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Abstract  The approach to structural identification of static systems with the distributed lags is offered. The criterion of 

an estimation of linearity of system in parametrical space is introduced. The criterion is based on construction of set of 

secants for system. The special space for an estimation of structural parameters of system is selected. The concept of level of 

nonlinearity of system is introduced and the method of h is estimation is reduced. The analogue of criterion of Darbin-Watson 

is reduced. Criteria o f decision-making in the presence of a lag as in an output variable, and input variables are offered. It is 

shown that as magnitude of a lag performance on an output variable one can to use an estimat ion of parameters of 

coefficient of structural properties on the specified variable. Estimations of parameters of coefficient of structural properties 

are based on an evaluation of Lyapunov characteristic indicators. 
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1. Introduction 

With the d istributed delays the set of publicat ions is 

devoted problems of identification of static plants. Such 

mode ls  are w idely  app l ied  in  econo met r ics  and 

economy[1-4], to the techn ician[5-7], medicine[8-10]. 

Delay can have both independent, and dependent variables. 

The account of the distributed lags leads to autocorrelation 

between  variab les [1,2, 4].  Autocorrelat ion  hampers 

identificat ion of parameters of p lant.  Various models of 

approximation of parameters are applied to a abatement of 

influence of autocorrelation on identification process at the 

distributed lags. It allows to reduce number of estimated 

parameters of plant. The Koyck scheme[2,12], based on a 

change of factors of model on a decreasing geometrical 

progression is most widely applied. The model I. Fisher[1, 

11] is based on a change of facto rs of model on the set 

decreas ing  arithmet ical p rogress ion.  Arithmet ical and 

geometrical models are app lied in  that  case when  p lant 

parameters decrease from the first members of a progression. 

Considering it, S. Almon[13] has added more flexib ilit ies of 

model of I. Fisher, having applied polynomial the law of a 

modification of factors. In[11] the law of a change o f factors 

is offered at the distributed lags according to logarithmic 

normal distribution. The same idea based on application the 

exponential law of distribution, is considered in[14]. In[15] 

Pascal distribution which leads to the simple form for factors  
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is applied. 

The a priori representation of correlation  between the 

distributed lags in the form of some rat ional polynomial is 

considered in[16]. Other approaches to description of factors 

at the distributed lags are studied in[4]. 

The considered models of factors min imise number of  

unknown parameters. To an estimat ion of parameters apply a 

method least-squares method or its modifications[1-4]. In 

these works the model structure is postulated a priori and the 

problem of parametrical identification is considered. In[17] 

the interactive algorithm of an estimation of parameters of 

static plant with the distributed lags is offered. The length of 

a lag is set and does not become any suppositions about 

correlation between plant parameters. The case of a 

piecewise monotonic change of parameters of plant is 

considered. In a number of works methods of a choice of 

maximum length of a lag are offered. At the heart of applied 

approaches the statistics which are based on the analysis of 

residuals[1,15,18] lie. In[19, 20] various methods of an 

estimation of parameters of model with the distributed lag in 

a case of a priori set structure of model are considered. In[21] 

influence of the a priori in formation received from the 

analysis of the empirical data, on a choice of structure of 

model with the distributed lag on an output variable is 

analyzed. In work[22] are described algorithm of an 

estimation of parameters of model with the distributed lag. 

On the basis of results of modelling the structure of model 

which exp lains a mis match of model applied now in the 

American interest rate on federal funds is selected. In[23] 

process of inflation with the help autoregressive models is 

researched. The choice of length of a lag is carried out on the 

basis of consecutive magnification of delays and an 
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estimation of adequacy of the received model. Then the 

criterion of Akaike and Bayesian Information Criteria are 

applied and the solution is made on model structure. The 

case of a priori uncertainty concerning structure and plant 

parameters was not study. 

In the given work the approach to structural identification 

of static plants in the conditions of uncertainty is offered. It  is 

based on application of the static structures describing 

properties of plant[24] in  special space. The criterion of 

linearity (autocorrelation) of variab les of plant is introduced. 

Algorithms of decision-making on maximum length of the 

distributed lag are offered. They do not demand an 

evaluation of the statistics. The analogue of criterion 

Darbina-Watson criterion fo r a considered case is reduced. 

2. Problem Statement 

Consider plant 
T T

n n n ny A U B X                 (1) 

where ny R  is an exit, 
k

nU R  is the input vector which 

elements are limited, is limiting nondegenerate functions, 

,( ) m
n ni nX X u U R    is a vector of the distributed lags 

on , ni nu U , ,, 1 , 2[ , , , ] ,T
n i n mi n i nX u u u     

[0, ]Nn J N   is discrete time, ,N   ,k mA R B R   

are vectors of constant parameters, n R   is a  perturbation, 

| |n    for all Nn J . 

Consider that general case n R   and , ni nu U  

( 1, )i N  are irregular functions of time. 

For (1) the set of the measured values is known 

I { , }o n n Ny U n J                   (2) 

and map :{ } { }o n nU y   Nn J   describing an 

observable informat ional portrait[7,24]. 

It is necessary I ,o o  to estimate on the basis of analysis  

structure of plant (1). It means that it is necessary to estimate 

degree of linearity and dimension of vector nX . 

3. An Estimation of Level of Linearity of System (1) 

Consider a contraction of observable informational 

portrait 
i

i

u
o o u U    1,i k   and for everyone 

iu

o  construct a secant 

,( , )i i i ny u a u 
 

where ia  are some real numbers. 

Introduce set on (2) set of secants for o  

S( , ) { ( , ) 1, }iU y y u i k  
 

Definition 1[24]. Field of structures SS  of system (1) 

name set of maps }{}{),( yuuy ii   ki ,1  on 

Euclidean plane   

S( , )S U yS
 

 

Designate 

1, 2, ,[ ( , ), ( , ), , ( , )]T

n n n n n n k ny u y u y u      and 

consider the equation 

ˆ T

n ny   
               (3) 

where vector 
kR  define by means of a least-squares 

method. Estimation   exists on the basis of the 

suppositions made in section 2 concerning input nU . 

Completeness of system (1) in  the field of structures SS  

estimate on the basis of the following statement[24]. 

Theorem 1. Consider a vector of informative variables 
k

nU R  and a field of structures S( , )S U yS  for (1). 

Then the field of structures SS  of system (1) is full, if 

1

1
k

i

i




                    (4) 

where 
i  there is i -th element of vector   in (4). 

The theorem 1 gives linearity sufficient conditions 

(nonlinearities, collinearity) systems (1) on the set field of 

structures SS . If the condition (4) is fulfilled, that field SS  

is full. Hence SS  is a linear span of an exit of system (1). 

Otherwise make a solution on presence of nonlinearity or 

collinearity (autocorrelation) in system (1).  

Let  

1

k

i

i

 


  

Magnitude ( ) 1     name level of nonlinearity of 

system (1) in parametrical space ( , )A BPP . As 

nonlinearities and lags lead to occurrence mult icollinearity 
in (1) ( )   will accept small values. 

4. Set for an Estimation of Structure of 
the Distributed Lag of Plant 

Following[7,24], generate auxiliary set for an  estimat ion 

of structure (1). Introduce variable 
T

n ns I U , where 
kI R  is an unit vector, and apply model ,

ˆ ˆ
s n s ny a s . 

Define parameter ˆ
sa R  from a condition  

2 *

,ˆ
ˆ ˆarg min( )

s
s n n s

a
y y a           (5) 

Let ,
ˆ

n s n ne y y   is a variab le which contains the data 

about structure of a lag of system (1). As argument 

,( )i nX u  use variable ,i n nu U  which ensures maximum 

value of coefficient of determination 
2
, ie ur  between e  

and iu . As shown in[24], set ,{ , }n i ne u  does not allow to 

solve a problem of structural identification. Therefore 

introduce coefficient of structural properties (CSP)[7] 
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, ,

,

( , , )
i

n

e u n s i

i n

e
k k e u n

u
           (6) 

and generate set 

I I ( , ) { , , [0, ]}k k n n Nk e e k n J N    , nuen i
kk ,,

df


.
 

Definition 2. Name ( , )s k eP  structural space of the 

system (1), allowing to identify structure of vector 
nX . 

On NJ  will order , ,ie u nk  on increase. Generate { }v

qk , 

where ( , , ),v

q s ik k e u q  [0, ]v

Nq J N  . As to 

everyone 
v

qk  there corresponds value 
v

qe  receive 

I { , , }.v v v v

k q q Ne k q J   In sP  define map  

, :{ } { }v v

q q

v
e k k e   and structure ,

v

k eS  corresponding to it. 

Now the problem is shown to an estimat ion of structure 
nX  

on the basis of analysis Iv

k  and ,

v

k eS . Such approach 

well works at an estimat ion of structure of nonlinear static 

systems[24]. For systems with the d istributed lag he 

demands modificat ion. 

5. Decision-Making on Length of a Lag 
in ,( )i nX u  

Set , ,I { , }e u n i ne u  contains uncertainty LN  and 

LgN . LN  is an incomplete account of linear making 

system (1). LgN  is a  presence of perturbation from the 

distributed lag. For elimination 
LN  construct a secant for 

ne  

, 0 1 ,( , )i n i ne u u     

where 0 1,   define as a solution of a problem (5).  

Introduce new variable ( , )n n ie e u    which  

does not contain LN . For estimat ion LgN  analyse set 

,{ , }n i nu . 

For deriv ing of a provisional estimate of maximum lag m  

fulfil fo llowing operations. Set admissible level 0   of 

coefficient of determination 
2
, ie ur . Apply the following 

algorithm. 

Algorithm CD . 

1. Suppose 1m  . 

2. Construct a secant 

, , 0 1 ,( , )i n m e k i n me u u        

and define ,

2
, i n me ur

 . 

3. Verify up condition 
,

2
, i n me ur 


 . 

4. If the condition is fu lfilled, suppose 1m m   and go 

to a step 2, d ifferently fin ish work. 

In work the mult iple -functional approach to structural 

identification is applied. Therefore known methods of a 

choice of length of the lag, based on statistical criteria 

(section 1 see), are inapplicab le. 

Considering it, to an estimation of independence of 

elements of vector nX  apply the theorem 1. As the analysis 

of set ue,I  is in  this case ineffective, that use results  of 

section 4 and generate set 

,,,
I { , , 1, }

i nx n x Nk
k i m n J         (7) 

where , ,ix nk  calculate on the basis of (6), considering 

n ne  , , ni nx X . 

On 
,

I
Xk  will introduce transformation 

,, ,, :{ } { }
i nxi

x nk k
     

to which in space 
,,, ( , )

i nxs k P  there corresponds 

structure ,,k x S , ,, ixxk k  . Construct secants for 

,,k x S  

, ,, ,( , )
i n i nn x xik k    , 

*1,i m  ,     (8) 

where i  are the coefficients defined as a result of a 

solution of a problem (5), *m  is value m  received on the 

basis of application of algorithm CD . 

Generate a vector 

,1, 2,
, , , ,

*
[ ( , ), ( , ), , ( , )]

m nn n

T
n n nn x x xk k k           (9) 

and apply model ,
ˆ T

nn      to forecasting of change 

n , where vector 
*m

R   is defined on the basis of 

outcomes of section 3. 

The statement following directly from the theorem 1 is 

fair. 

Theorem 2. Let on set xk,I  the field of secants for n  

is constructed 

 ,, *
( , ) ( 1, )&( )

i nn x N
k i m n J

    S  

and model ,ˆ T
nn      is applied to forecasting of a 

change of variable n . Then vector *
m

nX R  is an 

element of structure of system (1), if  

,

1

*

1

m

i

i




  
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where *
m  it is defined by means of algorithm CD , 

,i   . 

Remark. As n  contains the information on influence 

of vector nX  at statistical interpretation nU , n  use 

analag of criterion of criterion of Darbin-Watson 

2

1

2

1

N

n
n
N

n
n

d

e










 

Level of nonlinearity o f the system (1), generated by 

correlation of elements of vector 
nX  is equal 

*

,
1

( ) 1
m

i
i

 


     

Theorem 3. Consider the set of secants 
S  set on ,I

xk  

and secant , ,1
( , )

i ie u e ue k k   for , ,e uik eS . Let  for 

them coefficients of determination ,
2

,xzkr  , mz ,1  and 

,

2
, e uie kr  are known. Then vector ,( ) m

i nX u R  is an 

element of structure of system (1), if 1,z m   

xkek iuezx
rr 

  2
,

2
, ,,

 
where 0x   is a specified magnitude. 

At structure ,
v
k eS  analysis, the distributed lag of system 

(1) interpret as a nonlinear component (1).  Therefore design 

the corresponding procedure, allowing to make the solution 

on a class of uncertainty LgN . Apply the following 

approach. 

Consider set Iv

k  and static structure ,
v
k eS  

corresponding to it. Construct the secants ,
v
k eS  

1 1( , )v v v v

q q qe k a k 
 

 
2

2 2,0 2,1
( , )v v v v v v

q q q qe k a k a k    

and define for them coefficients of determination 

2

1r , 
2

2r . 

Consider CSP 

, , , ,

,
i

n

e u n s

i n

e
k k

u
  
  ,          (10) 

and map , ,, , :{ } { }v v v
s q qe k k e  , 

v
Nq J  to which there 

corresponds structure , ,s

v
k e
S . Construct for , ,s

v
k e
S  a 

secant 

, , , ,( , )v v v v

q s q s qe k a k     
      (11) 

and parameter   select so that the factor of determination 
2r  for (11) belonged to interval 2 2

1 2
[ , ]r r . 

Further consider CSP 

, , ,

n

e x n s x T

n

e
k k

I X
 

 

where *mI R is an unit vector. Construct a secant for 
, ,s x

v
k eS  

, , , ,( , )v v v v
q s x q x s x qe k a k              (12) 

Designate coefficient of determination for x  through 

2
xr . 

Theorem 4. Consider structures , ,s

v
k e
S , , ,s x

v
k eS  and 

secants (11), (12) corresponding to them. If for structure 

, ,s

v
k e
S , 

, ,s x

v
k eS  secants the condition is satisfied 

,

2 2
, ,x se k e k

r r


  

then nX  is an element of structure of system (1).  

The proof of the theorem 4 is obvious. It is based that 

structures , ,s

v
k eS , , ,s x

v
k eS  describe a change of same 

variable 
v
qe . Therefore a solution about inclusion in 

structure of system (1) accept concerning that variable nX , 


niu ,  which ensures greater coefficient of determination. 

Statement. If coefficient of determination 
2
, 0

iur  , 

then ,
2
, 1s uikr  . 

Proof. From 
2
, 0

iur   fo llows that parameter â  of 

model ,
ˆ ˆ

n i nau   predicting a change of variab le n , 

is equal to zero. Then for 
2
, , iuskr  receive 

,

,

2

,

2 1
,

2

1

ˆ

1
i n

s ui

N

s u n

n
k N

n
n

k

r


 







 
 
 



 



        (13) 

where ,, ,i ns u n i nk u . Substituting ,, i ns uk  in (13), for 

fraction numerator receive 

 ,

2 2 2

, ,2
1 1 ,

ˆ ˆ
i n

N N
n

s u n i n
n n i n

k u
u

  
 

 
 
 

    (14) 
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If 
,ˆ i nu   where ,i nu  there is average value ,i nu , 

then
,

2
, 1

s uikr  . 

Results of modelling confirm the made statement. 

Consider a case when vector 
nX  in (1) contains the 

distributed lags on ny , that is ( )n nX X y . 

6. Decision-Making on Length of a Lag 
for ( )nX y  

Let 1, 1, ,[ , , , ]T

n n n l nX x x x  , where ,i n n ix y  , 

1,i l . To tentative estimat ion l  apply algorithm CD . 

Decision-making in space ,,( , )i nxs nk eP , can appear 

ineffective because of connections between ,i nx . 

Therefore consider space , ( , )s X X eP  set on set 

,I { , }e X n n NX e n J   . Consider structure X,eS  

and its projections 
ix ,eS  to plane ( , )ix e . For everyone 

ix ,eS  define secants 0, 1, ,( , )i i i i ne x x    , 

1,i l Also generate a vector 

, 1, 2, ,
( , ), ( , ), , ( , )

T

n n ne n n n l n
e x e x e x   

  
    (15) 

Theorem 5. Let on set Xe,I  the field of secants for ne  

is constructed 

 )(&),1(),( , Nnine
Jnlixe  S

 

and model ,ˆ e
T

n e ne    is applied to fo recasting of 

variable ne . Then vector 
l

nX R  is an element of 

structure of system (1), if 

,
1

1
l

e i
i




           (16) 

where l  define by means of algorithm CD , ,e i e  . 

The theorem 5 is analogue of the theorem 2. Performance 

(16) specifies on presence of dependence between nix , . At 

statistical interpretation of a problem (16) speaks about 

autocorrelation of residuals[1]. Level of nonlinearity of 

system (1) estimate by means of ( )e  . 

For an  estimation of existence of a lag on 
ny  analyse a 

change CSP 

, , ,
,

( , , )
i

n
s s x e ni

i n

e
k e x n k

x
   

As the log on ny  is considered, then 

, , ,i

n
s x e nk e              (17) 

where   is an  eigenvalue of system (1) with 

( )n nX X y ,   is an interval of measurement of the 

data. 

The problem consists in estimation ( , , )s ik e x n  on the 

basis of analysis 
,I

ie x
 and identification of parameter   

on set { ( , , ), }s ik e x n n . To estimat ion   apply 

Lyapunov characteristic indicators. 

Apply model ,
ˆ

n i ne x  to forecasting of change 
ne  

and define parameter   by means of a least-squares method. 

To description 
ne  also apply model , ,ˆˆ

is x ene k , where 

,
ˆ

i nx  . From comparison of these two models receive 

,
, , ,

,
i

i n
s x e n

i n

x
k

x
 , Nn J         (18) 

Arrange values , , ,is x e nk  in ascending order and receive 

set 
, , , ,I { , }

ix e

v v
s x e qk Nk q J  . Define for , , ,i

v
s x e qk

 

of Lyapunov characteristic indicator[25] 

, , ,
, , ,

, , ,

1
[ ] lim ln

max
qi

i q
qiq

v
s x e tv

s x e q vt
q s x e tt

k
k

t k



     (19) 

where lim qt   is an limit superior, qt q . 

Suppose ̂   where ̂  there is estimat ion  . To an 

improving of received estimation   apply the approach 

offered in[24]. 

Remark. Estimation   serves as the indicator of 

presence at system (1) distributed lags on 
ny . Exact 

estimation   define only at a step of parametrical 

identification. 

Consider the more general case when vector 
nX  in (1) is 

equal , ,,( , ) [ , ]T T T
n y n u ni nX y u X X , where , ( )y n nX X y , 

( )
, ,

X X u
u n i n

 . 

7. Decision-Making on Length of a Lag 

for ,( , )n i nX y u  

Spread the approach stated above to system (1) with 

,( , )n n i nX X y u . The provisional estimate of level o f 

linearity of system (1) receive by means of the theorem 1. 

Introduce variable Ren   which depends on uncertainty 

LN . Apply algorithm CD  to definit ion of dimension of 

vectors nyX , , nuX , . For elimination of influence LN  
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construct a secant for ne  

0 1 , 2( , , )i i n ne u y u y       

where 0 1 2, .    define as a solution of a problem (5).  

Introduce new variable ( , , )n n ie e u y    which does 

not contain LN . To decision-making on lag presence apply 

results of sections 5, 6. 

8. Examples 

 

Figure 1.  Structures for decision-making on length of lag ( )
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Figure 2. Variables ,n ny   

Consider system (1) with [1.5;2;2.8]TA , 

[0.7; 0.6]TB  , 2
nX R , 1,

( )n nX X u . , ni nu U  are 

limited random functions, n  is an stochastic variable 

with zero expectation and a final variance, | | 0.3n  . 

Application of the theorem 1 has shown that the system is not 

linear, ( ) 0.03   . Receive set 

, ,I { ,  ( 1,3)&( )}e u n i n Ne u i n J      

Analysis ,Ie u  has shown that variable 1,nu  has a lag. 

Apply algorithm CD  and the theorem 2. The length of a 

lag on 1,nu  is equal 2. Indicator ( )   practically 

coincides with ( )  . To an  correct ion of the received 

estimation of length of a lag apply the theorem 3 with 

0.01x  . 
1

2
, 0.906ue kr  , 

2

2
, 0.907xkr  , 

1

2
, 0.914xkr  , 3

2
, 0.934

xkr  . Corresponding 

structures on which the theorem 3 is based, are shown on fig. 

1. Corresponding structures on which the theorem 3 is based, 

are shown on fig. 1. 

On fig. 2 show variables ,n ny  . They confirm presence 

at system of the d istributed lag on 1,nu . As inputs are 

random calcu late criterion d . Receive 0.54d   that 

following[2], confirms result about presence a lag. 

Consider system (1) with [0.5;1.4;1.7] ,TA   0.6,B   

1n n nX x y   . Receive indicator ( ) 0.03   . Make 

a solution on presence multico llinearity (nonlinearity) in 

systems. Apply algorithm CD . Receive 1n nx y  . The 

length of a lag is equal 1. Generate variable n  on the basis 

of a method described in section 5.  On fig. 3 show variables 

,n ny   to estimate delay presence on 1ny  . 
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Figure 3.  Delay in system (1) with 1n n
X y
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Figure 4.  Lyapunov characteristic index   
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For validation of the received conclusion estimate CSP 

, , ,is x e nk  at 1n n
X y


 , using dependences (17), (18) and 

(19). Problem reduce to estimation   in (17). On fig. 4 

show change 
n  on the basis of (19). Suppose ˆ 0.008   . 

More exact estimation   in (17) define, using a method 

offered in[24]. Receive ˆ 0.0102   . 

9. Conclusions 

The is functional-multiple approach to structural 

identification of static systems with the distributed lag is 

offered. So lution about structure of the distributed lag of 

system receive on the basis of the analysis of special static 

structures. The criterion of an estimation of degree of 

linearity of system in parametrical space is introduced. It is 

considered variants of identification of system in the 

availability of a lag on dependent and independent variables. 

The approach to an  

 

REFERENCES 

[1] Malinvaud, E., Statistical methods in econometrics, 3d ed., 

North-Holland Publishing Co, Amsterdam, 1980.  

[2] Johnston J., Econometric methods. 2nd ed., McGraw-Hill 

Book Company, New York, 1972. 

[3] Demetriou I. C., Vassiliou E. E., “An algorithm for 
distributed lag estimation subject to piecewise monotonic 
coefficients”, International Journal of Applied Mathematics, 

vol. 39, no. 1, pp. 1-10. 2009. 

[4] Dhrymes, P.J., Distributed Lags: Problems of Estimation and 

Formulation, Holden-Day, San Francisco, 1971.  

[5] Gershenfeld, N., The Nature of Mathematical Modelling. 

Cambridge University Press, Cambridge, 1999.  

[6] Kailath, T. (ed.), Linear Least-Squares Estimation, Dowden, 

Hutchinson and Ross, Inc., Stroudsburg, Pennsylvania, 
Benchmark Papers in Electrical Engineering and Computer 
Science, v. 17, 1977.  

[7] Karabutov, N.N., Structural identification of systems: the 
analysis of informational structures, URSS, Librokom, 

Moscow, 2009. (in Russia). 

[8] Armstrong, B., “Models for the relationship between ambient 
temperature and daily mortality” Epidemiology, vol. 17(6), 
pp. 624-631, 2006. 

[9] Nelson, C. R. Schwert, G.W., “Estimating the Parameters of a 
Distributed Lag Model from Cross-Section Data: The Case of 

Hospital Admissions and Discharges”, Journal of the 
American Statistical Association., vol. 69, no. 347, pp. 
627-633, 1974. 

[10] Gasparrini A., Armstrong B., Kenwardb M.G., “Distributed 
lag non-linear models”, Statistics in Medicine, vol. 29(21), pp. 

2224–2234, 2010. 

[11] Fisher I., “Note on a Short-cut Method for Calculating 

Distributed Lags”, Bulletin de l’Institut International de 
Statistique, vol. 29, 1937. 

[12] Коуск L. M., Distributed Lags and Investment Analysis, 
North-Holland Publishing Company, 1954. 

[13] Almоn S., “The distributed lag between capital appropriations 
and expenditures”, Econometrica, vol. 33, pp. 178-196, 1965. 

[14] Theil H., Stern R. M., “A simple unimodal lag distribution”, 
Metroeconomica, vol. 12, pp. 111–119. 1960. 

[15] Solow R., “On a family of lag distributions”, Econometrica, 
vol. 28, pp. 393-406, 1960. 

[16] Jоrgensоn D.W., “Minimum variance, linear, unbiased 
seasonal adjustment of economic time series”, Journal of the 

American Statistical Association, vol. 59, no. 307, pp. 
681-724, 1964. 

[17] Demetriou I. C., E. E. Vassiliou, “A distributed lag estimator 
with piecewise monotonic coefficients” in Proceedings of the 
World Congress on Engineering, vol. 2, WCE 2008, July 2 - 4, 

London, U.K, 2008. 

[18] Yoder J., “Autoregressive distributed lag models”, WSU 

Econometrics II, pp. 91-115, 2007. 

[19] Cheng Hsiao. Analysis of Panel Data, Cambridge University 
Press, 2003. 

[20] Wen-Jen Tsay, The Long Memory Autoregressive 
Distributed Lag Model and Its Application on Congressional 
Approval, Institute of Economics, Academia Sinica, 2005. 

[21] Carter R. A. L., Zellner A., The arar error model for univariate 
time series and distributed lag models, 

http://faculty.chicagobooth.edu/arnold.zellner/more/CURRE
NT-PAPERS/ararerrm.pdf 

[22] Lansing K. J., “Real-Time Estimation of Trend Output and 
the Illusion of Interest Rate Smoothing”, FRBSF Economic 
Review, pp. 18-34, 2002. 

[23] Duffee Gr. R., Term structure estimation without using latent 
factors, Haas School of Business University of California – 

Berkeley, 2005. 

[24] Karabutov, N.N., Structural identification of static plants: 
Fields, structures, methods, URSS, Librokom, Moscow, 2011. 
(in Russia). 

[25] Lyapunov, A.M., General problem about a movement 
stability, State publishing house of the techniko-theoretical 

literature, Moscow, 1950. 

 


