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Abstract  This paper presents a dynamic model of mill temperature that could be used alongside mill conventional control 

systems to provide indications of changes in mill slurry solids concentration and by extension the slurry holdup and mill 

mixing behaviour based on in-mill temperature profile. The model combines information of energy and mass balance, 

material breakage mechanisms, fundamental material properties and the milling conditions in a simple and clear 

representation of the physics and thermodynamics of the wet milling process. Model tests at steady state conditions using 

industrial mill data show a closer match between measured and predicted temperatures. The test results depicting the dynamic 

response of the model show clear sensitivity of in-mill temperature to perturbations in the mill slurry solids concentration and 

solids feed rate. The trends in the milling data from the model simulations corroborate long held believe that mixing is better 

at lower slurry solids concentration. Overall, the results are indicative of the available potential to improve the accuracy of the 

conventional mill monitoring and control schemes based on information extracted from in-mill temperature profile.  
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1. Introduction 

Ore milling is one of the primary operations in mineral 

processing and it is known to account for approximately half 

of all costs in a mine, largely attributable to energy and 

material expenditure [3]. A key strategy for achieving lower 

energy and material costs in ore milling circuits is through 

effective mill control [10, 13]. However, such a control 

system would require good understanding of the in-mill 

dynamics when the operating variables are changed and the 

interactions between external process variables and 

performance variables. Indeed grinding mills in mineral 

processing plants never really operate under steady state 

conditions as variations in feed size distributions, feed rate, 

feed slurry density and ore characteristics continuously upset 

the smooth running process. 

Today, PID (proportional-integral-derivative) controllers 

are the common computational based online control schemes. 

However, they are tuned to work for only a known set of 

operating conditions (incapable of self-tuning) and 

preferably for systems with non-interactive variables.     

If there is a change in these  system conditions,  the tuning  
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parameters become less suitable. In a milling circuit, if a 

given mass setting of the mill creates poor mill performance, 

then a new mass set-point will have to be established in order 

to maximize mill performance. Such a development in the 

mill circuit cannot be recognized by a PID controller, which 
implies that on its own, a PID controller cannot optimally 

control a grinding circuit. Recent years have seen 
development of expert control systems to address this need. 

The expert control system allows for interaction to correct 

for deviances, and optimal values for set-points. Thus, the 

expert control system relies on understanding of the process 

and the dynamic characteristics of many critical variables 

around the process. 
Better understanding of the in-mill dynamics can be 

gained in a much faster and economical manner through 

dynamic simulations (on-line or off-line) using accurate mill 

simulation models. Prior insights into the behaviour of the 

milling circuit can be made available such as response to 

grinding process disturbances during transitions between 

various steady-states. Also, the multivariable interactions 

within the mill circuit can be easily explored and evaluated 

and changes can then be made to the circuit to realise better 

efficiency and high throughput at lower costs. This inherent 

flexibility, coupled with robustness makes model-based 

control approach more advantageous in today’s highly 

integrated and complex comminution circuits. 

The fundamental aspects required for accurate dynamic 

simulation are good dynamic models, precise measurements 

of process variables and accurate estimation procedures for 
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process parameters [8, 9, 18]. A range of simulation models 

exist, which have been widely used for mill circuit design 

and optimization with varying levels of success. But these 

models do not consider the energy balance inside the mill 

and are mainly based on steady state analysis. Apart from 

mass and size balance, energy balance is a key aspect in 

control and optimization of a comminution process. Energy 

balance data is related to mill temperature where the latter is 

believed to be a primary indicator of in-mill process 

dynamics [21, 12]. 

It is a known fact that the biggest part of energy introduced 

in a ball mill is converted into heat, with only about 3 - 5% of 

this energy being used to grind the ore to the required 

fineness. As a consequence, this heat induces temperature 

rise inside the mill. Therefore, interpretation of the 

temperature signature would yield some useful information 

of the mill operation characteristics such as variations in feed 

rate, slurry properties, holdup mass and degree of mixing 

inside the mill which are directly linked to grinding process.  

Having the knowledge of these dynamics enables effective 

control of the grinding mill which in turn results in stable 

operation with optimum production capacity and energy 

efficiency. It is noteworthy that temperature measurements 

can be made quite easily and far more accurately than other 

process measurements in a milling circuit. 

This research aims to develop a dynamic model of mill 

temperature that may be employed alongside the 

conventional control system to provide indications of 

changes in mill operational characteristics. The model is 

developed in MATLAB environment, integrating the energy 

balance with the population balance in a simple and clear 

representation of the physics and thermodynamics of a wet 

ball milling process. The control parameters are mill power 

and product size distribution which are easily measurable. 

The success of this modelling technique would go alongside 

improving the continuous optimization and control of 

grinding mills. 

2. Model Development 

2.1. Model Framework 

A dynamic model is developed for a wet overflow ball 

mill based on a set of mass and energy balances. The energy 

balance relies on temperature and mass flow data. The key 

model parameters to be measured are mill temperature in the 

feed and discharge streams, mill power draw and the mass 

flow rate in the feed stream. Manipulated variables are feed 

size distribution, feed solids concentration and flowrate of 

mill feed dilution water. Figure 1 is a schematic 

representation of the energy and mass flow streams around 

the mill operating in an open circuit configuration. 

Where, P is the power input (kW) to the mill, Ff is the feed 

flow rate into the mill (fresh feed + dilution water), Tf is the 

temperature of the mill feed, Td is the temperature of mill 

discharge, QLoss is the rate of energy loss to the environment 

(kJ/s), yfi is the mass fraction of mill feed solids in size class i 

while ypi is the mass fraction of mill product solids in size 

class i. 

 

Figure 1.  Representation of mass and energy streams around the mill 

Figure 2 is the conceptual framework of the model which 

depicts the mill as system of N perfectly mixed cells of equal 

volume, V with a net volumetric flow rate, Ff and 

recirculation rate, Fb. The total flow rate through stages 1 and 

N is Ff + Fb while the flow rate through stages 2 to N-1 is Ff 

+ 2Fb. The set of equations which describes the dynamics of 

the system can be obtained by performing a material balance. 

The temperature of the mill discharge is assumed to be equal 

to the temperature in the last mixer and so is the slurry solids 

concentration. 

 

Figure 2.  Depiction of mass and energy streams in a mill represented by 4 

equally sized and fully mixed segments with back-mixing 

The model inputs are: breakage function parameters, 

selection function parameters, mill feed rate, mill dilution 

water, feed solids concentration, feed size distribution, mill 

rotational speed and mill level of filling. The outputs 

variables are the mill discharge temperature and the product 

size distribution. 

2.2. Energy Balance 

According to the fundamental laws of physics, the energy 

profile within a body depends upon the rate of energy input 

including internal generation, its capacity to store some of 

the energy and the rate of energy transfer to the surrounding 

environment i.e. Energy input = Energy output + Energy 

accumulation. Considering a wet ball mill operating in a 

continuous mode, then this equation can be expressed as 

follows:  

( )
( ) ( ) ( ) ( ) ( )f d p Loss

dE t
Q t P t Q t Q t Q t

dt
    

 
(1) 

Where Qf is the rate of energy input through the feed 

stream while P represents the mill power input. QLoss 

represents the energy loss per unit time which comprises 

losses through conduction, convection, vapour, sound and 

vibration while Qd is the rate of energy loss through the 
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discharge stream. The term Qp represents the energy 

absorbed per unit time by the particles to cause fracture, 

which is a function of material properties and mill conditions 

[16, 17]. Typically Qp is so small relative to the total energy 

input to the mill, that it cannot be reliably measured. Since 

the model will be tested against data obtained on a full scale 

mill, some simplifying assumptions are considered in the 

energy balance. The assumptions are as follows: 

i)  That all the net power supplied to the mill, is 

transmitted to the mill charge as frictional energy at 

the grinding zones where part of it is converted to 

heat and lost to the environment through mill 

discharge product and vapour with the rest being lost 

in form of sound and vibration.  

ii)  That the mill contents are well mixed both in the 

radial and axial directions. 

iii)  That the slurry and grinding media in the mill are at 

thermal equilibrium and that the reference enthalpy 

of water and solids is zero at 0°C. 

The overall dynamic energy balance around the mill can 

then be presented as equation 2 in which M(t) is the slurry 

holdup mass inside the mill approximated as, 

[ ( ) (t)]mM t F   

 

 ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

m
f f f

d d p Loss

d C M t T t
C T F t

dt

C T t F t P t Q t Q t



   

      (2) 

The value of C (specific heat capacity of slurry) varies 

with the proportion of solids (χ) in the slurry and can be 

estimated by equation 3 in which the Cs and Cw denote 

specific heat capacity of solids and water respectively.  

(1 )s wC C C          (3) 

The rate of energy loss through sound and vibration is 

typically small relative to the net energy input into the mill, 

hence it could be neglected. Also, for mills fitted with rubber 

liners like the one used in the current study, energy loss 

through convection and conduction is minimal and hence can 

be ignored. A significant proportion of the energy loss to the 

environment will occur through evaporation (i.e. heat loss 

through vapour at the feed and discharge openings) which 

has to be accounted for. Therefore besides the temperature 

measurements, the prediction accuracy of this model will 

depend on correct estimation of QLoss and Qp. Using standard 

bond work index, Qp is estimated to lie between 1- 3% of the 

net energy input to the mill [7, 19] depending on ore 

characteristics (hardness and size). Thus, in this study, Qp is 

modeled as a linear function of the net mill power draw in the 

form, p pQ k P . It is worth to note that mill power can 

easily be measured using mill supervisory and data 

acquisition (SCADA) system and is expected to vary with 

changes in mill filling, feed size distribution and slurry 

properties. 

The rate of energy loss from the mill through water vapour 

is a function of in-mill temperature, the humidity of the air 

overlaying the mill load and the slurry-air interfacial area 

where the latter is related to the size of the slurry pool. Thus, 

QLoss can be estimated by the following relation. 

  (4) 

Where L (kJ/kg) is the latent heat of vapourization, 

estimated empirically as L = 2501 – 2.361T [5], ρ is the 

density of overlaying air, Lm is the mill length, J is the mill 

filling (Jmax is dependent on the size of the discharge 

trunnion), Dm is the mill diameter while Kv is a correction 

parameter whose value is to be estimated and is related to the 

volume of vapour generated. The parameters qs and qa 

represent the specific humidity of air overlaying the load at 

saturated and unsaturated states respectively which are 

determined by equation 5 in which,  (= 0.622) is the ratio of 

molecular weight of water vapour to that of dry air and RH is 

the relative humidity (%) at temperature, T [14].    
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       (5) 

Where, 

ln(Psat)
-5 2-7 10 0.0512 [ ], 400OT T kPa for T C     

The residence time () has been correlated to the feed 

percent solids in the form, ( = K1f + K2J), [11]. Here, K1 and 

K2 are constants to be determined by regression while J is the 

fraction of mill filling. Performing an energy balance around 

the mill system represented by n-mixers (Figure 2), yields 

equations that describe the temperature variation with time 

inside the mill. The symbols  and  represent the length 

and residence time of a single mixer respectively while (b) 

is the back-mixing coefficient which is related to the axial 

dispersion coefficient. 
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                  (6a) 

Mixer k = 2 to n-1 

  2

max( ) 1 ;Loss v L m m a sQ t K L D J q q for J J     
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Mixer n: 
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The values of the back-mixing coefficient (b) lie between 

0 (no mixing) and 1 (perfectly mixed state). This parameter 

is a strong function of slurry solids concentration and could 

be estimated by the relation, (b = KA + KB/f) [11], where kA 

and kB are obtained by regression.  

2.3. Mass – Size Balance 

The size-mass balance is developed with reference to the 

mill system in Figure 1. Applying the principle of mass 

conservation to the milling process, the rate of accumulation 

of material of size i = rate of entry of material of size i from 

the feed + entry of material of size i from breakage of larger 

sizes - material destroyed in size i by fracture - disappearance 

of material of size i through discharge. This can be 

mathematically represented by the following steady state 

equation. 

1

1; 1

( )

m m pi f m fi f d pi

i

m ij j j i i
j i

F y F y F y

M b S l t S l

  




 

 

 
  
 
 


         (7) 

, , 1,

, ,

: , ;

,

i j i j i j

n j n j

where b B B n i j

b B j n

   

 
 

The parameters b and S are the breakage distribution 

function and the selection function respectively that can be 

obtained using equations proposed by Austin et al [1], while 

Fm, χm and χf denote the mass flow rate through the mill and 

the slurry solids fraction inside the mill and in the feed 

stream respectively. The rest of the parameters retain their 

earlier definitions. For a well-mixed mill, the size of particles 

inside the mill would be equal to the mill product size (li = ypi) 

and the average residence time would be given by the 

relation, ( = M/Fm). 

The population balance equation presented in Literature  

[1, 6] for determining the selection function characterizes 

particles only by their sizes. However, it is well recognized 

that the mechanical properties of brittle materials such as 

mineral bearing ore rocks strongly depend on deformation 

rate and strain rate. Therefore in population balance 

modelling of particle breakage process, the selection 

function should allow for particles to be characterized 

simultaneously by their size and fracture energy. The 

function should comprise the probability of a particle being 

selected for breakage and the probability of the energies 

generated by the impacts being sufficient to break the 

particles. 

According to the work by Crespo [2], the probability of 

the energy applied being sufficient to break the particle is 

related to the fraction of the absorbed impact energies in a 

given time interval that are higher than the fracture energy. 

Similar observations were made by Tugcan and Rajamani 

[20] in a separate study using ultra-fast load cell data, who 

further indicated the dependence of this probability on 

particle size and material specific properties. For instance, a 

material with a higher hardness index would store more 

strain energy during deformation hence depending on the 

level of applied strain, it may require repeated impacts to 

fracture a hard material. This observation is supported by the 

data from Discrete Element Method (DEM) [4, 15], which 

shows that the impact frequency inside the mill depends on 

the level of energy applied. Due to lack of appropriate data 

on fracture energies of various mineral ore rocks, the size 

dependent rate of particle fracture shall be adopted in our 

model. From equation 7, the dynamic mass-size balance 

model can be written as follows: 

1

1
1

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ...

( ) ( )

pi

fs fi

i

ds pi ij j pj
j
i

i pi

d M t y t
F t y t

dt

F t y t b S M t y t

S M t y t






 
 



 





       

(8) 

The vectors, ypi(t) = [yp1(t), yp2(t), … ypn(t)]
T and yfi = [yf1, 

yf2, … yfm]T represent the mass fraction of solids in the mill 

product and mill feed respectively in discrete size classes 

while Ffs (= χf Ff) and Fds (= χm Fd) are the mass flow rates of 

the solids in the feed and discharge streams respectively. For 

overflow mills, typical of the one used in this study, the 

volume of slurry present in the mill is reasonably constant 

over a wide range of operating conditions, hence the 

volumetric feed rate to the mill equals volumetric discharge 

rate at all times. Utilizing this fact, the variation in proportion 
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of solids in slurry, defined here as the mass of solids per unit 

mass of slurry in the mill, can be described by the following 

equation.  

( ) 1
( )m

f m

d t

dt


 


         (9) 

Similarly to the energy balance, the size-mass balance is 

performed with reference to the mill system presented in 

Figure 1. The superscripts in the brackets denote the mixing 

cell number i.e. k = 1 to n where n is the total number of 

mixing cells considered. 
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Mixer k = 2 to n-1: 
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             (10b) 

Mixer n: 
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                        (10c) 

The mass holdup of solids in each individual mixer at any 

time instant is dependent on; the level of solids concentration 

in the mixer, the mass feed rate and the residence time of the 

individual mixer as follows: 

1 1( ) ( ) ; ( )

( ) ; ( ) ( )

f k

k f n n f

m t F t m t

F t m t F t

 

   



 
.

 
It is expected that the variation in slurry solids 

concentration between mill cells (m1, mk and mn) would be 

marginal due to back-mixing effect. Performing the solids 

balance around the n mixers, we obtain the following 

equations representing the dynamic variation of solids 

concentration in each respective mixer. 

 
Mixer 1: 

2 11( ) 1

1

b
f

b

d t
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  


 
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   (11a) 

Mixer k = 2 to n-1: 

 1 1 1( ) 1

1
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    
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Mixer n: 

1( ) 1

1

n n n

b

d t

dt

  

 
 

  
 

     (11c) 

The task of mass and energy balancing has been 

accomplished numerically using MATLAB ode45 solver. 

3. Results and Discussion 

3.1. Experimental Data 

Experimental data utilized in this research was obtained 

from an industrial secondary ball mill at Anglo-Platinum 

concentrator plant in South Africa at typical operating 

conditions. The mill measured 7.3 m diameter by 9.6 m long. 

Under normal operating conditions, the mill ball filling is  

30% of total mill volume, mill speed is 75% of critical speed, 
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solids concentration in slurry is 75%, solids feed rate is 330 

tph and rated power draw is 9500 KW. Figures 3 and 4 

present the trends in the data for 14 experimental surveys 

conducted at varying conditions.  

 

Figure 3.  Trends of mill temperature change and slurry solids 

concentration for 14 surveys conducted on an industrial mill 

 

Figure 4.  Trends of mill power draw and product size (P80) for 14 surveys 

conducted on an industrial mill 

A systematic pattern is clearly displayed in the trends of 

slurry solids concentration and mill temperature changes. 

Increasing the solids concentration tends to suppress the 

temperature gradient. This trend could be attributable to 

improved mixing inside the mill at higher solids 

concentration. This observation points to an available 

possibility of using information contained in mill 

temperature profile to track the evolution of slurry solids 

loading inside the mill. A consistent trend is also noticeable 

between the mill power draw and mill product size (P80), 

which are efficiency indicators of a milling process. The P80 

is finer at higher mill power and vice versa which is 

consistent with the experience in milling practice. However, 

as solids concentration is increased, the mill power reduces. 

This is because the mass of the slurry pool in the mill (which 

exerts a torque counter to the torque drawn by the load) 

increases more rapidly than the mass of slurry in the load. 

3.2. Steady State Tests 

A total of 14 tests were conducted on a full scale ball mill 

at different steady states to allow measurements of mill 

temperature change between the feed and discharge points. 

The steady state set points were as follows: Load filling of 

0.25, 0.3, 0.33 of total mill volume and slurry solids 

concentration of 65%, 67%, 70%, 72% and 75%. The results 

obtained were compared with model predictions as shown in 

Figure 5. The model describes the experimental data fairly 

well at steady state conditions.  

 

Figure 5.  Comparison of measured versus model predictions of mill 

temperature changes for 14 surveys conducted on an industrial mill 

3.3. Dynamic Response Tests 

Test results of the model showing dynamic response of 

mill temperature to step changes in slurry solids 

concentration are shown in Figure 6. The corresponding 

results of the mill product size distribution for 30 minutes of 

milling are presented in Figure 7. The parameters used in the 

model are presented in Tables 1 and 2. The mill parameters 

are entered into the model simulator interactively using a 

simple user interface. 

Table 1.  Model parameters 

Mill design and 

Operational parameters 
Other parameters and coefficients 

D 7.3 m KV 4.8 KB 0.591 

L 9.6 m K1 50 Cs 0.31 kJ/kg.K 

N 75% Critical K2 25 Cw 4.18 kJ/kg.K 

J 0.3 KA -0.114 RH 70% 

Table 2.  Breakage and selection functions parameters 

Breakage parameters Selection function parameters 

β 4.0 AT (min-1) 1.1 

Ф 0.4  1.2 

 1.6 µ 9 

   3.1 

The results in Figure 6 show that the mill product is finer 

at higher solids concentrations of 75 and 80%. We believe 

that at higher proportion of solids, the slurry viscosity and 

particle packing is increased which enhances the friction 

within the mill load thereby strengthening the load lifting 

action, consequently improving the grinding. Also, the high 

energy impacts that result from high lifting action generate 

more heat which induce temperature rise. This explains   

the observed trends in Figure 7. Dilute slurry (lower solids 
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concentration) tends to reduce friction within the load and 

cushions the ball impacts thus suppressing the grinding 

process.  

 

Figure 6.  Simulated particle size distribution of the mill product after 30 

minutes of milling  

 

Figure 7.  Simulated in-mill temperatures for 30 minutes of milling at 

different levels of slurry solids concentration 

3.4. Sensitivity Test 

The sensitivity of temperature to variations in solids 

concentration and mill dilution water was assessed by the 

model. The mill simulation was run for 30 minutes 

(measured residence time) at each steady state before 

introducing a step change in the feed solids concentration by 

adjusting the mass flowrate of dilution water. The total 

simulation time was 90 min for the 3 levels of solids 

concentration utilized.  

The profile of temperature changes correspond well with 

variations in slurry solids concentration and mill dilution 

water as demonstrated by the results in Figure 8, but only 

from a qualitative approach. Changes in mill temperature 

coincide with changes in solids concentration as feed 

dilution water is adjusted. Addition of dilution water results 

in negative change in temperature. These trends clearly 

indicate the sensitivity of temperature to perturbations in the 

slurry solids concentration. Thus, the evolution of slurry 

solids concentration inside the mill can be well traced using 

temperature profile.  

 

 

 

Figure 8(a, b, c).  Profile of mill temperature change with variations in 

feed solids concentration and mill dilution water 

4. Conclusions 

A simple dynamic model combining energy, mass and 

population balances has been utilized to assess the dynamic 

response of the mill to changes in mill operational 

parameters for purpose of establishing a predictive control 

tool. The manipulated parameters are solids feed rate, feed 

solids concentration and dilution water while the response 

variables are mill power draw, mill temperature and mill 

product size distribution (P80). The results demonstrate a 

good dynamic response of the model to variations in mill 

operational parameters. Specifically, the profile of 

temperature changes inside the mill corresponds well to 

changes in mill slurry solids concentration. These 

observations justify the exploration for novel process control 

strategies that would enhance the effectiveness of mill 

control. The results assert the recommendations by previous 

researchers [13, 21] that temperature could provide 

significant insights into process behavior of a mineral 

processing unit which in turn may help to improve the 

control and optimization of the process. Once accurately 

calibrated, the temperature model can assist in providing 

early diagnosis of an ‘ailing’ mill that could be drifting off 

the desired operating curve.  
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