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Abstract  This paper considers the problem of observer-based adaptive fuzzy sliding mode control for switched 
uncertain nonlinear systems with dead-zone input in strict-feedback form. The explored switched systems include unknown 
nonlinearities, dead-zone and immeasurable states. Fuzzy logic systems are used to approximate unknown nonlinear 
functions of the dynamic system and unknown upper bounds of uncertainties, respectively. A state observer based on state 
variable filters is developed to estimate the immeasurable states. Adaptive technique and sliding mode control method are 
utilized to construct a controller. By choosing an appropriate Lyapunov function, the proposed controller is designed to 
demonstrate that all the signals in the closed-loop system can not only guarantee uniformly ultimately bounded, but also 
achieve good tracking performance. Finally, the simulation results are provided to demonstrate the effectiveness of the 
proposed approach. 
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1. Introduction 
In recent years, switched systems have drawn much 

attention and some significant results have been obtained in 
the literature. As an important class of hybrid systems, 
switched systems can be described by a family of 
subsystems and a switching law between them. Actually, 
many practical systems, such as power electronic, 
automotive industry, mechanical systems, air traffic control, 
etc., can be expressed as switched systems [1-4]. Motivated 
by the above reasons, the control design and stability of the 
switched systems have received many researchers a great 
interest. In addition, dead-zone input nonlinearity is a 
nonsmooth function that features certain insensitivity for 
small control inputs which is often encountered in a variety 
of practical systems such as the single-link flexible joint 
manipulator, and so on [5, 17-18]. In this paper, the 
switched system in strict-feedback form is investigated and 
a feasible and systematic methodology is proposed to solve 
the tracking control problem. 

Due to uncertainties  inherent in practical  systems, the  
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design control capable of handling uncertainties is of 
practical interest and is challenging. To achieve the desired 
system performance, adaptive control is a valid 
methodology, which supplies adaptation mechanisms to 
regulate controllers for systems with some uncertainties, 
such as parametric, structural, and environmental 
uncertainties [6-7]. For non-switched nonlinear systems 
using fuzzy logic systems or neural networks to 
parameterise the unknown non-linearities, adaptive control 
of uncertain nonlinear systems has attracted much attention 
[8-9]. In recent years, adaptive fuzzy or neural backstepping 
approaches for strict-feedback form systems [10-11] 
provide some systematic methods to achieve good tracking 
performance. 

Fuzzy logic systems (FLS) with appropriate adaptive 
laws algorithms are used to approximate the unknown 
nonlinear functions appearing in the structure of the 
switched system. A FLS consists of four parts: the 
knowledge base, the fuzzifier, the fuzzy inference engine 
working on fuzzy rules, and the defuzzifier. The problem of 
adaptive fuzzy output-feedback control for switched 
uncertain non-linear systems is investigated in [12, 19]. In 
[13], Li et al. introduced an adaptive fuzzy output-feedback 
stabilization controller to treat the problem for a class of 
switched nonstrict-feedback nonlinear systems. 

Recently, sliding mode control (SMC) has been adopted 
as a powerful approach for the control of systems with 
external disturbances and parameter variations [14, 20]. 
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Since SMC technique has some advantages, such as 
insensitivity to system parameter variations, invariance to 
external disturbances, good transient and fast response. 
Basically, SMC laws consist of two parts: switching 
controller design and equivalent controller design. The 
switching control law is employed to lead the system’s 
states to a given sliding surface and the equivalent control 
law guarantees the system’s states to stay on the 
aforementioned sliding surface and converge to zero along 
the sliding surface. 

The main contribution of this paper is that the proposed 
SMC method deals with the problem of tracking 
performance and stability for a class of switched nonlinear 
systems in strict-feedback form with dead-zone input. 
Based on SMC technique, an adaptive fuzzy sliding mode 
controller is designed for the switched system by using 
fuzzy logic systems with some adaptive laws to 
approximate uncertain functions. The fuzzy state observer is 
employed to estimate the unavailable state for measurement. 
By choosing an appropriate Lyapunov function, it is 
theoretically ensured that all the signals in the closed-loop 
system are uniformly ultimately bounded and receive good 
tracking performance under our designed controller. 

This paper organized as follows. Section II contains 
system description, dead-zone characterization, a detailed 
description systems, and fuzzy basis functions. Section III, 
the observer-based fuzzy sliding mode controller is utilized 
to treat the nonlinear switched system with dead-zone input. 
Simulation results are provided in Section IV to 
demonstrate the advantages and effectiveness of the 
proposed approaches Finally, the concluding remarks are 
gathered in Section V. 

2. Problem Statement and Preliminaries 
2.1. System Description 

Consider a class of single-input-single-output switched 
uncertain nonlinear systems in strict-feedback form with 
dead-zone input expressed as follows: 
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where T
1 2,[ , , ]    n

nx x x R= ∈x  is the system state vector 
which is assumed to be available for measurement, 

( )tu Rσ ∈ and y R∈ are the input and output of the system 

output, respectively. The function (t) : [0, ) Mσ ∞ → =  
{1,2,...,m} , is a switching signal which is assumed to be a 
piecewise continuous (from the right) function of time. If 

( )t kσ = , then we say the kth switched subsystem is active 
and the remaining switched subsystems are inactive. 

( ) ( )tfσ x  is the unknown smooth nonlinear function, 

( ) ( , )td tσ x  is unknown external bound disturbance. 

(t)( (t)) D uσ  denotes the input function containing a 
dead-zone. 

Then, the system (1) can be rewritten as 
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Figure 1.  Dead-zone model 

The non-symmetric dead-zone with input ( )u t  and 
output as shown in the above Fig. 1 is described by 

( ( ) )   for ( )  
( ( )) 0                        for  ( )  

( ( ) )   for ( )

r r r
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l l l

m u t c u t c
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= − ≤ ≤
 + ≤ −

  (3) 

where, , cl rc , ,  and r lm m are parameters and slopes of the 
dead-zone, respectively. In order to investigate the key 
features of the dead-zone in the control problems, the 
following assumptions should be made: 

Assumption 1: The dead-zone output ( ( ))D u t  is not 
available to obtain. 

Assumption 2: The coefficients ,    r lc c , and ,     r lm m  
are unknown. 

Assumption 3: The maximum and minimum values of  
the characteristic slopes are known. maxmax{ }r l m ,m m= , 

minmin{ }r l m ,m m=  



 International Journal of Control Science and Engineering 2019, 9(2): 27-36 29 
 

 

Based on the above assumptions the expression (3) can 
be represented as 

( ( )) ( ) ( ( ))D u t mu t d u t= +           (4) 

where ( ( ))d u t  can be calculated form (3) and (4) as  
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From Assumption 1 and Assumption 2, we can conclude 
that ( ( ))d u t  is bounded, and satisfies: 

( ( ))d u t ρ≤               (6) 

where ρ  is an upper bound, which can be chosen as 

 ρ = max{ },  r r l lm c m c          (7) 

Assumption 4： 0 ( , ) ( , )k kd t h t< ≤ < ∞x x   
where ( , )kh tx  is an unknown function. 

Control objective: Design a controller for (1) such that the 
system output y(t) would track the desired output vector 
y𝑑𝑑(𝑡𝑡) , where y𝑑𝑑(𝑡𝑡)  be a given bounded desired signal   
and contain finite derivative up to the n order. Define the 
vector of the output tracking error as ( 1)i

ie y −= −  ( 1) ,  i
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2.2. Description of Fuzzy Logic Systems 
The fuzzy logic system performs a mapping from 

nU R⊂  to V R⊂ . Let 1 nU U U= × ×  where iU R⊂ , 
1, 2, ,i n=  . The fuzzy rule base consists of a collection of 

fuzzy IF-THEN rules: 
( )

1 1 2 2:  IF  is ,  and  is ,  and  and,   is 

         THEN  is ,     for 1, 2, , .

l l l l
n n

l

R x F x F x F

y G l B=





 (9) 

in which [ ]1 2, , , T
nx x x U= ∈x   and y V R∈ ⊂  are the 

input and output of the fuzzy logic system, l
iF  and lG  are 

fuzzy sets in iU  and V , respectively. The fuzzifier maps a 

crisp point [ ]1 2, , , T
nx x x=x  into a fuzzy set in U . The 

fuzzy inference engine performs a mapping from fuzzy sets 
in U  to fuzzy sets inV , based upon the fuzzy IF-THEN 
rules in the fuzzy rule base and the compositional rule of 
inference. The defuzzifier maps a fuzzy set in V  to a crisp 
point in V . 

The fuzzy systems with center-average defuzzifier, 
product inference and singleton fuzzifier are of the following 
form: 

 ( )Ty = θ ξ x                (10) 

where 1, ,T Bθ θ =  θ   with each variable lθ  as the 

point at which the fuzzy membership function of lG  

achieves the maximum value and 1( ) ( ),..., ( )
TBξ ξ =  ξ x x x  

with each variable ( )lξ x  as the fuzzy basis function 
defined as 
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where ( )l iFi
xµ  is the membership function of the fuzzy set. 

3. Controller Design and Stability 
Analysis 

3.1. Observer Design 

According to the description of the fuzzy logic system 
presented in Section 2.2, we can construct the following 
fuzzy logic systems, over a compact set, the unknown 
nonlinear functions ( )kf x  and the uncertainty ( , )kh tx  
can be approximated as 

k , ,
ˆ ˆ ˆ( | ) T

f k f kf =x θ θ ξ(x)         (12) 

, ,
ˆ ˆ ˆ( | ) T

h k h kh =x θ θ ξ(x)          (13) 

where ξ(x)  is the fuzzy basic vector, ,
ˆ

f kθ  and h,
ˆ

kθ  are 
the corresponding adjustable parameter vectors of each fuzzy 
logic systems. 

Owing to the unavailable states of the system and the 
unavailable elements of the output error vector in many 
practical systems, the fuzzy logic systems (12) and (13) are 
not used to control nonlinear systems whose states are not 
obtained for measurement. Therefore, we must employ an 
observer to estimate. Let 𝐱𝐱� be the estimate of 𝐱𝐱 at first. 
Then, we can obtain the following fuzzy logic systems as 

 k , ,
ˆ ˆ ˆˆ ˆ( | ) T

f k f kf =x θ θ ξ(x)         (14) 

 , ,
ˆ ˆ ˆˆ ˆ( | ) T

h k h kh =x θ θ ξ(x)          (15) 

In order to estimate the state, the observer can be chosen 
as follows:  

,
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where 1
1 2[    ]T n

k k k nkl l l R ×= ∈L   is the observer gain 
vector, and 0 ( 1,2, , )ikl i n> =   are coefficients of the 

Hurwitz polynomial 1
1 1( ) n n

n np s s l s l s l−
−= + + + + . 

Define the estimation error vector as ˆ-x = x x  and y =  
ˆ-y y .  

Then from (2) and (16), we obtain 
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It is assumed that ,
ˆˆ ,  f kx, x θ and ,

ˆ
h kθ  belong to 

compact sets ˆˆ ,
Ω ,  Ω ,  Ω

f kx x θ and ˆ ,h kθΩ  respectively, 

which is defined as 
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where ˆ, ,  and f hN N N Nxx  are the designed parameters, 
and N is the number of fuzzy inference rules. Let us define 
the optimal parameter vector *

,f kθ  and *
,h kθ  as follows: 
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where *
,f kθ  and *

h,kθ  are bounded in the suitable closed 

set ˆ ,
Ω

f kθ  and ˆ ,
Ω

h kθ . The parameter estimation errors 

can be defined as 
*

, , ,
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f k f k f k= −θ θ θ             (24) 

*
, , ,

ˆ
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Then, 
*

1 ,
ˆ ˆ( ) ( | )k k k f kw f f= −x x θ          (26) 

*
2 h,ˆ( ) ( | )k k k kw h h= −x x θ           (27) 

are the minimum approximation errors, which correspond to 
approximation errors obtained when optimal parameters are 
used. 

Applying (24) and (26) to (17), it yields 
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The output error dynamic of (28) can be expressed as 
follows: 

, 1( ) ( ) ( , )T
f k k k ky H s x w d t ν = + + − θ ξ x

     (29) 

where ( ) kH s s= -1C( I - (A - L C)) B  and s denotes the 
complex Laplace transform variable. As has been discussed, 
we could not obtain all elements of x , because not all states 
of the system are available or measurement. Hence, we could 
not obtain all elements of x . We will employ the state 
variable filters [15] to cope with this problem. First, we 
choose a stable filter (s)G  as the following form: 

1 2
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n
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Where >0  =1,2, , -1ig i n  are coefficients of the 

Hurwitz polynomial 1 2
1 2 1( ) n n n

np s s g s g s g− −
−= + + + + . 

Introducing (30) into (29), we can obtain the steady-state 
equation 

1
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 (31) 

Define a set of state variable filters (s)iT  as 

( ) ( )  , 0,1, 2, , 1i
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The corresponding filtered signals are defined as follows: 
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Define 
ˆw w w= −                 (39) 

where ŵ  is the estimated of w , and 

1 2kf kw w w+ ≤             (40) 

Based on the Lyapunov stable theorem, we can obtain the 
robust compensation term kfν  and the parameter update 
laws as follows: 

,
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h k h f f kγ=θ ξ x x P B

                  (43) 

ˆ T
w f kw γ= x P B

                       (44) 

where  ,  and f h wγ γ γ  are positive constants 

Remark 1: Without loss of generality, the adaptive laws 
used in this paper are assumed that the parameter vectors are 
within the constraint sets or on the boundaries of the 
constraint sets but moving toward the inside of the constraint 
sets. If the parameter vectors are on the boundaries of the 
constraint sets but moving toward the outside of the 
constraint sets, we have to use the projection algorithm to 
modify the adaptive laws such that the parameter vectors will 
remain inside of the constraint sets. Readers can refer to 
reference [16]. The proposed adaptive law (41)-(44) can be 
modified as the following form: 
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The main result of the robust adaptive fuzzy observer 
scheme is summarized on the following theorem. 

Theorem 1: Consider the single-input-single-output 
uncertain switched system in strict-feedback form (1). The 
robust adaptive fuzzy observer is defined by (16) with 
adaptation laws given by (41)-(44). For the given positive 
definite matrix kQ , if there exist symmetric positive 
definite matrix kP  such that the following Lyapunov 
equation 

( ) ( )T
k k k k k= −A-L C P +P A-L C Q     (49) 

is satisfied, then all signals of the closed-loop system are 
bounded, and the estimation errors converge to a 
neighborhood of zero. 
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Applying Assumption 4 and (27) and (40), it yields 
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By employing (42)-(44), we have 
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Then using the robust compensation term kfv  (41), the 
above equation can be rewritten as 
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According to (49), it can be easily shown that 
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Therefore, it can be concluded that 1kV ≤ 0 from (55), 
and the estimation errors of the closed-loop system 
converge to a

 
neighborhood of zero based on Lyapunov 

synpaper approach. This completes the proof. 

3.2. Controller Design 

Next, we design the observer-based sliding mode 
controller. By employing (8) and (16), we get 

1 2 1

2 3 2 1

ˆ ˆ

ˆ ˆ
k d

k k d

e x l y y

e x l y l y y

= + −

= + + −



 





  

 

( ) ( )

3
(3)(3 )

3 4
1

1
(n 1)( 1 )

1
1

(n)( )
,

1

ˆ ˆ

ˆ ˆ

ˆˆ ˆ | ( )

i
ik d

i

n
n i

n n ik d
i

n
n i

n k f k k k ik d
i

e x l y y

e x l y y

e f D u t v l y y

−

=

−
−− −

−
=

−

=

= + −

= + −

 = + + + − 

∑

∑

∑x θ















 

Define the sliding surfaces as follows: 

1 1 2 2 3 3 1, 1ˆ ˆ ˆ ˆ ˆk k k k n k n nS c e c e c e c e e− −= + + + + +    (56) 

where 0,  1, 2, , 1ikc i n> = −  is designed parameters. 
Differentiating kS  with respect to time, we have 

1 1 2 2 3 3 1, 1
1

1
1

( )( )
1 ,

1 1

( )( )

1

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ   =

ˆ ˆˆ ˆ  ( ) ( | )

   ( ( ))

k k k k n k n n
n

ik i n
i
n i

ii j
ik i ik k f kd

i j
n

nn i
k k ik d

i

S c e c e c e c e e

c e e

c x l y y f

D u t v l y y

− −

−

=
−

−
+

= =

−

=

= + + + +

+

= + − +

+ + + −

∑

∑ ∑

∑

x θ

    




 





(57) 

Consider the following controller 
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in which K  is a positive constant, and ρ  is defined in 
(7). 

We defined 
ˆφ φ φ= −                  (59) 

ˆρ ρ ρ= −                 (60) 

where φ̂  is the estimate of φ , which is defined as 
1
m

φ = . 

ρ̂  is the estimate of ρ . The parameter update laws are as 
follows: 
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 (61) 

ˆ kSρρ γ=                             (62) 

where the scalar ργ  and η  are positive constants, and 

kν  can be obtained by backward from kfν . 

Theorem 2: Consider the nonlinear switched system (1) 
with an unknown dead-zone input (4). The proposed 
observed-based fuzzy sliding mode controller defined by 
(58) guarantees that all signals of the closed-loop system 
are bounded and converge to a neighborhood of zero. 

Proof. Consider the Lyapunov function candidate 
2

2 2
2

min

1 1 1
2

k
k

S
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m m ρ
φ ρ

η γ
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      (63) 

Differentiating the Lyapunov function 2kV  with the 
respect to time, we obtain 
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2
min

1 1 1
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By the fact ˆφ φ= − 

  and ˆρ ρ= − 

 , the above equation 
becomes 
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Applying equation (57), equation (65) can be written as 
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According to 
1
m

φ = , the above equation (66) becomes 
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Applying adaptive laws (61) and (62), we obtained 
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(68) 

Using the control law (58) the above equation can be 
rewritten as 

2
2 0k kV KS≤ − ≤                (69) 

Therefore, it can be concluded that from (69), and the all 
signals of the closed-loop system converge asymptotically 
to a neighborhood of zero based on the Lyapunov synthesis 
approach. This completes the proof. 

4. An Example and Simulation Results  
In this section, a mass-spring-damper system [12] in the 

presence of uncertain parameter and exogenous disturbances 
is considered as our simulation example in Fig. 2. The 
corresponding mathematical model is described as follows: 

 

Figure 2.  The mass-spring-damper system 
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where 1y x=  is the displacement of the mass, 2x  is the 

velocity of the mass, 2
1( , )Kf t x=x  are the spring force,

3
2( , ) 0.5Bf t x=x , are the friction force, ( ) ,  1,  2t k kσ = ∈  

is the switched signal, 0.75kg, 1kM k= = and 1kg, kM =

2k =  is the body mass, and ku  is the applied force. The 
structures of spring force and friction force are assumed to  
be known. The exogenous disturbance is assumed to be 

2( , ) 0.1 sin( )kd t x t=x  and 2( , ) 0.2 sin( )kd t x t=x , In the 
implementation, five fuzzy sets are defined over interval 
[-3,3] for 1 2 and x x , with labels 1 2 3 4 5,  ,  ,   and F F F F F  
and their membership functions are 
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Figure 3.  The switched signal ( )tσ  with dwell time is 5secs 

 

Figure 4.  The switched signal ( )tσ  with dwell time is 1sec 

 

Figure 5.  The outputs 1  and dx y  with dwell time is 5secs 

 

Figure 6.  The outputs 1  and dx y  with dwell time is 1sec 

 

Figure 7.  The trajectories of 1 1̂ and x x  with dwell time is 5secs 

 

Figure 8.  The trajectories of 1 1̂ and x x  with dwell time is 1sec 

In this section, the control objective is to maintain    
the system output ( )y t  to follow the reference signal 

1.1sin( )dy t= . First, we select the observer gain matrix  
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as [ ]2,1 ,   1T
k k= =L  and [ ]4,12 , 2T

k k= =L . In this 
example, the sampling time is 0.01s. The sliding surface are 
select as 1 1 2ˆ ˆ ,k kS c e e= + when k=1 1 11 1 2ˆ ˆ ,  S c e e= +  

11 40c =  and when k = 2 2 12 1 2 12ˆ ˆ ,  0.9S c e e c= + = . The 
initial values are chosen as 1 2(0) (0) 0.1x x= = , 

, (0) 3,  f kθ = −  1, 2k = , , (0) 0.55,  1, 2h k kθ = − = , ˆ (0) 1w = . 

The other parameters are selected as 5fkγ = , 1hkγ = ,

 1,  2k =  and, 1ργ = , 0.1wγ = . The simulation is divided 
into two cases, one for the dwell time of 5 seconds and the 
other for the dwell time of 1 second. Finally, the simulation 
results are shown in Figs. 3-12. 

Remark 2: According to the above simulation results, it 
can be found that if the dwell time of the system is longer, 
then the system tracking performance is better, and if the 
dwell time of the system is shorter, then the system cannot 
achieve good tracking performance. 

 

Figure 9.  The trajectories of 2 2ˆ and x x  with dwell time is 5secs 

 

Figure 10.  The trajectories of 2 2ˆ and x x  with dwell time is 1sec 

 

Figure 11.  The control signal ( )ku t  with dwell time is 5secs 

 

Figure 12.  The control signal ( )ku t  with dwell time is 1sec 

5. Conclusions 
An observer-based adaptive fuzzy sliding mode control 

approach has been proposed for a class of uncertain 
switched nonlinear systems with dead-zone input in 
strict-feedback form. A fuzzy state observer has been 
designed for estimating the unavailable states with the help 
of FLS approximating the unknown functions. Based on the 
designed sliding mode controller, the boundedness of the 
proposed sliding surfaces which realizes the stability of 
system can be ensured. By choosing an appropriate 
Lyapunov function, the proposed controller is designed to 
demonstrate that all the signals of the closed-loop system 
can not only guarantee uniformly ultimately bounded, but 
also achieve good tracking performance. Finally, some 
computer simulation results of a practical example are 
illustrated to verify the effectiveness of the proposed 
approach. 
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