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Robust Adaptive Fuzzy Control of MIMO Nonlinear
Systems with Higher-Order and Unmatched Uncertainties

Chiang-Cheng Chiang

Department of Electrical Engineering, Tatung University, 40 Chung-Shan North Road, Sec.3, Taipei, Taiwan, Republic of China

Abstract In this paper, a robust adaptive fuzzy controller is designed for the output tracking control problem of
multi-input multi-output (MIMO) nonlinear systems with higher-order and unmatched uncertainties. For real mechanical
systems, the strength of the unmatched uncertainties is bounded by the pth-order polynomials in states, in contrast to other
works assuming that these uncertainties are bounded by the first-order polynomials in states. Based on the combination of

the H™ optimal control with fuzzy systems and some feasible adaptation laws, the proposed robust adaptive fuzzy
controller can not only guarantee that all the signals in the whole closed-loop systems are bounded, but also obtain that the
output tracking performance of MIMO nonlinear uncertain systems is well established. A series of computer simulations are

illustrated to demonstrate the validity of the proposed control scheme.
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1. Introduction

The adaptive control of nonlinear systems has attracted a
lot of attention, and significant progress has been made in
recent years and novel techniques facilitated by advances in
geometric nonlinear control theory and in particular
input-output feedback linearization method[1,2]. The central
concept of this approach is to transform the nonlinear system
dynamics into an equivalent linear system, so that the
conventional linear control techniques can be applied.

The approach requires a perfect modelo fthe plant in order
to achieve linearization of the closed-loop system. However,
there often exist inevitable uncertainties in the constructed
models of many real systems. In addition, some uncertain
parameters are not exactly known or difficult to estimate.
Generally speaking, uncertainties in the feedback
linearization include the matched uncertainties[3,4] and the
unmatched (mismatched) uncertainties[5,6]. For many
practical systems, unmatched uncertainties are common in
control practice. Therefore, the design of a robust adaptive
controller that deals with unmatched uncertainties of a
nonlinear system is an important subject.

So far, the systematic design of input-output linearizable
systems with the unmatched uncertainties has been
conducted, and three main extension systems have been
proposed: (1) adaptive control[7]; (2) Lyapunov-based
control[8]; (3) variable structure control[9,10], to increase
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the robustness and to improve the performance of the
controlled nonlinear system. Recently H™ optimal control
theory has been well developed and found extensive
application to efficiently treat the robust stabilization and
disturbance rejection problems[11-13]. In this paper, we
combine H” control technique with adaptive control to
deal with unmatched uncertainties.

In the past few years, there has been rapidly growing
interest in fuzzy control of nonlinear systems, and there have
been many successfulapplications. The most important issue
for fuzzy control systems is how to get a systemdesign with
the guarantee of stability and control performance.
Meanwhile, recently there have been significant research
efforts on the issue of stability in fuzzy control
systems[15-18]. In[19, 20], based on feedback linearization
technique, adaptive fuzzy control schemes have been
introduced to deal with nonlinear systems. However, their
results were valid while the controlled nonlinear systems did
not include the unmatched uncertainties.

In this paper, the main objective is to design a robust
adaptive fuzzy controller for a class of unknown MIMO
nonlinear systems with higher-order and unmatched
uncertainties. Also, the strength of the unmatched
uncertainties is bounded by the pth-order polynomials in
states, unlike other works[14,21,22] based on the
assumption that these uncertainties are bounded by the
first-order polynomials in states. First, the theory of state
feedback input output linearization is applied to the MIMO
nonlinear systems with unmatched uncertainties. The
resulting normal systems with unmatched uncertainties will
be in a minimum phase system. Next, the fuzzy systems and
some adaptive laws are applied to approximate the unknown
nonlinear functions and estimate the upper bounds of the
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unknown uncertainties, respectively. However, these
unmatched uncertainties including modeling errors (fuzzy
systemapproximation errors) and parameter variations, etc.,
can lead to the instability of the closed-loop system;
therefore, a robust compensator is designed by H™ control
technique to reject this kind of uncertainties. The proposed
control scheme not only guarantees the uniform ultimate
boundedness, but also makes the maximum tracking error
less than or equal to a desired attenuation level due to the
unmatched uncertainties.

This paper is organized as follows. First, Section 2
describes the problem of robust output tracking for MIMO
nonlinear system with higher-order and unmatched
uncertainties. Then, necessary preliminaries on feedback
linearization are presented, and some necessary assumptions
are introduced. In Section 3, a brief description of fuzzy
systems is made. In Section 4, a robust adaptive fuzzy
controller is proposed such that the output of the controlled
system with higher-order and unmatched uncertainties
exponentially tracks the given desired trajectory. In Section
5, the simulations and discussions are presented to confirm
the validity of the proposed control scheme. Finally, a
conclusion is given in Section 6.

2. Problem Formulation

Consider a class of MIMO nonlinear systems in the
presence of the unmatched uncertainties of the following
form:

x=f(x)+2 g;(x)u; +0(x) (1
j=1
Yi = hi(x) i=leem

ueR™
y € R™ are the system input vector and output vector,
f(x), g;(x)eR",

sufficiently smooth vector fields, A (x)eR, i=1,---,m are

where xeR" is the measured state vector,

respectively. j=1-,m are

sufficiently smooth output functions, and ©(x)e R"

represent uncertainties continuously differentiable with
respect to x.

First, we pursue the input-output linearization process for
a MIMO dynamics. In the following definitions, the notation

Lih, (x) and ng hi(x) denote, the Lie derivatives of the

function 4 (x) with respect to the vector field f and g,

receptively. Higher-order Lie derivative can be defined
- ky _ k-1

recursively such as thi=Lf(Lf hi), k>1.

Definition 1[1]: A multivariable nonlinear system of the
form (1) is said to have a (vector) relative degree

rz(rl,---,rm) atapoint x, if
(i) ngL/}hi=0 forall 1<j<m forall 1<i<m, for

all k<7 —1 andforall X inaneighborhood of X .

(ii) The mxm matrix
L L7 (x) o L, LR (x)
Ak
L Ly 7h, (x) - Ly L 'hy (1)

is nonsingularat x = x,

@)

Throughout this paper, we assume that the system (1)
possesses a relative degree in its domain of definition. Based
on this assumption we have the following proposition.

Proposition 1[ 1]: Suppose asystemhas a (vector) relative
degree r=(r,---,7,) at Xy, then 7 +--+7, <n.Let

z; = h(x)
: 3)
-1
Zy, = L_r}, hi(x)

if r=#+---+r, isstrictly less thann, it is always to find

i=1 -, m

n—r smooth functions 7,,,,---, 7, such that the mapping

107
= T
z :[le’m’zlrp'“’zml ’“"Zmrm’nHl’“"nn ] (4)
has a Jacobean matrix that is nonsingular at x,. The
M,41>- "> 7, arechosen tosatisfy
Ly 1 =0 (5)

forall 1<j<m, r+1<k<n,andall x around x,.
Now, we set

T

z=[z,3, ]

e Z
15 )

.--’Z

ml> mry,

T
-1 -l
:[hl,thl,---,L}f ey Ly L hm} ©)

n=[n, 1

According to Proposition 1, there exists a diffeo morphic
coordinate transformation (z,7)=7(x) which transforms

the system (1) into the following normal form:
Zi = Zp +Agy (2,7)

Z, =b(z.m) + ) ay(z,mu; +Ag, (2,17)

Jj=1
=V, +A,. (z,1) (7
n=0(z,n)+AX(z,1) (8)
Vi=h =z, i=1--,m )]

w=[u,ou, | =47 [v=b] (10)

where

Apy (zm)=LoL 'y i=1l...m,
T
O =] Ltsses Ly, | 0T (21

Az, n) = Loy, Loty 1 T (z,1).

I=1...r
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-1 -
Lo Ly h(x) - Ly L} h(x)

ap -
Aen)e P i |-
) ] LglLr}”_lhm(x)
v=[v1,...,vm]r

. r T T
bz =] LphoosLih, | =[benh,]
Assumption 1: The zero dynamics (8) is exponentially
stable in the domain of definition, and the function Q(z,7)

o7 7 (z)

is Lipschitz in z and uniformly in 7. Moreover, the norm
of the uncertainty vector AQ satisfies the following
condition: "AQ" <L.

Assumption 2: Let v, =[y 1, Vg | " be the desired

output trajectories. The desired trajectories y,
i=1---,m, and their first 7. derivatives are uniformly
¢9) (1)
bounded, that is (ydi’ Yai» " Vai S By fora
bounded positive constant B ;.
Define the output tracking errors to be
o=, ishms jeler (1)

and

_ T
e_[ell’...’elrlj...’eml,...,emrm]

(12)
Then the output of the system and its derivatives can be
expressed as
Vi=h =z,
M=z =z, +A
Vi Zi1 = Zip T AP

¥ =z, +(Agy )(l) =23+ g, +(Ag, )(1)

g M &) -

n" = Iy +(A¢’i<rfl)) +(A(/’t(rr2)) +"'+(A¢i2)<r ?
+(A(p,-1 )(V,-—l)

b+ Y au, +AD, (13)
=t

where

AD; =A@, +A¢;, +-~-+A¢[(Vi_1) +A¢,~ri and
A¢ij :A(l)l;-ri_j),for i=1...,m and j=1,..,r.

Assumption 3: If the Ag; is the function that has

continuous derivatives in the domain of definition. These
derivatives are bounded by the polynomial which is

combined  with  both e[ and ||;7||k ,
p=01,--- N, ,k=1,---,M. Thatis,

2w < 357 oo lel” + L Sl or i =1 m(14)
where ©;,, &, areunknown positive constants.

In accordance with (14), we will choose the simple

adaptive laws to estimate the upper bounds of these
higher-order uncertainties. The simple adaptive laws can be
represented as follows:

\ijlip (€)=—qu, ”e”p eiTPiBi; ‘iJZik (M) =42 "’7"k eiTPiBi (15)
where
¥y, (0 =¥,,(0)-0,, p=0,1,2,- N, i=l-m,
Wi (1) = Pou 1) =Gy, k=120 M, i=1,m,
are the parameter adaptation errors and ¢y;,, ¢y, are the

adaptation gains with the positive values. Because o;, and

ip
0, are unknown positive constants, the adaptive laws can

be written as

‘?Up(e):—qup”e”p e,-TBB,-, =012 N izl,--~,m(16)

You ) =~y || &/ BB, k=12,..M i=1...m

Control objectives: Determine a robust adaptive fuzzy
controller such that the following conditions are satisfied:

(1) The states of the closed-loop system are uniformly
ultimately bounded. Furthermore, the output tracking errors
asymptotically converge to the bounded region.

(ii) For the given attenuation level p >0 such that the

following H™ tracking performance index is achieved.

[T Qedt <" (0)Pe(0)+%éf (0)4(0)

+ %O(%;‘i’lp (0))T ¥, (0) (17)

M ~ T .
-1 2¢T. T
+Z(q2k‘1’2k (O)) Yy (O)+p Io w' wdt
k=1
where T e[0,0), weL,[0,T] is the combined fuzzy
approximation errors, (), P are positive matrix of proper

dimension, y is a designed parameter. If the system stars
with initial conditions e(0)=0, 6(0)=0, ‘i‘lp 0)=0,

and \i’zk (0) =0 then performance in (17) can be rewritten
as

wep[o1] W]

(13)

where ||e||2Q =j()TeTQedt and ||w||2 = OTwdet , i.e., the
L, gain from w to the tracking error e must be equal to

orless than p.

3. Robust Adaptive Controller Design
Using Fuzzy Systems

The fuzzy systems are universal approximations from the
viewpoint of human experts and can uniformly approximate
nonlinear continuous functions to arbitrary accuracy[14].
The basic configuration of the fuzzy system consists of four
main components: fuzzy rule base, fuzzy inference engine,
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fuzzifier and defuzzifier . The fuzzy system performs a
mapping from UcR" to VcR. Let U=U,x---xU,
where U, c R, i=12,...,n. Wang[16] presents a detailed

description of each of the four blocks in the fuzzy system.
The fuzzy rule base consists of a collection of fuzzy
IF-THEN rules:

R IF x; is Fll and ---

THEN y is G', 1=1,2,....M

!
and x, is F,,,

where x:[x],xz,-u,xn]TeU and yeV cR are the

input and output ofthe fuzzy system, Fl.’ and G’ are fuzzy
setsin U; and V ,respectively. M isthenumber ofrules.

The fuzzifier maps a crisp point x =[x,x,,"-,x, ]T into a
fuzzy set in U . The fuzzy inference engine performs a
mapping from fuzzy sets in U to fuzzy sets in V, based

upon the fuzzy IF-THEN rules in the fuzzy rule base and the
compositional rule of inference. The defuzzifier maps a
fuzzy set in V' to a crisp point in V. The fuzzy systens

with center-average defuzzifier, product inference, and
singleton fuzzifier are of the following form:

AZ/I: 0’ (H?:l Hepi (xi))
y(x) =5 [
> (It 0)

I=1

(19)

where @' is the point at which fuzzy membership function

Ui @ of fuzzy sets G' achieves its maximum value, and

it is assumed that ((91) =1.Eq. (19) can be rewritten as

y(x)=0"g(x) (20)

where 0= [9',6’2,-~,6’M ]T is a parameter vector,
T

E(x) = [g“l (x),--, &M (x)} is a regressive vector with the

regressor &' (x), which is defined as fuzzy basis function

H?ﬂ 'UF/ (x;)
M
Z (H?:l /"Fil (x; ))

/=1
In order to achieve the proposed control objectives, these

& (x)=

21

unknown nonlinear functions ;(z,77) and @;(2,77) willbe
approximated by tuning the parameters of the corresponding
fuzzy systems. In this situation, b;(z,77) and @;(z,77) in (7)
will be approximated by the following fuzzy systems

5i(z|9ib) and a;; ( | ,ﬂ,) respectively.

b(z10,)= if (2)=¢"(2)0 (22)
( W) lla (Z) ( ) jja (23)
where e (sz I 0 )T > eya - (et}a [ARRE] (91% )T )
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i=1...

Due to the existence of fuzzy approximation errors and
unmatched uncertainties, the resulting robust adaptive fuzzy
controller can be chosen as

m, j=1,....m

. Al ~
L1 a o A by (Z \ 91) Vi Ue
S I . B : n _l 1@
Uy &ml “' &mm 5m (Z ‘ gm ) Vin Uem
where u,, is the robust compensator defined as

1 T N _ p M _ k
Uy = _TBi Pey+ 2. Yy ”e” + 2 Wou ”’7” (25)
p=0 k=1

i

and 4, P are the solutions of the following Riccati
equation[19]
PA+A'P+Q - (%—lJPBB P=0 (26)
i P

It is noticed that Riccati equation (26) has a solution
P=P">0 if and only if 2p°>A . Moreover, the
auxiliary control input can be chosen as

(n-1)

_ )
=Vai +k1rell ot ke
(27)
|
yc(i];:l +k fr?ln )+'“+kmlem1

It is ObYIOUS from (24), (27) and (13) that we can obtain

(1) (n-1)
e Jrklren oot hyep

elm) + Ky, eV ytk e

L €l (28)
o R R [ S N

Then the state space representation of (28) can be defined as
é = A4e;

m 29
+B, {b(z| )~ b(zn)+2( i (2165 )- A(z,n))uj
j=1

+Bju,; — B;AD;
where
o 1 o - 0 0
0 0 1 - 0 0
4=, : T cos Bi=| L
| ki ki ki —kiy 1
e €
e’ |_|en
el= . = .
_e_(lrrl) €,

Moreover, the coefficients kl./ are chosen such that the
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matrices 4, are Hurwitz for ;=1,2,-..,m and j=1,2,...
Now let the optimal parameter estimates Hb and 9 be

defined as follows[16]:

6;, = argmin sup‘b z| 6. )—bi(z,n)‘ ,
Hlele ZEQ
%
Gjia —argmln{sup‘ a;(z| Ua) .(2,77)‘} (30)
0ija €94 | 2€Q
where Qib,Qija and Q_ denotethesets ofsuitable bounds
on @, , Ql-ja , and z , respectively. The minimum

approximation errors[15,16] is defined as
w; = [ l;i (z ;Z)—bi (z,n)}+ Z[ a; (z ‘9;)_%‘ (2,77):| u 31
j=1
Then (29) can be rewritten as

= Ae,+ B, b (210,)=b, (z.1)+5, (163 ) =5, (=16}
S e ) 1) 10

+Buy — BAD;
T
=Aiei+391b§( )+B 2 ija ( )uj
(32)
+Biwi +B.u i —BA(I)
where é :Hib _9;; ’ elja _9 9
The parameter adaptive laws are chosen as

6 =7 £(2)B] Pe,. 33)

0, = —7;E(2)B] Peu;, (34)

where y, and y; are positive constants.

Theorem 1: Consider the MIMO nonlinear uncertain
system (1) and Assumptions 1-3 are satisfied. If the robust
adaptive fuzzy control scheme in (24)-(27) with the learning
adaptive laws in (16), (33), and (34) are adopted, the
following properties are guaranteed:

(1) The states of the closed-loop system are uniformly
ultimately bounded. Furthermore, the output tracking errors
asymptotically converge to the boundary set.

(ii) For the given attenuation level p, the tracking

performance index (17) is achieved.
Proof. Choose Lyapunov function as

V=V+--+V,
1 r
Vi :Eei [;ei+ lb+z lja lja
i Vij
g ()
+E 2 QY up 3 Z %k 21k
p=0

Differentiating V and V, along the solution of (32), we
obtain

176
V:K+W+V
° 1 T 1 T .
Vi Zzei Eei +Eei Bei +— b + Z t/a ya
i Yij
N Mo
+2 Giip F1ip ¥ + 2 Dok Yo ok
p=0 k=1
By the fact aib = Hlb ’ 91]0 = el'ja ’ ‘Plip = lPllp’

¥, =¥, and (14), (25) and (32), the above equation
becomes

L rlor 2 T L 7.7 T
Vi Sgei {Ai Pi*BAi*IPiBtBt P, ei+5(wi B; Fe; +e¢; PiBiWi)

i

+|:e[TPI-BI-§T+L9;£}9~[b+§{ ! PB.E Lgr }5,
i J=

ija
ij

N L
3 By (|l o 2B+ i ¥, )
= (36)
u - k T 18
+];1\{’2ik ( "77" e; bB; +q2ikly2ik)

From the adaptive laws, (15) and (33) and (34), and the
Riccati equation (26), we get

T

: 1 (1 1

Vi<-—e Q¢ ——| =B/ Be;—pw; | | =B/ Pe,—pw,
2 2\p P

I 5 7
P W,

T
Since l(lBiTgei _PWiJ [iBiTPiei _PWiJZO
2\p p

<——e Q,el—i- P wTw

m 1 =~ N
=—— 040, - —0,.0, 5
e Q; i 2}/[ 1 jél 2]/[] ija“ija 2P§Oqltp lip
L8 g0 LizPr.2 1gs 2
- ol o. — 8.
2 El Dok Y oip T — 2}/[ H ib ” +j§1 2711 ” jya
1 X -1y
+E z QIip llp += Z qZZkLP 2ik + p "W " (37)
p=0
By the fact || b||<M “ ial| S Mo > W, :sup"wi",
the above equation becomes
m
1
__e i€ 2}/1 zgezb _jz:_l 27/ gyz;eya
~ 1
_1 2 2
5 Z Qip llp ) Z 21k‘{121k+ Mib
k=1 i
2
+Z Mya Z llp\Php

+— Yi+ w
2;::‘1211{ 2ik 2P
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Let

M= Z

-I\3
2}/ Ua = z q; lIlllp
Jj=1

4—1—56 Y2+ ! vv
) _‘]2zk 2ik 2/7

T
eya Hya

<M =T pe 90
i 2sup/1 (P)t i€ 27/1 ib ]Z:I

Z q21k‘1121k + H;

T
7 0jaya

. 1 1 ~r=~ mo ]
V< —=Ael Be =040y~ Y. —
2 242
7/1 /17/11

ija“ija

=y, ~s 17,
v Ligrg, +— 2474,
27/1' U

__Z ltp llp

Yz
Z Goie Your + 14
245

=7 515 Vi sr
Let Li :_zgibgib —7 Hljaelja + 4
i U
— moq
T
2 gibgib - Z
i ./—12 ij
14 -,
-= Z llp llp EZQZikle‘k"_Li
k=1

Let ¢; =min %,L,L,l

Vi Vi

V,=—cV,+1L, (38)
Let c=min{¢;} , L= p.max{L} from(35)and (38) we

have

T H
011a Hl]a

: 1
Vi <—=Ae Be;—
2

V<—cV+L (39)
However, the proposed controller will not only guarantee
the asymptotic output tracking but also the uniform ultimate
boundary. Thus, the control objective (i) is realized.
In order to achieve the control objective (ii), we integrate
37) from =0 to t=T,we have

%jjefg,.e,.dz < V,»(O)—Vi(T)+%p2j0TwiTwidt

Since ¥;(T) =0, we can write (40) as follows:

(40)

%eiTQieidt <V (O)+%p2I(}TWITWidt

Z%e;@)ge,.(o)%ezz (0)d (0)

+z l/u( ) l]a( ) Z qlll‘Plzlp( )

1
+— Zqzlk P (0)+5 0 [y wiwar qan
Let Q:dlag[Ql,...,Qm], P:diag[P,...,Pm],
e=[el]
i =diag[ (@11,) " ()™ }
42 = diag[ (@207 "»(q2mk)71:|
~ ~ ~ T
Fip (0):[ W11, (0). . Wi (0)} ’
~ ~ ~ T
Yo (0) :[ Yo (O)v"'v\Pka (0) }
T
. ~ 1
é, (0 0 —an(
,(0) = [\/— i (0), O ]

! T
éa (O) [\/791111 F mma )}
6(0)=[d7 (0).07 (0)] . w=[wiowwerr, T

then from (41), we obtain
[, " Qedr <" (0)Pe(0)+8" (0)4(0)
N I3 T ~
+2(q;p\111p(0)) ¥, (0) 42)

+Z(Clqu’2k( )) P (0)+p2I0Twdet

i.e., the control objective (ii) is achieved.

4. An Example and Simulation Results

In this section we provide an example to demonstrate the
performance of the proposed robust adaptive fuzzy controller.
The two-degrees-of freedom manipulator[23] shown in Fig.1
is illustrated under the assumption of lumped equivalent
masses and mass less links, and its dynamics are represented

as follows:
{ a1(9)  a;(9) }{ 6 }
a(9)  ax(9) | ¢
D(¢)
:[ PO +26,$)09 H 7(0.9)g Hﬂ .
_,312(¢)¢2 7,(0.9)g up

where @ and ¢ are the first joint angle and the second

joint angle, respectively. g is the gravitational constant and

u; , i=1,2 are the applied torques. Suppose that

D' (¢) exists and let the desired positions be @, and ¢, .

Let the state vector be defined as

- ,U-D (-D
] y{ ylj i:1,2 j:l,Z

s

and
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(yl’yld’y27y2d )E(e’ed’¢>¢d )
Equation (43) in state space representation becomes
VI =2 =2y 0P =z, +Adyy

o . ..
Z%( /31292 +26,09+ 8 +u )

(44)
W=z, +Ad,

“12( Biad® + 728 +1uy ) + 11,008+ 1y, (O + 6g)

= b +ajuy +apu, +Ad, +(A¢11) (45)
Yy =y =yt iy ¢ = Iy Ay, (46)
.. . . a . .
Yy =2y + AP, = _712( ﬁ1202 +28,00+ g +u )
a . .. .
+7”(—/5'12¢2 +728 +uy)+ ﬂ129¢2 + 11 (209)
=by +ayuy +anuy +Apy +(A¢2| ) (47)
with
2
d =009 -y,
oy, =(m + mz)rl2 + m2r22 +2m,nr, cosg+J,
o, = m2r22 + mynr, cos @
Oyy = m2r22 +J,
7= —[ (my + m, )1, cos ¢ + m,r, cos(0 + @) ]
¥y = —Miy1, cos(0 + ¢)
By =myrir, sing
where my, 5, J;,i=1,2 denote the point mass, length of

link, and additional constant inertia with respect to axis of
rotation. For better comparison to the simulation results of
earlier parameter values used are the same as those of[23]:

m=0.5kg, m,=6.35kg, =1 m 7,=0.8m, J,=5kg-m,

J,=5 kg-m, 6, =sin(¢) rad, ¢, =sin(¢t) rad, 9 (0)=0.5
rad, and ¢ (0)=0.5 rad. By tracking a sine function, the
unmatched uncertainties will be violent change with time
varying and raised. This situation could make us more
difficult to track the desired output, but the trajectory still can
be arrived by the proposed controller in this paper.

Choose fuzzy mernbership functions as follows:

gy () 1+exp(5x+06)
g2 (x) = exp( (5 +04) |,
,uF3( )—exp( (xl+02)2)

Hps (%)= eXp(_xi ) Hys (xi) = eXp(_(xi _0'2)2)’

o (37) = exp( (3 ~04)’ ),

1
7 (%) =~ +exp(=5(x; —0.6))

Let

> for 1=1,2,3,4

,UFII (x1)ﬂF21 (xz)”@’ (x3)/1F41 (x4)

& (x)=

217:1 'UF{ (xl )ﬂle (xz )#F31 (x3 )ﬂFj (x4)
and

£00)=(& (.8 (0.8 (3).£ (x).€° (0).£° ()67 ()
Using (22) and (23) to approximate the unknown
b,b,,a;, and a,, (here we assume q,,, a,; are known a
priori). For the Q =0, = a’iag[lO,lO] s P
A =, =0.05, solving Riccati equation (26), we get

Pop - 15 5
1= s
kyn=kp,=1, ky=kp=2, pn

=70 =001, g¢0=3, @11 =3, q=1, g =1,
V(0 =2, ¥1(0)=2, ¥5(0)=2, ¥}, (0)=2. We
set the uncertain coefficients x4, =-0.1, g, =-0.1,
iy =0.1, and 1,, =0.1. Results of this simulation are
given in Figs 2-6. Figs. 2-3 show the tracking trajectories of
joint 1 and joint 2, respectively. Figs. 4-5 show the torques
ofjoint 1 and joint 2, respectively. Fig. 6 shows the curve of
the H” tracking performance index in (17). It is easily
shown fromthese simulation results that the proposed robust
adaptive fuzzy control algorithm (24) can achieve the

excellent output tracking performances of the nonlinear
system with higher-order and unmatched uncertainties.

Y Gri\/lt

=p,=05,

Let =7 =01,

m —=17
o
rs
r1 -
w‘k HS ] V
1
Figure 1. A two-degree of freedom manipulator
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5. Conclusions

The output tracking control problem of MIM O nonlinear
systems with higher-order and unmatched uncertainties has
been studied in this paper. In the proposed design method,
fuzzy logic systems are used to estimate the part of unknown
nonlinear functions, and the robust controller that combines
the H” optimal control with adaptive laws can deal with
unmatched uncertainties and fuzzy approximation errors.
Because of the complexity of the structure of the
uncertainties, the upper bounds on the norm of the
uncertainties can be estimated by the proposed adaptation
laws. Simulation results demonstrate that the overall control
system guarantees that all signals involved are uniformly
ultimate bounded, and that the tracking performance index
can be achieved.
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