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Abstract  In this paper, a robust adaptive fuzzy controller is designed for the output tracking control problem of 
multi-input mult i-output (MIMO) nonlinear systems with higher-order and unmatched uncertainties. For real mechanical 
systems, the strength of the unmatched uncertainties is bounded by the pth-order polynomials in states, in contrast to other 
works assuming that these uncertainties are bounded by the first-order polynomials in states. Based on the combination of 
the H ∞  optimal control with fuzzy systems and some feasible adaptation laws, the proposed robust adaptive fuzzy 
controller can not only guarantee that all the signals in the whole closed-loop systems are bounded, but also obtain that the 
output tracking performance of MIMO nonlinear uncertain systems is well established. A series of computer simulat ions are 
illustrated to demonstrate the validity of the proposed control scheme. 
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1. Introduction 
The adaptive control of nonlinear systems has attracted a 

lot of attention, and significant progress has been made in 
recent years and novel techniques facilitated by advances in 
geometric nonlinear control theory and in particular 
input-output feedback linearizat ion method[1,2]. The central 
concept of this approach is to transform the nonlinear system 
dynamics into an equivalent linear system, so that the 
conventional linear control techniques can be applied. 

The approach requires a perfect model o f the p lant in order 
to achieve linearization of the closed-loop system. However, 
there often exist inevitable uncertainties in the constructed 
models of many real systems. In addition, some uncertain 
parameters are not exactly known or d ifficu lt to estimate. 
Generally speaking, uncertainties in the feedback 
linearization include the matched uncertainties[3,4] and the 
unmatched (mis matched) uncertainties[5,6]. For many 
practical systems, unmatched uncertainties are common in 
control practice. Therefore, the design of a robust adaptive 
controller that deals with unmatched uncertainties of a 
nonlinear system is an important subject. 

So far, the systematic design of input-output linearizable 
sys tems  with  the unmatched  uncertaint ies  has  been 
conducted, and th ree main extens ion systems have been 
proposed : (1) adapt ive cont ro l[7];  (2) Lyapunov-based 
control[8];  (3) variab le structure control[9,10], to increase  
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the robustness and to improve the performance of the 
controlled nonlinear system. Recently H ∞  optimal control 
theory has been well developed and found extensive 
application to efficiently  treat the robust stabilization and 
disturbance rejection problems[11-13]. In this paper, we 
combine H ∞  control technique with adaptive control to 
deal with unmatched uncertainties. 

In the past few years, there has been rapidly growing 
interest in fuzzy control of nonlinear systems, and there have 
been many successful applications. The most important issue 
for fuzzy control systems is how to get a system design with 
the guarantee of stability and control performance. 
Meanwhile, recently there have been significant research 
efforts on the issue of stability in fuzzy control 
systems[15-18]. In[19, 20], based on feedback linearization 
technique, adaptive fuzzy control schemes have been 
introduced to deal with nonlinear systems. However, their 
results were valid while the controlled nonlinear systems did 
not include the unmatched uncertainties. 

In this paper, the main objective is to design a robust 
adaptive fuzzy controller for a class of unknown MIMO 
nonlinear systems with higher-order and unmatched 
uncertainties. Also, the strength of the unmatched 
uncertainties is bounded by the pth-order polynomials in 
states, unlike other works[14,21,22] based on the 
assumption that these uncertainties are bounded by the 
first-order polynomials in states. First, the theory of state 
feedback input output linearizat ion is applied to the MIMO 
nonlinear systems with unmatched uncertainties. The 
resulting normal systems with unmatched uncertainties will 
be in a minimum phase system. Next , the fuzzy systems and 
some adaptive laws are applied to approximate the unknown 
nonlinear functions and estimate the upper bounds of the 
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unknown uncertainties, respectively. However, these 
unmatched uncertainties including modeling errors (fuzzy 
system approximation errors) and parameter variations, etc., 
can lead to the instability of the closed-loop system; 
therefore, a  robust compensator is designed by H ∞  control 
technique to reject this kind of uncertainties. The proposed 
control scheme not only guarantees the uniform ult imate 
boundedness, but also makes the maximum t racking error 
less than or equal to a desired attenuation level due to the 
unmatched uncertainties. 

This paper is organized as follows. First, Section 2 
describes the problem of robust output tracking for MIMO 
nonlinear system with higher-order and unmatched 
uncertainties. Then, necessary preliminaries on feedback 
linearization are presented, and some necessary assumptions 
are introduced. In Section 3, a brief description of fuzzy 
systems is made. In Sect ion 4, a robust adaptive fuzzy 
controller is proposed such that the output of the controlled 
system with h igher-order and unmatched uncertainties 
exponentially tracks the given desired trajectory. In Section 
5, the simulations and discussions are presented to confirm 
the validity of the proposed control scheme. Finally, a 
conclusion is given in Section 6. 

2. Problem Formulation 
Consider a class of MIMO nonlinear systems in the 

presence of the unmatched uncertainties of the following 
form: 

1
( ) ( ) ( )

m

j j
j

x f x g x u x
=

= + + Θ∑          (1) 

( )i iy h x= 1, ,i m= 
 

where nx R∈  is the measured state vector, mu R∈ , 
mRy ∈  are the system input vector and output vector, 

respectively. ( ), ( ) ,n
jf x g x R∈  1, ,j m= 

 are 

sufficiently s mooth vector fields, ( ) , 1, ,ih x R i m∈ = 
 are 

sufficiently s mooth output functions, and ( ) nx RΘ ∈  
represent uncertainties continuously differentiab le with 
respect to x. 

First, we pursue the input-output linearization process for 
a MIMO dynamics. In the following definitions, the notation 

( )f iL h x  and ( )
jg iL h x  denote, the Lie derivatives of the 

function ( )ih x  with respect to the vector field f  and jg , 

receptively. Higher-order Lie derivative can be defined 
recursively such as ( )1 , 1k k

f i f f iL h L L h k−≡ > . 

Definition 1[1]: A mult ivariab le nonlinear system of the 
form (1) is said to have a (vector) relative degree 
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all 1ik r< − , and for all x  in a neighborhood of 0x . 

(ⅱ) The m m×  matrix 

( )
( ) ( )

( ) ( )

1 1
1

1

1 1
1 1

1 1

m

m m
m

r r
g gf f

r r
g m g mf f

L L h x L L h x

A x

L L h x L L h x

− −

− −

 
 
 =
 
  



  



     (2) 

is nonsingular at 0x x=  
Throughout this paper, we assume that the system (1) 

possesses a relative degree in its domain of defin ition. Based 
on this assumption we have the following proposition. 

Proposition 1[1]: Suppose a system has a (vector) relative 
degree ( )1, , mr r r≡   at 0x , then 1 mr r n+ + ≤

. Let  
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if 1 mr r r= + +
 is strictly less than n, it is always to find 

n r−  smooth functions 1, ,r nη η+ 
 such that the mapping  
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has a Jacobean matrix that is nonsingular at 0x . The 

1, ,r nη η+ 
 are chosen to satisfy  

0
jg kL η =                 (5) 

for all 1 , 1j m r k n≤ ≤ + ≤ ≤ , and all x  around 0x . 
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According to Proposition 1, there exists a diffeomorphic 
coordinate transformat ion ( , ) ( )z T xη =  which transforms 
the system (1) into the following normal fo rm: 

1 2 1( , )i i iz z zϕ η= + ∆ ,  
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               (9) 
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Assumption 1: The zero dynamics (8) is exponentially  

stable in the domain  of defin ition, and the function ( , )Q z η  
is Lipschitz in z  and uniformly in η . Moreover, the norm 
of the uncertainty vector ∆Ω  satisfies the following 
condition: L∆Ω ≤ . 

Assumption 2: Let  1, , T
d d dmy y y=   

 be the desired 
output trajectories. The desired trajectories diy , 

1, , ,i m= 
 and their first ir  derivatives are uniformly 

bounded, that is ( )( )(1), , , ir
di didi diy y y B≤

 
for a  

bounded positive constant diB . 
Define the output tracking errors to be  

 ( 1) ( 1) ,     1, , ;     1, ,j j
ij i idie y y i m j r− −= − = =       (11) 
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where  

1 2 ( 1)i ii i i i r irφ φ φ φ−∆Φ = ∆ + ∆ + + ∆ + ∆

 
and 

( )ir j
ij ijφ ϕ −∆ = ∆ , for 1, ,i m=   and 1, , ij r= 

. 

Assumption 3: If the ijϕ∆  is the function that has 
continuous derivatives in the domain  of defin ition. These 
derivatives are bounded by the polynomial which is 
combined with both  pe and  kη ,

0,1, , , 1, , .p N k M= = 
 That is, 

0 1
N Mp k

i ip ikp keσ δ η= =∆Φ ≤ +∑ ∑ , for 1, ,i m=  (14) 

where ipσ , ikδ  are unknown positive constants. 

In accordance with (14), we will choose the simple 

adaptive laws to estimate the upper bounds of these 
higher-order uncertainties. The simple adaptive laws can be 
represented as follows: 

1 1 2 2( ) ;  ( )p kT T
ip ip i i i ik ik i i ie q e e P B q e P Bη ηΨ = − Ψ = − 

  (15) 

where 

 1 1( ) ( )ip ip ipe e σΨ = Ψ − , 0,1, 2, ,p N= 
,  1, ,i m=  ,  

 2 2( ) ( )ik ik ikη η δΨ = Ψ − , 1, 2, ,k M=  , 1, ,i m=  , 

are the parameter adaptation errors and 1ipq , 2ikq  are the 

adaptation gains with the positive values. Because ipσ  and 

ikδ  are unknown positive constants, the adaptive laws can 
be written as 
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Control objectives: Determine a robust adaptive fuzzy  
controller such that the following conditions are satisfied: 

(ⅰ) The states of the closed-loop system are uniformly  
ultimately bounded. Furthermore, the output tracking errors 
asymptotically converge to the bounded region. 

(ⅱ) For the given attenuation level 0ρ >  such that the 

following H ∞  tracking performance index is achieved. 
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where [0, )T ∈ ∞ , 2[0, ]w L T∈  is the combined fuzzy 
approximation errors, ,Q P are positive matrix of p roper 
dimension, γ  is a designed parameter. If the system stars 

with in itial conditions (0) 0, (0) 0,e θ= =  1 (0) 0,pΨ =

and 2 (0) 0kΨ =  then performance in (17) can be rewritten 
as  

[ ]2 0,
sup Q

w L T

e

w
ρ

∈
≤             (18) 

where 2
0
T T

Qe e Qe dt= ∫  and 2
0
T Tw w wdt= ∫ , i.e., the 

2L  gain from w  to the tracking erro r e  must be equal to 
or less than ρ . 

3. Robust Adaptive Controller Design 
Using Fuzzy Systems 

The fuzzy  systems are universal approximations from the 
viewpoint of human  experts and can uniformly  approximate 
nonlinear continuous functions to arbitrary accuracy[14]. 
The basic configuration of the fuzzy system consists of four 
main components: fuzzy rule base, fuzzy inference engine, 
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fuzzifier and defuzzifier . The fuzzy system performs a 
mapping from nU R⊂  to V R⊂ . Let 1 nU U U= × ×

 
where iU R⊂ , 1, 2, ,i n=  . Wang[16] presents a detailed 
description of each of the four b locks in the fuzzy system. 
The fuzzy ru le base consists of a collect ion of fuzzy 
IF-THEN rules: 
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where [ ]1 2, , , T
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 and y V R∈ ⊂  are the 

input and output of the fuzzy system, l
iF  and lG  are fuzzy  

sets in iU  and V , respectively. M  is the number of ru les. 

The fuzzifier maps a crisp point [ ]1 2, , , T
nx x x=x 

into a 
fuzzy set in U . The fuzzy inference engine performs a 
mapping from fuzzy sets in U  to fuzzy sets in V , based 
upon the fuzzy IF-THEN rules in the fuzzy ru le base and the 
compositional rule o f inference. The defuzzifier maps a 
fuzzy set in V  to a crisp point in V . The fuzzy systems 
with center-average defuzzifier, product inference, and 
singleton fuzzifier are of the following form:  
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where lθ  is the point at which fuzzy membership function 
( )l

l
Gµ θ  of fuzzy sets lG  achieves its maximum value, and 

it is assumed that ( ) 1l
l

Gµ θ = . Eq. (19) can be rewritten as 
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In order to achieve the proposed control objectives, these 
unknown nonlinear functions ( , )ib z η  and ( , )ija z η  will be 
approximated by tuning the parameters of the corresponding 
fuzzy systems. In this situation, ( , )ib z η  and ( , )ija z η  in (7) 
will be approximated by the following fuzzy systems 

( )ˆ |i ibb z θ  and ( )ˆ |ij ijaa z θ  respectively. 
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Due to the existence of fuzzy approximation errors and 
unmatched uncertainties, the resulting robust adaptive fuzzy 
controller can be chosen as  
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where ciu  is the robust compensator defined as 
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and iλ , iP  are the solutions of the fo llowing Riccati 
equation[19] 
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It is noticed that Riccati equation (26) has a solution 
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auxiliary control input can be chosen as 
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It is obvious from (24), (27) and (13) that we can obtain  
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Then the state space representation of (28) can be defined as  
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Moreover, the coefficients ijk  are chosen such that the 
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matrices iA  are Hurwitz for 1,2, ,i m= 

 and 1, 2, , .j m= 

 

Now let the optimal parameter estimates * * and ib ijaθ θ  be 

defined as follows[16]: 
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where ibΩ , ijaΩ  and xΩ  denote the sets of suitable bounds 

on ibθ , ijaθ , and z , respectively. The minimum 
approximation errors[15,16] is defined as 

( ) ( ) ( ) ( )
1

* *ˆ ˆ, ,
m

i i ib i ij ija ij j
j

w b z b z a z a z uθ η θ η
=

   = − + −      ∑ (31) 

Then (29) can be rewritten as 

( ) ( ) ( ) ( ){ * *ˆ ˆ ˆ| , | |i i i i i ib i i ib i ibe A e B b z b z b z b zθ η θ θ= + − + −  

( ) ( ) ( ) ( )
1

* *ˆ ˆ ˆ| , | |

    

m

ij ija ij ij ija ij ija j
j

i ci i i

a z a z a z a z u

B u B

θ η θ θ
=

 + − + −    
+ − ∆Φ

∑  

( ) ( )
1

m
T T

i i i ib i ija j
j

i i i ci i i

A e B z B z u

B w B u B

θ ξ θ ξ
=

= + +

   + + − ∆Φ

∑ 

      
(32) 

where * * ,  ib ib ib ija ija ijaθ θ θ θ θ θ= − = −   
The parameter adaptive laws are chosen as 

 ( ) T
ib i i i iz B Peθ γ ξ= − ,               (33) 

 ( ) T
ija ij i i i jz B Pe uθ γ ξ= − ,              (34) 

where iγ  and ijγ  are positive constants. 

Theorem 1: Consider the MIMO nonlinear uncertain 
system (1) and Assumptions 1-3 are satisfied. If the robust 
adaptive fuzzy control scheme in (24)-(27) with the learning 
adaptive laws in (16), (33), and (34) are adopted, the 
following properties are guaranteed: 

(ⅰ) The states of the closed-loop system are uniformly  
ultimately bounded. Furthermore, the output tracking errors 
asymptotically converge to the boundary set. 

(ⅱ) For the given attenuation level ρ , the tracking 
performance index (17) is achieved. 
Proof. Choose Lyapunov function as 

1 mV V V= + +
 

 
1

1 2 1 2
1 1 2 2

0 1

1 1 1
2 2 2

1 1     
2 2

m
T T T

i i i i ib ib ija ija
ji ij

N M

ip ip ik ik
p k

V e Pe

q q

θ θ θ θ
γ γ=

− −

= =

= + +

+ Ψ + Ψ

∑

∑ ∑

   

 

      (35) 

Differentiating V and iV  along the solution of (32), we 
obtain 

1 mV V V= + +  

  

1

1 1
1 1 1 2 2 2

0 1

1 1 1 1
2 2

m
T T T T

i i i i i i i ib ib ija ija
ji ij

N M

ip ip ip ik ik ik
p k

V e Pe e Pe

q q

θ θ θ θ
γ γ

− −

=

= =

= + + +

+ Ψ Ψ + Ψ Ψ

∑

∑ ∑

 

   

 

 

   

 

By the fact 1 1 ,   ,  , ib ib ija ija ip ipθ θ θ θ= = Ψ = Ψ  


      

2 2 ik ikΨ = Ψ


 and (14), (25) and (32), the above equation 
becomes 

( )1 2 1
2 2

T T T T T T
i i i i i i i i i i i i i i i i i i i

i
V e A P P A P B B P e w B Pe e P B w

λ
 

≤ + − + + 
 



1

1 1m
T T T T T T
i i i ib ib i i i j ija ija

ji ij
e P B e P B uξ θ θ ξ θ θ

γ γ=

  
+ + + +  

    
∑ 

     

( )
( )

1
1 1 1

0

1
2 2 2

1

N p T
ip i i i ip ip

p

M k T
ik i i i ik ik

k

e e P B q

e P B qη

−

−

=

=

+ Ψ + Ψ

+ Ψ + Ψ

∑

∑



 



 

        (36) 

From the adaptive laws, (15) and (33) and (34), and the 
Riccati equation (26), we get 
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1 1 1 1
2 2
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2

T
T T T

i i i i i i i i i i i i
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V e Q e B Pe w B Pe w
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
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1 1 1 0
2

T
T T
i i i i i i i iB Pe w B Pe wρ ρ

ρ ρ
   

− − ≥   
   

 

21 1
2 2

T T
i i i i i iV e Q e w wρ≤ − +

 
1 2

1 1
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2 21 2
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1 1
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2 2 2 2

1 1 1  
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m N
T T T
i i i ib ib ija ija ip ip
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k ji ij

e Q e q

q

θ θ θ θ
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−

−
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21 2 1 2 2
1 1 2 2

0 1

1 1 1
2 2 2

N M

ip ip ik ik i
p k

q q wρ− −

= =
+ Ψ + Ψ +∑ ∑        (37) 

By the fact  ,   ,  supib ib ija ija i iM M w wθ θ≤ ≤ = , 

the above equation becomes 
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Let  

2 2 1 2
1 1

1 0

1 2 2 2
2 2

1

1 1 1
2 2 2
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2 2

m N

i ib ija ip ip
j pi ij
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µ
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ijT Ti
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i ij
L
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θ θ θ θ µ

γ γ

−−
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Let 
1 1min , , ,1i v
i ij

c λ
γ γ

  =  
  

 

 i i i iV c V L= − +                 (38) 

Let { } { }min  ,  maxi ic c L p. L= =  from (35) and (38) we 
have 

 V cV L≤ − +                   (39) 
However, the proposed controller will not only guarantee 

the asymptotic output tracking but also the uniform ult imate 
boundary. Thus, the control objective (i) is realized. 

In order to achieve the control objective (ii), we integrate 
(37) from 0t =  to t T= , we have 

 ( ) ( ) 2
0 0

1 10
2 2

T TT T
i i i i i i ie Q e dt V V T w w dtρ≤ − +∫ ∫    (40) 

Since ( ) 0iV T ≥ , we can write (40) as follows: 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2
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1 10 0 0 0
2 2
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i i i ib ib

i
m N

T
ija ija ip ip

j pij

e Q e dt V w w dt

e Pe

q

ρ

θ θ
γ

θ θ
γ

−

= =

≤ +

= +

+ + Ψ

∫

∑ ∑

 

  

 

( )1 2 2
2 2 0

1

1 10
2 2

M T T
ik ik i i

k
q w w dtρ−

=
+ Ψ +∑ ∫    (41) 

Let 1 1, ,  ,  , ,  , m mQ diag Q Q P diag P P= =       

 

1 , ,
TT T

me e e =  
 

1 1 1
1 11 1( ) , , ( )p p mpq diag q q− − − =  
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1 1 1

2 21 2( ) , , ( )k k mkq diag q q− − − =  

 

( ) ( ) ( )1 11 10 0 , , 0
T

p p mp Ψ = Ψ Ψ 
  


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( ) ( ) ( )2 21 20 0 , , 0
T

k k mk Ψ = Ψ Ψ 
  


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θ θ θ

γ γ

 
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( ) ( ) ( ) 10 0 , 0   ,   , ,
T TT T

a b mw w wθ θ θ = =    
  
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then from (41), we obtain  

( ) ( ) ( ) ( )

( )( ) ( )

( )( ) ( )

0

1
1 1 1

0

1 2
2 2 2 0

1

0 0 0 0

0 0

0 0
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N T
p p p

p
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k

e Qe dt e Pe

q

q w wdt

θ θ

ρ

−

−

=

=

≤ +

+ Ψ Ψ

+ Ψ Ψ +

∫

∑

∑ ∫

 

 

 

 (42) 

i.e., the control objective (ii) is achieved. 

4. An Example and Simulation Results 
In this section we provide an example to demonstrate the 

performance of the proposed robust adaptive fuzzy  controller. 
The two-degrees-of freedom manipulator[23] shown in  Fig.1 
is illustrated under the assumption of lumped equivalent 
masses and mass less links, and its dynamics are represented 
as follows: 

11 12

12 22

( )

( ) ( )
( ) ( )

D φ

α φ α φ θ
α φ α φ φ

  
  

   







 

 
2

12 12 1 1
2

2 212

( ) 2 ( ) ( , )
( , )( )

g u
g u

β φ θ β φ θ φ γ θ φ
γ θ φβ φ φ

 +    
= + +     

−      

  



 (43) 

where θ  and φ  are the first joint angle and the second 
joint angle, respectively. g is the gravitational constant and 

iu , 1, 2i =  are the app lied  to rques . Suppose that  
1( )D φ−  exists and let the desired positions be dθ  and dφ . 

Let the state vector be defined as 
( 1) ( 1)j j

ij idie y y− −= −
, 1, 2i = , 1, 2j =  

and  
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1 1 2 2( , , , ) ( , , , )d d d dy y y y θ θ φ φ≡ . 
Equation (43) in state space representation becomes 

 1 11 12 11 12 11y z z zµ θφ φ= = + ≡ + ∆         (44) 

222
1 12 11 12 12 1 1( 2 )y z g u

d
α

φ β θ β θφ γ= + ∆ = + + +   

   

 212
12 2 2 12 11( ) ( )g u

d
α

β φ γ µ θθφ µ θφ θφ− − + + + + +     

   ( )1 11 1 12 2 12 11b a u a u φ φ≡ + + + ∆ + ∆             (45) 

 2
2 21 22 11 22 21y z z zµ φ φ= = + ≡ + ∆            (46) 

 212
2 22 21 12 12 1 1( 2 )y z g u

d
α

φ β θ β θφ γ= + ∆ = − + + +   

   

     2 211
12 2 2 12 21( ) (2 )g u

d
α

β φ γ µ θφ µ φφ+ − + + + +     

   ( )2 21 1 22 2 22 21b a u a u φ φ≡ + + + ∆ + ∆           (47) 

with  
 2

11 22 12d α α α= −  

 2 2
11 1 2 1 2 2 2 1 2 1( ) 2 cosm m r m r m r r Jα φ= + + + +  

 2
12 2 2 2 1 2 cosm r m r rα φ= +  

 2
22 2 2 2m r Jα = +  

 [ ]1 1 2 1 2 2( ) cos cos( )m m r m rγ φ θ φ= − + + +  
 2 2 2 cos( )m rγ θ φ= − +  
 12 2 1 2 sinm r rβ φ=  

where , , , 1, 2i i im r J i =  denote the point mass, length of 
link, and additional constant inertia  with respect to axis of 
rotation. For better comparison to the simulat ion results of 
earlier parameter values used are the same as those of[23]: 

1m =0.5 kg, 2m =6.35 kg, 1r =1 m, 2r =0.8 m, 1J =5 kg-m, 

2J =5 kg-m, sin( )d tθ = rad, sin( )d tφ = rad, (0) 0.5θ =  
rad, and (0) 0.5φ =  rad. By  tracking a sine function, the 
unmatched uncertainties will be vio lent change with time 
varying and raised. This situation could make us more 
difficult  to track the desired output, but the trajectory still can 
be arrived by the proposed controller in th is paper. 

Choose fuzzy membership functions as follows: 
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i
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1 exp 5 0.6i
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x
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and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4 5 6 7, , , , , ,
T

x x x x x x x xξ ξ ξ ξ ξ ξ ξ ξ=  

Using (22) and (23) to approximate the unknown 
1 2 11, ,b b a  and 22a  (here we assume 12 21,a a  are known a 

priori). For the [ ]1 2 10,10Q Q diag= = , 1 2 0.5ρ ρ= = , 

1 2 0.05λ λ= = , solving Riccati equation (26), we get  

1 2
15 5
5 5

P P
 

= =  
   

Let 11 12 1k k= = , 21 22 2k k= = , 1 2 0.1γ γ= = , 

11 22 0.01γ γ= = , 110 3q = , 111 3q = , 120 1q = , 121 1q = , 

110 (0) 2Ψ = , 111(0) 2Ψ = , 120 (0) 2Ψ = , 121(0) 2Ψ = . We 
set the uncertain coefficients 11 0.1µ = − , 12 0.1µ = − , 

21 0.1µ = , and 22 0.1µ = . Results of this simulation are 
given in Figs 2-6. Figs. 2-3 show the tracking trajectories of 
joint 1 and joint 2, respectively. Figs. 4-5 show the torques 
of jo int 1 and joint 2, respectively. Fig. 6 shows the curve of 
the H ∞  tracking performance index in (17). It is easily 
shown from these simulation results that the proposed robust 
adaptive fuzzy control algorithm (24) can achieve the 
excellent output tracking performances of the nonlinear 
system with higher-order and unmatched uncertainties. 

 
Figure 1.  A two-degree of freedom manipulator 
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Figure 2.  The tracking trajectory of joint 1 

 
Figure 3.  The tracking trajectory of joint 2 

 
Figure 4.  The torque of joint 1 

 
Figure 5.  The torque of joint 2 

 

Figure 6.  Curves of ( )dtteT
∫0

2
 

5. Conclusions 
The output tracking control problem of MIMO nonlinear 

systems with higher-order and unmatched uncertainties has 
been studied in this paper. In the proposed design method, 
fuzzy logic systems are used to estimate the part of unknown 
nonlinear functions, and the robust controller that combines 
the H ∞  optimal control with adaptive laws can  deal with 
unmatched uncertainties and fuzzy approximat ion errors. 
Because of the complexity of the structure of the 
uncertainties, the upper bounds on the norm of the 
uncertainties can be estimated by the proposed adaptation 
laws. Simulat ion results demonstrate that the overall control 
system guarantees that all signals involved are uniformly 
ultimate bounded, and that the tracking performance index 
can be achieved. 
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