Figure 7.  Diesel (HDO 90%) specification control between the limits (350-352C)  

It was also observed during implementation phase that  

the reliable instrumentation is the key to success of RTO. 

This includes the necessary support infrastructure, to ensure   

that any instrument faults identified during design and 

commissioning are quickly and effectively rectified.  

It is important to have reliable inferential models and it is 

equally important that these quality indicators continue to 

perform effectively. These inferential models will help 

significantly with the success of the optimization-based 

study for CO2 emission reduction in the refineries.  
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13. Conclusions 

The RTO of the hydrocracker was implemented 

successfully. The integration of RTO with multivariable 

control applications and inferential models brought 

substantial benefits to the hydrocracker operation. The main 

benefits of RTO implementation were achieved from the 

reactor’s WABT independent variables. These set points 

were implemented at each run and were reached by MVC. 

The feeds were limited by the constraints but contributed at 

the profit. The main fractionator operation was the most 

constraining factor, mainly in the LDO and HDO sections. 

These benefits have been achieved without compromising 

the catalyst run length.  

It is also envisaged that implementing RTO applications 

for CO2 emissions reduction would bring higher benefits to 

the refinery. Since the applications of multivariable control 

are already in place on the key processing units of the 

refinery, the implementation of RTO will help to drive    

the plant operation toward the optimum operation by 

maximizing the economic objective functions on these 

processing units.  
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