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Abstract  This paper investigates the observer-based robust adaptive fuzzy control problem for a class of uncertain 
underactuated systems with time delay and dead-zone input. Within this method, the state observer is developed for 
estimating the unmeasured states in the underactuated system. The fuzzy logic systems are used to approximate the 
unknown nonlinear functions, and some adaptive laws are introduced to estimate unknown parameters. The dead-zone 
input which is one of the significant input constraints often exists in many practical industrial control systems. By 
employing a Lyapunov-Krasovskii functional, it is verified that the proposed controller ensures that all the signals in the 
closed-loop system are bounded. Simulation results are illustrated to demonstrate the regulation performance of the system 
output and state estimation by the proposed control method. 
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1. Introduction 
In the past decades, the control problem of underactuated 

systems has received a lot of attention. The underactuated 
system is a mechanical system with fewer control actuators 
than degrees of freedom and can be found in many 
applications, such as boom cranes [1], axisymmetric 
spacecrafts [2], pole and hoop systems [3], surface vessels 
[4], and so on. The underactuated systems have some 
advantages like decreasing the number of actuators, 
reducing the cost, and lightening the system. 

The dead-zone input nonlinearity is a nonsmooth 
function that features certain insensitivity for small control 
inputs which is often encountered in a variety of practical 
systems, such as the valve system [5] and the gripper 
rotating system [6]. The adaptive fuzzy controller is 
proposed to deal with nonlinear systems with unknown 
dead zones [7]. In [8], the adaptive tracking control 
problems are considered for a class of nonlinear systems 
with a fuzzy dead-zone input. 

A category of switched uncertain nonlinear systems  
were studied through using adaptive fuzzy output-feedback  
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control in [9]. In [10], a robust adaptive fuzzy tracking 
controller was designed for pure-feedback stochastic 
nonlinear systems with input constraints. On the other hand, 
Zhou et al. [11] deal with the problem of adaptive fuzzy 
control for nonstrict-feedback systems with input saturation 
and output constraint. In this paper, fuzzy logic systems are 
introduced to describe the input/output behavior of the 
controlled system. Based on fuzzy logic systems, we design 
the adaptive fuzzy controllers with several appropriate 
adaptive laws. 

In many practical systems, system states are not available 
for measurement. Based on state variable filters, an 
observer is presented for solving the problem of the 
unavailable states of the system. Recently, for a class of 
uncertain nonlinear systems with nonsymmetric input 
saturation, the problem of observer-based adaptive NN 
control was considered in [12]. In [13], a fuzzy state 
observer was proposed to estimate the unmeasured states. 

It is well known that the time-delay systems have 
received considerable attention [14], [15], and the existence 
of time delay often leads to the system instability and poor 
performance. Based on Lyapunov-Krasovskii functional, 
the presented robust adaptive fuzzy control method can 
ensure the robust stability of the whole closed-loop 
nonlinear system with time delay. 

In this paper, we focus on developing an observer-based 
robust adaptive fuzzy control method for uncertain 
underactuated system with time delay and dead-zone input. 
Fuzzy logic systems are introduced to approximate 
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unknown nonlinear functions, and a fuzzy state observer is 
constructed to estimate the unmeasurable system states. 
Some appropriate adaptive laws are used to estimate the 
upper bounds of the unknown uncertainties. Finally, with 
the help of Lyapunov stability theorem, the proposed 
controller can guarantee the stability of the system.  

The rest of this paper is organized as follows. The 
description of the system and the concept of fuzzy logic 
systems are presented together in Section II. The 
observer-based robust adaptive fuzzy controller is designed 
in Section III for uncertain underactuated system with time 
delay and dead-zone input. In Section IV, the numerical 
example and the practical example are provided to validate 
the effectiveness of the proposed observer-based robust 
adaptive fuzzy control approach. Section V contains the 
conclusion. 

2. Problem Statement and Preliminaries 
2.1. System Description 

Consider a class of single-input multi-output uncertain 
underactuated nonlinear systems with time delay and dead- 
zone input expressed as follows: 
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where 2 1
11 12 1 2[ , ,..., , ]     T n

n nx x x x R ×= ∈x is the system 
state vector which is assumed to be unavailable for 
measurement, (t) nu R∈ and 1( ) nt R ×∈y  are the input and 
output of the system, respectively. τ is the value of time 
delay 1 )( ( )tf τ−x , 2 )( ( )tf τ−x ,…, ( )( )n tf τ−x  are 
unknown real continuous nonlinear functions, and 1( , )tδ x ,

2 ( , )tδ x ,…, , )(n tδ x  are the unknown bounded disturbances. 
( ( ))D u t : R R→  is the nonlinear input function containing 

a dead zone. 
Assumption 1: The time delay τ  is a fixed and known 

positive constant. 
System (1) can be rewritten as 

[ ( ) ( (t)) + )( ( t ]) ,D ut τ= + +
 =

−x Ax B f E δ x
y Cx

x
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Figure 1.  Dead-zone model 

The non-symmetric dead-zone with input ( )u t  and 
output as shown in the above Fig. 1. is described by 
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where aE , bE , rm  and lm  are parameters and slopes of 
the dead zone, respectively. 

To investigate the key features of the dead zone in the 
control problems, the following common assumptions are 
given. 

Assumption 2: The dead-zone output ( ( ))D u t  is not 
available to obtain. 

Assumption 3: The coefficients aE , bE , rm  and lm  are 
unknown. 

Assumption 4: There exist known constants minm , maxm ,

minaE , maxaE , minbE  and maxbE  such that the unknown 
dead-zone parameters rm , lm , aE  and bE  are bounded, 
i.e. min max0 , [ , ]r lm m m m< ∈ , min max0 [ ,  ]a a aE E E< ∈ , 
0 bE< ∈ min max[ ,  ]b bE E . 

Based on the above assumptions, the expression (3) can 
be rewritten as 

( ( )) ( ) ( ( ))D u t mu t d u t= +             (4) 

where ( ( ))d u t  can be calculated from (3) and (4) as  
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   (5) 

From Assumption 4, it can be concluded that ( ( ))d u t  is 
bounded, and satisfies: 

( ( ))d u t ρ≤                  (6) 

where ρ  is the upper bound, which can be chosen as 

{ },  r a l bm E m Eρ =               (7) 

Assumption 5: ( )0 , t h< ≤ < ∞δ x , where h  is an 
unknown constant. 

Control objective: The control objective is to design a 
robust adaptive fuzzy controller ( )u t  to ensure that all the 
closed-loop signals are bounded. 

2.2. Description of Fuzzy Logic Systems 
The fuzzy logic system performs a mapping from 

nU R⊂  to V R⊂ . Let 1 nU U U= × ×  where iU R⊂ , 
1, 2, ,i n=  . The fuzzy rule base consists of a collection of 

fuzzy IF-THEN rules: 
( )

1 1 2 2:  IF  is ,  and  is ,  and  and,   is 
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in which [ ]1 2, , , T
nx x x U= ∈x   and y V R∈ ⊂  are the 

input and output of the fuzzy logic system, l
iF  and lG  are 

fuzzy sets in iU  and V , respectively. The fuzzifier maps a 

crisp point [ ]1 2, , , T
nx x x=x  into a fuzzy set in U . 

The fuzzy systems with center-average defuzzifier, 
product inference and singleton fuzzifier are of the following 
form: 

 ( )Ty = θ ξ x                   (9) 

where 1, ,T Bθ θ =  θ   with each variable lθ  as the 

point at which the fuzzy membership function of        
lG  achieves the maximum value and 

1( ) ( ),..., ( )
TMξ ξ =  ξ x x x  with each variable ( )lξ x  as the 

fuzzy basis function defined as 
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where ( )l iFi
xµ  is the membership function of the fuzzy set. 

3. Controller Design and Stability 
Analysis 

3.1. Observer Design 
First, the following fuzzy logic systems can be 

constructed, over a compact set Γ , the unknown nonlinear 
functions ( )f x  can be approximated as 

ˆ ˆ ˆ( ( - ) | ) ( )T
f ft tτ τ= −f x θ θ ξ(x )      (11) 

where ( ( - ))t τξ x  is the fuzzy basis vector, ˆ
fθ is the 

corresponding adjustable parameter vector of the fuzzy logic 
system. 

Because the system states are assumed to be 
unmeasurable in this paper, the fuzzy logic systems (11) 
cannot be directly used for the unknown nonlinear system. 
Therefore, an observer is designed to estimate the 
unmeasurable system states. Let us define that x̂  is the 
estimate of x  at first. Then, the following fuzzy logic 
systems can be obtained as 

 ˆ ˆ ˆˆ ˆ( ( ) | ) ( ( ))T
f ft tτ τ− = −f x θ θ ξ x       (12) 

The observer for system (2.2) is established as follows: 

ˆ ˆˆ ˆ ˆ ˆ( ( ) | ) ( ( )) ( )

ˆ ˆ
ft D u tτ  = + − + + + −  

=

x Ax B f x θ E ν L y y

y Cx



(13) 

where 
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L is the observer gain matrix to guarantee the 
characteristic polynomial of A - LC  to be Hurwitz. The 
estimation error vector is defined as ˆ=x x - x  and ˆ=y y - y , 
then according to (2) and (13), one has 

ˆ ˆˆ( ( ( )) ( ( ) | ) ( , )ft t tτ τ  = + − − − + −  
=

x A - LC)x B f x f x θ δ x ν

y Cx



 

 

(14) 

It is assumed that x , x̂ , and ˆ
fθ  belong to compact sets 

Ωx , ˆΩx , and ˆΩ
fθ

 respectively, which is defined as 

{ }2 1Ω :nR N×= ∈ ≤ < ∞x xx x              (15) 

{ }2 1
ˆ ˆˆ ˆΩ :nR N×= ∈ ≤ < ∞x xx x              (16) 

{ }ˆ ˆ ˆΩ :M n
f f ff

R N×= ∈ ≤ < ∞θ θ θ         (17) 

where Nx , ˆNx , and fN  are the designed parameters, and 
M is the number of fuzzy inference rules. Let us define the 
optimal parameter vector *

fθ  as follows: 

*
ˆ ˆ

ˆ ˆˆarg min sup ( ( - )) ( ( - ) | )f f
f f

t tτ τ
∈Ω ∈Γ

 
=  

 θ xθ
θ f x f x θ－   (18) 

where *
fθ  is bounded in the suitable closed set ˆΩ

fθ
. 

The parameter estimation errors can be defined as 
* ˆ

f f f= −θ θ θ                 (19) 

and 
*ˆ ˆ( ( - )) ( ( ) | )ft tτ τ= − −w f x f x θ            (20) 

are the minimum approximation errors, which correspond to 
approximation errors obtained when optimal parameters are 
used. 

According to (19) and (20), (14) can be written as 
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The output error dynamic of (21) can be expressed as 
follows: 

ˆ( ) ( ( )) ( , )T
fy s t tτ = − + + − H θ ξ x w δ x ν

     (22) 

where ( )s s= -1H C( I - (A - LC)) B  

and s denotes the complex Laplace transform variable. As 
previously discussed in this chapter, not all elements of x  
could be obtained, because not all the system states are 
available for measurement. Consequently, one could not 
obtain all elements of x . The state variable filters [17] will 
be introduced to cope with this problem. The stable filter 

(s)uG  is chosen as follows: 

0

1( )uG s
s g

=
+

             (23) 

for 0 >0g  
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u u us diag G s G s G s R ×= ∈G    (24) 
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be written as 
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It is assumed that there exists an unknown constant 
1 0w > , such that 

1f w≤w                  (34) 

Let us define that 

1 1 1ˆw w w= −                 (35) 

and 
ˆh h h= −                    (36) 

where 1ŵ  and ĥ  are the estimates of 1w  and h , 
respectively. 

Based on Lyapunov stable theorem, the robust 
compensation term fν  and the parameter update laws can 
be obtained as follows: 

1
ˆˆ

T T
f f

f T T
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w h= +
B Px B Px

v
x PB x PB

 

 

        (37) 
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f f f ftγ τ=θ ξ x x PB
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1 1ˆ T
w fw γ= x PB
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ˆ T
h fh γ= x PB

                    (40) 

where fγ , 1wγ , and hγ  are positive constants 

Remark 1: Without loss of generality, the adaptive laws 
used in this paper are assumed that the parameter vectors are 
within the constraint sets or on the boundaries of the 
constraint sets but moving toward the inside of the constraint 
sets. If the parameter vectors are on the boundaries of the 
constraint sets but moving toward the outside of the 
constraint sets, we must use the projection algorithm to 
modify the adaptive laws such that the parameter vectors will 
remain inside of the constraint sets. Readers can refer to 
reference [16]. The proposed adaptive law (38) can be 
modified as the following form: 
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The main result of the proposed robust adaptive fuzzy 
observer method is summarized on the following theorem. 

Theorem 1: Consider the single-input multi-output 
uncertain underactuated system with time delay and 
dead-zone input (1). The robust adaptive fuzzy observer is 
defined by (13) with adaptation laws given by (37)-(40). 
For the given positive definite matrix Q , if there exists a 
symmetric positive definite matrix P  such that the 
following Lyapunov equation 

( ) ( )
T

− + − = −A LC P P QA LC      (43) 

is satisfied, then all the closed-loop signals are bounded, and 
the estimation errors converge to a neighborhood of zero. 

Proof: Consider the Lyapunov function candidate 
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Applying Assumption 5 and (34)-(36), one gets 
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Substituting (38)-(40) into (46), one obtains 
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Considering the robust compensation term fv  (37), the 
above equation can be rewritten as 
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According to (43), it can be easily shown that 

1
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2
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               (49) 

Therefore, it can be concluded that 1 0V ≤  from (49), and 
the estimation errors of the closed-loop system converges 
asymptotically to a neighborhood of zero based on Lyapunov 
synthesis approach. This completes the proof. 

3.2. Controller Design 

Based on Lyapunov stable theorem, the observer-based 
controller ( )u t  is given by 
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f x θxPBv x PLy
xPBE x PBE

    (50) 

Let us define the estimation error as 
ˆϕ ϕ ϕ= −                 (51) 

ˆρ ρ ρ= −                 (52) 

where ϕ̂  is the estimate of ϕ , which is defined as 
1/ mϕ = . ρ̂  is the estimate of ρ . The parameter update 

laws are as follows: 

  

( )ˆ ˆ ˆϕ η= +T Tx PBv x PLy          (53) 

  

ˆ ˆT
ρρ γ= x PBE                 (54) 

where the scalar η  and ργ  are positive constants, and ν  

can be obtained by backward from fν .

 

 

Theorem 2: Consider the single-input multi-output 
uncertain underactuated system with time delay and 
dead-zone input (1). The proposed observed-based robust 
adaptive fuzzy controller defined by (50) guarantees that all 
signals of the closed-loop system are bounded and converge 
to a neighborhood of zero. 

Proof: Consider the Lyapunov function candidate 

2 3 4V V V= +                 (55) 

where 

( ) 2 2
3

min

1 1 1 1ˆ ˆ
2

TV
m m ρ

ϕ ρ
η γ

 
= + + 

  
x Px        (56) 

( )
2

4
1 ˆ ˆˆ ( ) |
2

t
ft

V z dz
τ−

= ∫ f x θ               (57) 

Taking the time derivate of 3V  and the facts ˆϕ ϕ= − 

 , 

ˆρ ρ= − 

  yields 

( )3
min

1 1 1ˆ ˆ ˆ ˆ + +
2

T TV
m m ρ

ϕϕ ρρ
η γ

= +x Px x Px 
 



     (58) 

Substituting (13) into (58), one has 
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( ) ( )1 ˆ ˆ    
2

1 ˆ ˆˆ ˆ ˆ        ( ( ) | ) ( )

TT

T T
f

m

t u t
m
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 (59) 

By the inequality 2 22ab a b≤ + , Eq. (59) can be 
rewritten as 

( ) ( )3

2 2
2
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2
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    (60) 

Differentiating the 4V  with respect to time, one gets 

2 2
4

1 1ˆ ˆ ˆ ˆˆ ˆ= ( ( ) | ) ( ( ) | )
2 2f fV t t τ− −f x θ f x θ      (61) 

With (60) and (61), according to the equation 
2 3 4V V V= +   , one has 
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According to 1/ mϕ =  and Assumption 4, Eq. (3.54) 
becomes 
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(63) 

Applying adaptive laws (53) and (54), yields 

( ) ( )2

2

2
minmin

2
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 (64) 

Using the controller (50), the above equation can be 
rewritten as 

( ) ( )2
1 ˆ ˆ

2
TTV

m
 ≤ − + −  

x A LC P P A LC x    (65) 

According to (43), it can be easily shown that 

2
1 ˆ ˆ

2
TV

m
≤ − x Qx             (66) 

Therefore, it can be concluded that 2 0V ≤  from (66), 
and the all signals of the closed-loop system converge 
asymptotically to a neighborhood of zero based on the 
Lyapunov synthesis approach. This completes the proof. 

Remark 2: Because the discontinuities in the control term 
(50) give rise to chatter in the system, it has been proposed 
that ˆsgn( )Tx PBE will be replaced by a continuous 

approximation in an ε -width region of ˆTx PBE . Thus, 

replacing ˆsgn( )Tx PBE with ( )ˆTsat εx PBE  in (50), the 

( )ˆTsat εx PBE  is described by 

( )
ˆ1          if   > 

ˆ ˆ ˆ=   if     , >0

ˆ 1         if   < 

T

T T T

T

sat

ε

ε ε ε ε

ε


 ≤ ∀

 − −

x PBE

x PBE x PBE x PBE

x PBE

(67) 

Remark 3: The schematic diagram of the proposed 
control system can be delineated as shown in Fig. 2. 
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Figure 2.  The block diagram of the proposed control system 

4. An Example and Simulation Results  
In this section, a series of simulation results of a 

underactuated nonlinear system and a underactuated 
mass-spring-damper system are used to demonstrate the 
effectiveness of the proposed controller. 

Example 1: An Underactuated Nonlinear System 
Consider the underactuated nonlinear system: 

11 12

1 1

21 22
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22 2

11 21

2
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=
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=
+− +

 =

x x

x x
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    (68) 

where 11 21,  x x  are the displacements of the masses. 

12 22,x x  are the velocities of the masses. 

[
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1 1 11

11 12

2 2 21

21 22
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τ τ
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τ τ
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Figure 3.  The trajectories of 11x  and 11x̂  for Example 1 

 

Figure 4.  The trajectories of 12x  and 12x̂  for Example 1 

 

Figure 5.  The trajectories of 21x  and 21x̂  for Example 1 

 

Figure 6.  The trajectories of 22x  and 22x̂  for Example 1 
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Figure 7.  The trajectory of 11x  for Example 1 

 

Figure 8.  The trajectory of 12x  for Example 1 

 

Figure 9.  The trajectory of 21x  for Example 1 

 

Figure 10.  The trajectory of 22x  for Example1 

 

Figure 11.  The trajectories of 1f  and 1̂f  for Example 1 

 

Figure 12.  The trajectories of 2f  and 2̂f  for Example 1 

 

Figure 13.  The control signal ( )u t  for Example 1 

 

Figure 14.  The dead-zone input ( ( ))D u t  for Example 1 
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( ( ))D u t  is an output of a dead zone, and

11 2, ) 0.1 ( )sin( ( )t x t tδ =x , 22 2, ) 0.1 ( )sin( ( )t x t tδ =x  are the 
disturbances. 

In the simulation, parameters of the dead zone are 
0.7rm = , 0.7lm = , 0.5aE = , 0.5bE = . We select their 

bounds as max 1m = , min 0.5m = . Six fuzzy sets are 
defined over the interval [-3, 3] for 11x̂ , 12x̂ , 21x̂ , and 22x̂ , 
with labels NB, NM, NS, PS, PM, and PB, and their 
membership functions are 

1ˆ( ) ,
ˆ1 exp(5( 2))NB ij
ij

x
x

µ =
+ +

 2ˆ ˆ( ) exp( ( 1.5) ),NM ij ijx xµ = − +  

2ˆ ˆ( ) exp( ( 0.5) ),NS ij ijx xµ = − +  2ˆ ˆ( ) exp( ( 0.5) ),PS ij ijx xµ = − −  

2ˆ ˆ( ) exp( ( 1.5) ),PM ij ijx xµ = − −  1ˆ( ) ,
ˆ1 exp( 5( 2))PB ij
ij

x
x

µ =
+ − −

 

where 1,2 ,  1, 2i j= =  
Choose the sampling time as 0.01, and the observer gain 

as 11 1l = , 12 0.7l = , 21 1l = , 22 0.7l = . The initial 
values are chosen as 11(0) 3x = , 12 (0) 1x = , 21(0) 3x = , 

22 (0) 1x = , 11ˆ (0) 2.8x = , 12ˆ (0) 0.9x = , 21ˆ (0) 2.8x = , 

22ˆ (0) 0.9x = , ˆ (0)=0.18fθ １ , 2
ˆ (0)=0.18fθ , 1ˆ (0) 0w = , 

ˆ(0) 0h = , ˆ (0) 0ρ = , ˆ(0) 0η = , ˆ(0) 0φ = . The other 
parameters are selected as 1τ = , 0.7fγ = , 4hγ = , 

1 9wγ = , 0.01ργ = , 5η = . The simulation results are 
displayed by Figs. 3-14. Figs. 3-6 show the trajectories of the 
system states and their estimation states. Figs. 7-10 show the 
trajectories of the system state estimation errors. Figs. 11-12 
show the trajectories of the system functions. Figs. 13-14 
show the trajectories of the control signal u  and the 
dead-zone input ( ( ))D u t . 

5. Conclusions  
An observer-based robust adaptive fuzzy control 

approach has been proposed in this paper for a class of 
uncertain underactuated systems in the presence of time 
delay and dead-zone input. The system states are assumed 
to be unmeasurable in this paper. With the help of fuzzy 
approximation, the fuzzy state observer has been 
constructed to estimate the unmeasurable states. 
Additionally, some adaptive laws are employed to estimate 
the unknown system parameters. The main contribution of 
this paper can be listed as follows: (i) the stability of the 
whole underactuated time-delay system has been proved via 
the Lyapunov-Krasovskii functional and (ii) all the signals 
of the closed-loop system are bounded by the presented 
control scheme. Finally, a series of simulation results have 
been presented to demonstrate the effectiveness of the 
proposed control approach.  
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