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Abstract  This paper focuses on a problem of adaptive model reference hierarchical sliding mode control for a class of 

uncertain underactuated systems with unknown dead-zone and time delay. An incremental hierarchical structure 

sliding-mode controller (IHSSMC) strategy based on the reference model is presented, which drives the system output   

to follow the reference model. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions by   

some adaptive laws. An incremental hierarchical structure sliding-mode controller (IHSSMC) is developed by introducing 

the incremental hierarchical structure into sliding mode control (SMC) method. By choosing an appropriate 

Lyapunov–Krasovskii function, the proposed controller is designed to demonstrate that all the signals in the closed-loop 

system can not only guarantee uniformly ultimately bounded, but also achieve good tracking performance. Finally, some 

computer simulation results of a practical example are illustrated to verify the effectiveness of the proposed approach. 
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1. Introduction 

In the past two decades, underactuated systems have 

received much attention and some attractive results have 

been presented in the literature. Systems are said to be 

underactuated when the control actuators are fewer than 

number of degrees of freedom. They have more advantages 

in case of the reduced weight, cost, energy consumption, 

and the system structure design than actuated ones. Related 

problems have been presented in many actual systems such 

as, the crane system [1], underwater vehicles [2], the 

four-link manipulator [3], the axisymmetric spacecraft [4], 

hypersonic vehicles [5], the linear quadratic regulator (LQR) 

[6], the pendubot [7], the inertia-wheel pendulum (IWP) 

[8-10], and so on. 

Dead-zone input nonlinearity is a nonsmooth function 

that features certain insensitivity for small control inputs 

which is often encountered in a variety of practical systems 

such as the four-link PAAA (Passive-Active-Active-Active) 

manipulator, the single-link flexible joint manipulator,  

and so on. The work [11] investigated  the position-posture  
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control problem of a planar four-link underactuated 

manipulator. The problem of fuzzy adaptive control design 

and discretization for a class of nonlinear uncertain systems 

was studied in [12]. In [13], an observed-based adaptive 

fuzzy tracking controller has been presented for switched 

nonlinear systems with dead-zone. 

Fuzzy logic systems (FLSs) with appropriate adaptive 

laws and projection algorithms are introduced to 

approximate the unknown nonlinear functions appearing in 

the structure of the underactuated system. A FLS consists of 

four parts: the knowledge base, the fuzzifier, the fuzzy 

inference engine working on fuzzy rules, and the defuzzifier. 

By using Lyapunov-Krasovskii stability theorem, some 

adaptive laws are presented for fuzzy model and time delay. 

The sliding-mode control technique have some 

advantages such as insensitivity to system parameter 

variations, invariance to external disturbances, good 

transient performance, fast response, and so on. Basically, 

SMC laws comprise two parts: switching controller design 

and equivalent controller design. The switching control law 

is employed to lead the system’s states to a given sliding 

surface and the equivalent control law guarantees the 

system’s states to stay on the aforementioned sliding surface 

and converge to zero along the sliding surface. As a result of 

the underactuated characteristic of the controlled system, at 

least two sliding surfaces with specific relation are utilized 

for the controller design. The sliding-mode controller on  

the basis of the incremental hierarchical structure and 
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aggregated hierarchical structure were used to deal with the 

under-actuated system. For the incremental hierarchical 

structure of a sliding-mode controller, one of the subsystems 

is defined as the first layer sliding surface. Next, the 

first-layer sliding surface and one of the left states are used 

to establish the second-layer sliding surface. The process 

continues till all the subsystems are included. 

The key idea of model reference hierarchical sliding mode 

control is motivated by the concept of model reference 

sliding mode control. The model reference hierarchical 

sliding mode control is to combine or integrate model 

reference and aforementioned hierarchical sliding mode 

control in such a way that the advantages of both techniques 

can be realized. In this paper, incremental hierarchical 

structure sliding-mode controller (IHSSMC) scheme based 

on reference model is proposed, which tracks the reference 

model by itself. 

In this paper, an adaptive model reference hierarchical 

sliding mode control method is developed for a class of 

uncertain underactuated systems with time delay and 

dead-zone input. A fuzzy logic system with adaptive laws  

is introduced to approximate the nonlinear functions 

appearing in the structure of the underactuated system. 

Choosing an appropriate Lyapunov-Krasovskii function, it is 

theoretically verified that all the signals in the closed-loop 

system are uniformly ultimately bounded under our designed 

adaptive model reference control method. By introducing   

a sliding-mode controller with incremental hierarchical 

structure, the errors between the system outputs and model 

reference outputs are driven onto the sliding surface and kept 

on the surface afterward. 

The rest of this paper is organized as follows. In Section 

II, the problem statement and basic preliminaries together 

with the definition of fuzzy logic systems (FLSs) are given. 

In Section III, the controller design based on the model 

reference hierarchical sliding mode control method is 

proposed to cope with the control problem of a class of 

uncertain underactuated nonlinear time-delay systems with 

dead-zone input. The stability analysis of the whole system is 

also verified by Lyapunov-Krasovskii functional. Simulation 

results are provided in Section IV to demonstrate the 

advantages and effectiveness of the proposed approaches. 

Finally, the concluding remarks are gathered in Section V. 

2. Problem Statement and Preliminaries 

2.1. System Description 

Consider a class of single-input-multi-output uncertain 

underactuated nonlinear systems with unknown dead-zone 

input and time delay as follows: 
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where T
1 2, 2[ , , ]    2n

nx x x R x  is the system state 

vector which is assumed to be available for measurement, 

 u R and ( ) nt Ry are input and output of the system 

output, respectively.  is the value of time delay. 

1 2( ( )),  ( ( )),  , ( ( ))nf t τ f t τ f t τ  x x x , and 

1 2( ),  ( ),b bx x   , ( )nb x  are unknown real continuous 

nonlinear functions, 1 2( , ,  ( , ,  , ( ,nd t d t d tx ) x ) x )  are 

unknown external bound disturbances. ( ( )) :  D u t R R  is 

the nonlinear input function containing a dead-zone. 

Without loss of generality, we assume that 

( ) > 0 for =1,2,...,ib i nx , and the following assumptions are 

made for the controller design: 

Assumption 1: The time delay   is a fixed and known 

constant. 

Assumption 2: 0 ( ( ))i if t F    x , 

0 ( )i ib B  x    , 0 ( )i id E   x , for x  

1,2, ,i n , where iF , iB , and iE  are known constants, 

and   is a set given as follows: 

 ,
 

p 
    0x x x . 

Here 1 2 2{ , ,..., }n     is a set of weight, and   is 

a positive constant which denotes all state variables’ 

boundary. 2n
0 Rx  is a fixed point, and 

,p 
x  is a 

weighted p-norm, which is defined as 
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If 𝑝 = 2 𝜔𝑖 = 1 for i = 1,2…,2n, 
,p 

x  will denote 

Euclidean norm x . 

The non-symmetric dead-zone with input ( )u t  and 

output as shown in the above Fig. 1. is described by 
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where, ,    a bE E , and ,  r lm m  are parameters and slopes 

of the dead-zone, respectively. 

 

Figure 1.  Dead-zone model 

In order to investigate the key features of the dead-zone 

in the control problems, the following assumptions should 

be made: 

Assumption 3： The dead-zone output ( ( ))D u t  is not 

available to obtain. 

Assumption 4 ：  The coefficients ,    a bE E  ,and 

,     r lm m  are unknown. 

Assumption 5 ：  There exist known constants 

min max,     ,m m  min max,     ,  a aE E min max,     b bE E  such 

that the unknown dead-zone parameters ,     r lm m , 

,    a bE E  are bounded, i.e.   min   max0   [ , ]a a aE E E  , 

  min   max0   [ , ]b b bE E E  , 0 [ ]r l min maxm , m  m ,m   

Based on the above assumptions the expression (2) can 

be represented as 

0  for     mtudtumtuD ))](()([))((       (3) 

where ( ( ))d u t  can be calculated form (2) and (3) as 
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From Assumption 5, we can conclude that ( ( ))d u t  is 

bounded, and satisfies: 

( ( ))d u t                     (5) 

where   is an upper bound, which can be chosen as 

 max max max,a bE E              (6) 

The stable model reference of system is given by 

( ) ( ) ( )m m m mt t r t x A x B
           

 (7) 

where T 2
1 2 2( ) [ ( ), ( ), , ( )] n

m m m m nt x t x t x t R x  is the 

state vector of reference model,  𝑟 𝑡 𝑅  is the bounded 

reference input. 2 2n n
m R A  is Hurwitz. Let the model 

reference output vector as  
T

1 3 2 1( ) , , ,m m m m nt x x x y . 

Because the underactuated system is divided into several 

different subsystems and for the state variables, there is not 

obvious differential relationship between these subsystems. 

As the result, mA  comprises n subsystems with the 

controllable canonical form for the plant. 

Thus, 
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where mia  for 1,  2, , 2i n  are positive real constants 

to be chosen. 

  2 10 1 0 1 0 1   
T n

m R  B        (9) 

is the known and real constant matrix. 

Define the dynamic of the tracking error: 

( ) ( ) ( )mt t t e x x                (10) 

Control objective： Design a controller for (1) such that 

the system output ( )ty would track the reference model 

output vector ( )m ty . Define the vector of the output 

tracking error as 

 
T

1 3 2 1( ) ( ) , , , n
m nt t e e e R  y y        (11) 

where the model reference output vector is defined as 

 
T

1 3 2 1( ) , , ,m m m m nt x x x y .       (12) 

2.2. Description of Fuzzy Logic Systems 

The fuzzy logic system performs a mapping from 
nU    toV  . Let 1 nU U U    where iU  , 

1,2, ,i n . The fuzzy rule base consists of a collection of 

fuzzy IF-THEN rules: 

 
1 1 2 2:  IF  is ,  and  is ,  and  and,   is 

         THEN  is ,     for 1,2, , .

l l l l
n n

l

R x F x F x F

y G l M

 (13) 

in which  1 2, , ,
T

nx x x U x  and y V   are the 

input and output of the fuzzy logic system, l
iF  and 

lG  are 

fuzzy sets in iU  and V , respectively. The fuzzifier maps a 

crisp point  1 2, , ,
T

nx x xx  into a fuzzy set in U . The 

fuzzy inference engine performs a mapping from fuzzy sets 

in U  to fuzzy sets in V , based upon the fuzzy IF-THEN 
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rules in the fuzzy rule base and the compositional rule of 

inference. The defuzzifier maps a fuzzy set in V  to a crisp 

point in V . 

The fuzzy systems with center-average defuzzifier, 

product inference and singleton fuzzifier are of the following 

form: 

( )Ty  θ ξ x                 (14) 

where 
1, ,T M  
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where ( )l iFi

x  is the membership function of the fuzzy set. 

3. Controller Design and Stability 
Analysis 

From (7), the model reference of system can be rewritten 

as follows: 
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Then the dynamic equation of tracking error can be 

described by 

( ) ( ) ( )mt t t e x x                (17) 

Substituting (1) and (16) into (17) yields 
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Then the change of output tracking error vector can be 

expressed as 

 
T

1 3 2 1( ) ( ) , , ,m nt t e e e  y y         (19) 

Let the suitable sliding surfaces be defined as follows: 

2 1 2 1  for  1,2,...,i i i is c e e i n         (20) 

where 𝑐𝑖  are positive constants. 

Differentiating 𝑠𝑖  with respect to time, we have 
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where 2 2 1( , ) ( , ) ( , )  for 1,2,...,i i iQ t d t d t i n  x x x  

Assumption 6:

0 ( , ) ( )    for  1,2,...,i iQ t i n    x x  

where ( )i x  are unknown positive smooth continuous 

functions. 

According to the equivalent control method, the 

equivalent control law of the systems can be obtained as: 

 1
2 1 2( ( ))     for 1,2,...,eqi i i i m iu mb c e x i n
   x  (22) 

 

Figure 2.  Hierarchical structure of sliding surfaces 

First, let the unknown nonlinear functions 

1 2( ( )),  ( ( )), , ( ( )nf t τ f t τ f t τ  x x x , 1 2( ),  ( ),  , b bx x

( )nb x , and 1 2( ),  ( ),  , ( )n  x x x  can be approximated, 

over a compact set , by using the fuzzy logic systems as 

follows: 
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f t τ t τ  x ξ xθ θ          (23) 
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ˆ ˆˆ ( ) ( )       T
i

i i 
 x ξ xθ θ           (25) 

where ( ( ))t τξ x  and ( )ξ x  are the fuzzy basis vector, 

ˆ
fi

θ , ˆbi
θ  and ˆ

i
θ  for 𝑖 = 1,2, … , 𝑛, are the corresponding 

adjustable parameter vector of each fuzzy logic systems. It is 

assumed that ˆ ,
fi

θ ˆ
bi
θ  and ˆ

i
θ  belong to compact sets 

ˆ ˆ ˆ
Ω ,  Ω ,Ω

f bi i i
θ θ θ , respectively, which are defined as: 



 International Journal of Control Science and Engineering 2019, 9(1): 15-25 19 

 

 

ˆ
ˆ ˆΩ { : },M

ff f ii i
fi

R N    
θ

θ θ  

ˆ
ˆ ˆΩ { : },M

bb b ii i
bi

R N    
θ

θ θ  

ˆ
ˆ ˆΩ { : },M

ii i
i

R N 


    
θ

θ θ  

where fi
N , bi

N , 
i

N  for 𝑖 = 1,2, ⋯ , 𝑛, are the designed 

parameters, and M is the number of fuzzy inference rules. Let 

us define the optimal parameter vectors, fi

*
θ , bi

*
θ , 

*

i
θ  for 

𝑖 = 1,2, ⋯ , 𝑛, as follows: 

Ω Γˆ

ˆ ˆarg min sup ( ( ) ) ( ( ))f i ifi i
fi

fi

f t τ f t τ
 

 
    

 θ x

x x
*

θ

θ θ  

ˆ ΓΩ ˆ

ˆ ˆarg min sup ( ( ) ) ( ( ))b i ibi i
bi bi

b t b t


 
  

 x

x x
*

θ
θ

θ θ  

ˆ ΓΩ ˆ

ˆˆarg min sup ( ( ) ) ( ( ))i ii i

i
i

t t 




 


 
  

 x

x x
*

θ
θ

θ θ  

where fi

*
θ , bi

*
θ , 

*

i
θ , for 𝑖 = 1,2, ⋯ , 𝑛, are bounded in the 

suitable closed sets ˆ ˆ ˆ
Ω ,  Ω ,Ω

f bi i i
θ θ θ , respectively. The 

parameter estimation errors can be defined as: 
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are the minimum approximation errors, which correspond to 

approximation errors obtained when optimal parameters are 

used. 

Secondly, we define: 

ˆ                      (33) 

ˆ                         (34) 

where ̂  is an estimate of  , which is defined as 

1( )m  , and ̂  be as the estimate of  . 

Based on the fuzzy logic systems, the equation (22) can be 

replaced as the following controller: 
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Next, the ith-layer sliding surface iS  and its control law 

u  can be defined as follows. 

1i i iS S s                  (36) 

 
1

ˆ ˆ   
n

eqi sw
i

u u u



             (37) 

where   for 𝑖 = 1,2, ⋯ , 𝑛  are positive constants; 

0 0 0S   . From the recursive formulas (36), we have 
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( )
n

n
j ij i

i

S a s




               (38) 

Here for a given 𝑛, j ja   (𝑗 ≠ 𝑛) is a constant, and 

1ja   ( 𝑗 = 𝑛). ˆswu  is the switching control of sliding 

surface can be chosen as. 
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f t τ KS
S



 
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 (x( ) )θ     (39) 

where K is a positive constant, and the parameter update 

laws as follows: 

ˆ ( ( ))
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f jfi
j i

S a t τ
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
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  ξ xθ            (40) 
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 
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n

j
i
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S a 
 



   ξ xθ      (42) 

min

1
ˆ    S

m
                (43) 
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2 1 2ˆ ( )
n

j i i m i

j i

S a c e x  



             (44) 

where f
 , bi

 , 
  for 𝑖 = 1,2, ⋯ , 𝑛 ,   and   are 

positive constants. 

Remark 1: Without loss of generality, the adaptive laws 

used in this paper are assumed that the parameter vectors are 

within the constraint sets or on the boundaries of the 

constraint sets but moving toward the inside of the constraint 

sets. If the parameter vectors are on the boundaries of the 

constraint sets but moving toward the outside of the 

constraint sets, we have to use the projection algorithm to 

modify the adaptive laws such that the parameter vectors will 

remain inside of the constraint sets. Readers can refer to 

reference [14]. The proposed adaptive laws (40)-(44) can be 

modified as the following form: 
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The main result of robust adaptive tracking control 

scheme is summarized on the following theorem. 

Theorem 1: Consider the single-input-multi-output 

uncertain underactuated system (1). If Assumptions 1-6 are 

satisfied, then the proposed model reference sliding-mode 

controller defined by (37) with adaptive laws (40)-(44) 

guarantees that all signals of closed-loop system are 

bounded. 

Proof: Consider the Lyapunov-Krasovskii function 
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Differentiating the Lyapunov function 𝑉1 with respect to 

time, and by the fact ˆ
f fi i
θ θ , ˆ

b bi i
θ θ , ˆ

 


i i
θ θ , 

ˆ  , ˆ  , we can obtain. 
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According to (38), and (21), we have 
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Substituting (21), and Assumption 6 into (52) yields 
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By applying the fuzzy logic system (13) and (26)-(28) into 

(53), we obtain 
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By employing the adaptive laws (40), (42), and (3), we can 

get 
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According to (27), the above equation can be rewritten as 



22 Chiang-Cheng Chiang and Yu-Chih Chen:  Adaptive Model Reference Hierarchical Sliding Mode  

Control of Uncertain Underactuated Systems with Time Delay and Dead-Zone Input 

 

1 2 1
1

2

*

1

*

1

1 ˆ ˆ   ( ) ( )

ˆ ˆ          ( ) ( )

1 ˆ ˆ          ( ) ( ( )) ( ( ) )

1 ˆ ˆ           ( ) ( ) ( )

n
n

j i i i fj i i
i

i m ibi

n
n

j i i fij i
i

n
n

j i i bij i
i

V S a c e f t τ
m

b m u t x

S a f t f t
m

S a b b
m

 










  


  


    
 

  
  

 

 

 

x( )

x

x x

x x

θ

θ

θ

θ

*

1

1

T

1

*

( ( ))

1 ˆˆ           ( )   ( )

1 ˆˆ           ( )  ( )  

          ( ) ( ( ))  ( )

ˆ ˆ          ( ) ( ) ( ( ))

n
n

j i i ij i
i

n
n

j ij i i
i

n
n

j bj i i
i

n
j i bij i

D u t

S a
m

S a
m

S a t u t

S a b d u t





 














  
  



      

  

 

 

 



x (x )

x

ξ x

x

θ

θ

θ

θ

1

1

 

1 1 1ˆ ˆ ˆ           

n

i

n
T

bb ii
bi i 

 
  






  





 θ θ

(55) 

By using the adaptive law (41) and (5) we have 
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According to (29)-(33) and (43), we obtain 

 1 2 1 2
1 1

1

1

1

1 1
   ( ) ( )  

ˆ ˆˆ ˆ        ( ) ( ) ( ) ( )

1 1ˆˆ ˆ         ( )  ( )  

1ˆ ˆ       ( ) ( )

n n
n n

j i i m i jj i j i
i i

n
n

i j if bj ii i
i

n
n

j ij i i
i

n
n

j i bj i i
i

V S a c e x S a
m m

f t τ S a b u t

S a S
m m

S a b


 




 
 










  

    

 

   

  

 

 

 

x( ) x

x

x

θ θ

θ

θ ˆ    

(56) 

With the use of 2 21 1
ab a b

2 2
   for scalars a and b, we 

obtain 
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Differentiating the 2V  with respect to time, we can obtain 
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According to (34) (37) and (44), we have 
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Using the switching control laws (37), the above equation 

can be rewritten as 

2  0V KS    

Therefore, the hierarchical sliding surface S is stable, and 

the all signals of the closed-loop system are bounded based 

on the proposed controller. This completes the proof. 

4. An Example and Simulation Results  

In this section, a mass-spring-damper system [15] in the 

presence of uncertain parameter and exogenous disturbances 

is considered as our simulation example Fig. 3. The 

corresponding mathematical model is described as follows: 

 

Figure 3.  The mass-spring-damper system 

1 2 1

1 1
2 2

1

3 4 3

2 2
4 4

2

( , )

( , ) ( , )
( , )

( , )

( , ) ( , )
( , )

K B

K B

x x d t

f t f t u
x d t

M

x x d t

f t f t u
x d t

M

 

 

 

    
 

 

    
 

x

x x
x

x

x x
x

 

where T
1 3[ , ]x xy  is the displacement of the mass, 

2 4,  x x is the velocity of the mass, 

2 2
1 31 2

( , ) ( ),    ( , ) ( )K Kf t x t f t x t        x x  are the 

spring force, 
3
21

( , ) 0.5 ,  Bf t x x
3
42

 ( , ) 0.5Bf t x x  

are the friction force, 1 21 ,  1.05m kg m kg   is the body 

mass, and u  is the applied force. The structures of    

spring force and friction force are assumed to be known.   

The exogenous disturbance is assumed to be 

1 1( , ) 0.1 sind t x tx , 2 2 ( , ) 0.1 sin ,d t x tx 3 3 ( , ) 0.1 sin ,d t x tx  

4 4 ( , ) 0.1 sind t x tx . 0.1   sec is time delay. In the 

implementation, six fuzzy sets are defined over interval [-3,3] 

for 1 2 3, ,x x x  and 4x , with labels NB,NM,NS,PS,PM, and 

PB, and their membership functions are 

1
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, 1,2,3,4i  . 

We apply the robust model reference sliding mode control 

approach in Section 3 to deal with control problem. The 

system matrices of reference model are given as follows:  

 

0 1 0 0
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mA

 
 
 
 
 
 

  

, 

0

1

0

1

mB

 
 
 
 
 
 

 

and the reference input ( ) 9sin( )r t t . 

The control object is to maintain the system output ( )ty  

to follow the reference model T
1 3[ , ]m m mx xy . In the case, 

the first level sliding surface 1 1 1 1s c e e   and 

2 2 3 3s c e e  , where 1 2= 0.9c c , the hierarchical sliding 

surface is constructed as 1 1 2S s s  , where 1 1.1  . The 

initial values are chosen as 

 
T

(0) 0,0,0,0m x ,  
T

(0) 1,0,0,0x ,
1

(0) 0fK
θ ,

2
(0) 0fK

θ ,
1

(0) 0fB
θ ,

2
(0) 0fB

θ , ˆ(0) 0  , ˆ(0) 0h  ,

11.5k  ,
1

8.5fK
  ,

2
9.5fK

  , 1
0.1b  , 2

0.1b  ,

1
0.1 

2
0.1  , 0.015   , 5.2  , and the 

boundary layer 0.01  . 

The simulation results are shown in Figs. 4-6. Fig.4 and 

Fig.5 reveal that the state trajectories, respectively. The 

control signal is shown in Figs. 6. The simulation results 
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verify the usefulness of the proposed adaptive model 

reference hierarchical sliding-mode controller. 

 

Figure 4.  The trajectories of state 1x and state of reference model 1mx  

 

Figure 5.  The trajectories of state 3x and state of reference model 3mx  

 

Figure 6.  The control signal u 

5. Conclusions 

This paper proposes an adaptive model reference 

hierarchical sliding mode control scheme for a class of 

uncertain underactuated systems that guarantees the 

closed-loop stability in presence of unknown input 

dead-zone and time delay. Fuzzy logic systems are used to 

approximate the unknown nonlinear functions by some 

adaptive laws. Based on the Lyapunov-Krasovskii stability 

theorem, the proposed incremental hierarchical structure 

sliding-mode controller not only guarantees the stability of 

the uncertain nonlinear state time-delay systems with input 

dead-zone, but also ensures good tracking performance. 

Finally, some simulation results of a practical example are 

illustrated to show the effectiveness of the proposed control 

method. 
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