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Abstract  Networked Control Systems (NCSs) has been recognized as an area where theory is behind the development 
of technology. The defining feature of NCSs can be considered as the information is exchanged through a network among 
control system components. So the network induced time delay is inevitable in NCSs. The time delay may degrade the 
performance of control systems and even destabilize the systems if they are designed without considering the effects of the 
time delays properly. Once the structure of a NCS is confirmed, it is essential to identify what the maximum t ime delay is 
allowed for maintaining the system stability which, in turn, is also associated with the process of controller design. Th is 
paper proposes a new method for estimating the maximum allowable time delay in networked control systems with norm 
bounded nonlinearity. The relation between the maximum nonlinearity and the maximum allowable delay is studied using 
the proposed method, and it is found that increasing the maximum nonlinearity bound reduces the maximum allowable 
delay. Furthermore, increasing the time delay leads to shrink the domain of attraction. The results of the maximum 
allowable delay bound and the maximum nonlinearity are compared with some of the published results. 
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1. Introduction 
The advances in communication and network technology, 

and the availability of high-speed computers have resulted 
in an increasing interest in Networked Control Systems 
(NCSs). This type of control systems can be defined as a 
control system where the control loop is closed through a 
real-t ime communication network[1]. The term “Networked 
Control Systems” first appeared in Gregory C. Walsh's 
article in 1998[2]. A typical organization of an NCS is 
shown in Figure 1. In Networked Control Systems, the 
reference input, p lant output and control input are exchange
d through a real-time communication network. The main 
advantages of NCSs are modularity, simplified wiring, low 
cost, reduced weight, decentralization of control, integrated 
diagnosis, simple installat ion, quick and easy for maintenan
ce[3], flexible expandability (easy to add/remove sensors, 
actuators or controllers with low cost). NCSs are able to 
easily fuse global information to make intelligent decisions 
over large physical spaces. 

As the control loop is closed through a communication 
network, the time delay and data dropout are unavoidable. 
This may degrade the performance of NCSs or even 
destabilize the system. 
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Figure 1.  A Typical Networked System 

In general, the control systems with time delays can be 
classified into time delay independent where the stability is 
not affected by the time delay and time delay dependent 
where the t ime delay affects the stability[4]. Time delay, no 
doubt, increases complexity in analysis and design of NCSs. 
Conventional control theories built on a number o f standing 
assumptions; including synchronized control and non 
delayed sensing and actuation must be re-evaluated before 
they can be applied for NCSs[5].  

In recent years, there are many results for the stability of 
linear network control systems[6]-[9]. However, there is not 
much work reported in nonlinear networked control system 
analysis. Lyapunov functional, Lyapunov-Krasovski 
functional and Lyapunov-Razumikhin functional based 
methods are most widely used to study the stability of linear 
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and nonlinear networked control systems where the 
problem is usually formulated as Linear Matrix Inequalities 
(LMIs). In most of the published work in the literature, the 
aim is to find the maximum allowable delay  bound for a 
given nonlinearity bound and to increase the conservativene
ss of the maximum allowable delay bound results but on the 
expense of increasing the complexity. In [10] Razumikh in 
and Lyapunov Theorem are used to derive a sufficient 
stability condition for the stability of a class of a nonlinear 
networked control system. The system under study is the 
linearized system with a bounded nonlinear function. A 
discrete-time approach for stabilizing a class of a nonlinear 
system is presented in[11] where the quadratic Lyapunov 
functional is used to derive a discrete linear controller for 
the affine nonlinear plant. In [12] a multi-input-multi-output 
continuous system is studied where the effects of the 
network induced time delay is modeled as an error 
state-vector which is regarded as a vanishing perturbation.  
The use of switching Lyapunov functional to derive 
stability conditions for a networked control system with 
bounded nonlinear uncertainty has been studied in[13]. 
In[14][15] the sampled-data approach is used for a 
networked control system with nonlinearity and the stability 
criteria is formulated as LMIs. Their method can be used to 
calculate the maximum nonlinearity bound for a given time 
delay and controller, but their results are conservative. The 
maximum nonlinear bound is calculated by solving a 
constrained optimization p roblem. The Lyapunov 
-Krasovski functional is used in[16] to derive LMI to study 
the stability and for designing a stabilizing controller for a 
networked control system with time-delay, drop-outs and 
bounded time-varying nonlinearity. The fuzzy-logic 
approach has been addressed in many papers[17]. The 
Authors in[17] modeled a class of nonlinear networked 
control system using Takag i-Sugeno model. They use the 
approximate model of the discrete nonlinear system to 
represent the actual system model. In[18] the authors 
provided new results for stability analysis and stabilization 
of linear systems with norm bounded nonlinear perturbation. 
Although the results of the maximum nonlinearity bound 
are less conservative, the method is limited to free delay 
systems. 

Most of the previously developed approaches require 
excessive load of computations, and also for higher-order 
systems; the load of computations will increase 
dramat ically. In practice, engineers may find it difficult to 
apply those available methods in control system design 
because of the complexity of the methods and the lack of a 
guideline in linking between the design parameters and the 
system performance. Furthermore, the design procedures 
highly depend on the post-design simulation to determine 
the design parameters. So there is a demand for a simple 
design  a ppr oa c h wi th cl ea r g uida nc e f or pr act ic al applications. 
The time delay in real-time networks depends strongly on 
the network protocol and by scheduling the network the 
time delay can be made smaller and bounded. In this paper, 
a new simple method is proposed for estimat ing the 

Maximum Allowable Delay Bound (MADB) in NCS with 
bounded nonlinearity. The method depends on using the 
fin ite difference approximation of the delay term and the 
problem is fo rmulated as LMI, which can be easily solved. 
Moreover, a simple analytical formula relating the MADB 
with the maximum nonlinearity bound is proposed.  

The paper starts from the description of the proposed 
method for estimat ing the maximum time delay for NCS 
with norm bounded nonlinearity. A  few examples are 
illustrated, and the results are compared with those 
proposed in the previously published literature. 

2. Mathematical Analysis 
A nonlinear system is given by: 

))(,()()()( tthttt pp xuBxAx ++=    (1) 
where nt ℜ∈)(x  is the system state vector and 

mt ℜ∈)(u  is the system control input. Ap
nn×ℜ∈ and Bp 

mn×ℜ∈  are matrices with appropriate sizes. ))(,( tth x  is 
the nonlinearity. 

The nonlinearity is assumed to be piecewise-continuous 
function of both t and x. ))(,( tth x  is uncertain and 
satisfies the quadratic inequality[14][15]; 

)()())(,())(,( 2 tttthtth TTT HxHxxx α≤    (2) 
where α > 0 is the nonlinearity bounding parameter and 

H is a constant matrix. For any given H;  
))(,())(,(|:{ 1 tthtthh Tnn xxRRH →= +

α   
)()(2 tt TT HxHxα≤ for all }),( nRxt R×∈ +  

The constraint (2) can be interpreted as[18];  
)())(,( ttth Hxx α≤    (3) 

Stabilizing the system with a linear controller which is given 
by; 

)()( τ−= tt Kxu         (4) 
A typical networked control system model is shown in 

Figure 2. The t ime delay may be constant, variable or even 
random. In NCSs, the time delay is composed of the time 
delay from sensors to controllers, time delay in the 
controller and controllers to actuators time delay, which  is 
given by: 

cacsc ττττ ++=           (5) 
where τsc is the time delay between the sensor and the 

controller τc is the time delay in the controller, τca the time 
delay from the controller to the actuator. For a general 
formulat ion the packet dropouts can be incorporated in (5): 

dhcacsc +++= ττττ            (6) 
where d is the number of dropouts and h the sampling 

period. And by (6) the data dropouts can be considered as a 
special case of the time delay[9]. 

It is supposed that the following hypotheses hold. 
Hypothesis 1 (H.1): 
• Sensors are clock driven. 
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• The controllers and the actuators are event driven. 
• The data are transmitted as a single packet. 
• The old packets are discarded. 
• All the states are available for measurements and hence 

for transmission. 
• The t ime delay  τ is small enough for the fin ite 

difference approximat ion to be hold.  

 

Figure 2.  An NCS with time delay between the sensor and the controller. 

Before we proceed to the analysis we will use the 
following Lemma: 

Lemma 1:(Schur Complement):[4] 
For a given symmetric matrix 
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where Ω11, Ω12 and Ω22 are block matrices, and Ω11 is a 

square matrix. The following three conditions are equal in 
value: 

0<Ω  
022 <Ω , 012

1
221211 <− − TΩΩΩΩ  

011 <Ω , 012
1

111222 <− − ΩΩΩΩ T  

Applying (4) into (1); 
))(,()()()( tthttt pp xKxBxAx +−+= τ  
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  (7) 

If H.1 holds, then the time delay term can be 
approximated using the finite difference approximat ion by 
Tyler Series expansion. The expression for )( τ−tx  can be 
obtained by Taylor Expansion as: 

∑
∞

=

−=−
0

)(

)(
!

)1()(
n

nn
n t

n
t xx ττ      (8) 

Where x(n)(t) is the nth order derivative. The second order 
approximation of the delay term is given by; 

)(x,R)(x)(x)x()x( τttτtτt 3)2/( 2 ++−=−  τ  
)(x)(x)x()x( ttτtτt  )2/( 2τ+−≈−        (9) 

From (9) it can be seen that R3(x,τ) depends on the time 
delay, τ, and the higher-order derivatives of x(t ) which can 
be neglected if the t ime delay  and the norm of R3(x,τ) are 
small. For small t ime delay and slowly time varying 
nonlinear perturbation the second derivative can be 
approximated as: 

)()()( tt pp xKBAx  +≈     (10) 

Substituting (9) and (10) into (7);  
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Equation (11) can be written as: 
))(,()())(()( ttgtt pp xxKBANx ++≅ τ  (12) 

where;  

[ ]
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According to (2) with the time delay the quadratic 
inequality can be written as; 

)()()()(
))(,())(,(

2 tt
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  (13) 

which can be interpreted as; 

)()()()())(,( ttttg xHNHxNx τατα ≤≤   (14) 

The constraint can be written as; 
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where; 
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Choosing the quadratic Lyapunov functional candidate 
and taking its derivative;  
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This can be written as; 
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Where; )( KBAA pp +=  

Following the approach in[18] by combining (15) and (17) 
we get; 
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Letting 1−⋅= PY ε , 0>ε , and using Lemma 1 we 
finally get; 
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where 2/1 αγ =  

Theorem 1 
System (1) and the controller (4) with a g iven time delay 

is robustly stable with degree α if the following is feasible 
Minimize γ  

Subject to Y > 0 and (18) 
The optimization problem in Theorem 1 is quasi-convex 

optimization in  γ  which can be solved easily using the 
Matlab LMI Toolbox. For systems with small time delays 
where the first derivative approximation can be used, the 
matrix )(τM  can be approximated as BKM ττ ≈)( , 
which can lead to less conservative results. 
Corollary 1  

Let H.1 holds, then the nonlinear system (1) with the 
controller (4) is robustly stable with degree α if 
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Proof 
Choosing a Lyapunov functional candidate as: 

0)( >= PxxV Tx , 0x ≠∀       (19) 
The objective for the next step is to find the range of τ  

that will ensure 0)(V <x  for 0x ≠∀ [19][20]. Taking 
the derivative of (19) along with the system trajectory (12),  
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If there exists P = PT > 0 and Q = QT > 0, satisfying:  

QPNKBAKBAPN −=+++ TT
pppp )()())(( ττ  (21) 

Substituting (21) into (20) we get: 

))(,()()(2)()())(( tthtttt xPNxQxxxV TT τ+−=    (22) 

For any 0>α , there exist 0>r  such that 

,)()(,(
22

ttth xHx ⋅< α  rt <∀
2

)(x  
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Also we have[21]; 

2

2min )()()()( tttT xQQxx λ≥   (24) 

Using (23) and (24) into (22) we finally have; 

[ ] 2

222min )()(2)())(( tt xNHPQxV ταλ −−<  (25) 

From (25) it can be found that if 
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then 0)(V <x , the system will be robustly stable with 
degree α . We can see from Coro llary 1 that the MADB 
decreases with increasing α . Setting 0≈α  and 
neglecting the second order term then Corollary 1 reduces 
to Corollary 1 in[22] as follows; 
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Increasing α  means moving away  from the equilibrium 

point. We noticed as we move away from the equilibrium 
point the MADB decreases. The boundary of the domain of 
attraction is when: 

[ ] 00/)11(2/)(
22min <<⇒−<⇒⋅≈ ττλα KBHPQ p  

which means the MADB on the boundary is 
approximately zero. 

In NCS with nonlinearity it is important to find or 
estimate the domain of attraction. The domain of attraction 
is defined as the reg ion where the limit o f every t rajectory 
of the nonlinear system orig inating in RA is the equilibrium 
point. RA is shown in Figure 3. It is assumed that the origin 
is asymptotically stable. 

In[21] the domain of attraction of the equilibrium point 
(the origin) is defined as: 

{ 0);(| →∈= xtRxR n
A φ  as }∞→t  

where );( xtφ  is the init ial state at t = 0. It is difficult to 
find the domain of attraction but we can  estimate a region Ωc, 
that is Ωc ⊂ RA, using Lyapunov’s method. The estimate o f 
the domain of attraction Ωc in[21] is defined as: 

{ }cxVRx n
c ≤∈=Ω )(|      (26) 

)(min
2

xc
rx
V

=
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where c is a positive constant. Since;  
2

2min ))(()( xT τλτ PxPx ≥   (27) 

For )(xV to be positive c can be chosen as: 

2
min ))(( rc τλ P≤     (28) 

From (28) we can draw some conclusions on the relation 
between the time delay and the domain of attraction because 
of the dependence of λmin(P(τ)) on the time delay through 
(21). A few references[13][14] reported that increasing the 
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time delay decreases the nonlinearity bound. In  the following 
section, a number of examples are picked-up from literature 
for comparison and discussion. 

 
Figure 3.  The region of attraction. 

3. Stability Analysis Case Studies 
In general, two approaches are applied to controller design 

for NCSs. The first design approach is to estimate the 
maximum allowable delay bound for the system and then the 
network is scheduled to limit the time delay to be less than 
the MADB. The second approach is to design the controller 
while taking the time delay and data dropouts into account. 
In this paper, the first approach has been adopted. In this 
section, a number of examples are studied to demonstrate the 
approach proposed and compare it with the previously 
published cases. In particular, the results derived using the 
method proposed in this paper has been compared with the 
results using the LMI method given in[14][15].  

Example 1 
The first example has been studied in[14][15] with the 

sampled-data approach, the system is given by 
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The controller is chosen in[14][15] to  be 
[ ]2989.02999.0 −−=K . With 0≈α  using Theorem 1 

the MADB is 0.292 s. For a time delay, 2509.0=τ  s, and 
using Theorem 1 we have: 
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Using Corollary 1: 
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2
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The maximum nonlinearity bound given in[14][15] is 

0.0013. In[24] αmax=0.1636 with 0.2509 s time delay. 
However Corollary 1 and Theorem 1 still g ive conservative 

results the method is very easy compared with the method 
in[14],[15] and[24]. It is clear that the results of Theorem 1 
are less conservative than the results of Coro llary 1.The 
trajectory of the system is shown in  Figure 4. For comparison 
the nonlinear function and the initial conditions for the 
simulation are g iven by; 
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Figure 4.  The system response with zero time delay (solid-line) and 
0.2509 s time delay (dashed-line) 

In[14],[15] with 0.22 s time delay and 
[ ]317.0359.0 −−=K , the maximum nonlinear bound is 

αmax=0.1365, using Coro llary 1 αmax=0.0256 while using 
Theorem 1 αmax=0.2555. Here Theorem 1 gives less 
conservative results than the published ones. The MADB as 
a function of the nonlinearity is given in Figure 5. It can be 
easily seen that as the nonlinearity increases the MADB 
decreases.  

 
Figure 5.  The MADB as a function of the nonlinearity bound using 
Theorem 1 

Example 2 
This example has been studied in[17] with the 

sampled-data approach, the system is given by 
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The controller in[17] is designed to be 
[ ]1724.53741.90255.9 −−−=K . Setting 0≈α  and 

using theorem 1 the MADB is 0.0601 s. The maximum 
nonlinearity bound for the delay free system is 4.3. The 
MADB as a function of the nonlinearity  is shown in Figure 6.  
The system response with 0.03 s and 3 nonlinearity is shown 
in Figure 7. 

 
Figure 6.  The MADB as a function of the maximum nonlinearity bound 
using Theorem 1 

From Figure 5 and Figure 6 it is clear that increasing the 
nonlinearity bound decreases the MADB. The same relation 
has been noticed in[14][15]. We have carried out many 
simulation and we found that increasing the nonlinearity 
reduces the MADB. A lthough the method is still 
conservative, but it can be easily applied. 

 
Figure 7.  The system response with 0.03 s t ime delay and α=3 

Example 3: 

The last example is the estimat ion of the region of 
attraction using the proposed method. A nonlinear system is 
given by: 

)()()( 2 tutxtx +=  
In[10] the system is stabilized with a linear controller as: 
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In[10] the authors use Razumikh in and Lyapunov theorem 
and the MADB reported in[10] is 2 s. Using Theorem 1 with 

1=H , 2/1−=K  and BKM ττ ≈)( , the MADB is 2 s. 
Choosing 2−=K ; from (21) we have; 
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For P  to be positive 366.0<τ , so the MADB is 0.366 s. 

Using Theorem 1 with 1=H , the MADB is 0.366 s.  
Using the finite difference approximat ion for the delay 

term, the time delay nonlinear system is given by; 
( ))(2)())1(21()( 21 txtxtx −+−= −ττ  

The system is stable if 366.0<τ . Choosing Lyapunov 
functional candidate as; 

0)( >= PxxV Tx , 0x ≠∀   
xPxPxxV TT


 +=)(x  

)2)(()())1(21(2
)()2)(()())1(21(2)(

21

1

−+−=

−+−=
−

−

txPtx
txtxPtxxV

ττ
ττ

 

x(t) < 2, 0)( <xV  
The equilib rium points of the system are: 0=x  and 

2=x , we will study the domain  of the attraction at the orig in; 
for the system to be stable we must have; 

2)( <tx  that implies 4)(2 <tx  
The domain o f attraction  is estimated through using (28);  

2
min )( rc Pλ≤  where 2=r  and ))1(21(

4
1 ττ +−=P , 

22))1(21(
4
1

⋅+−≤ ττc  that implies ))1(21( ττ +−≤c  

We can see that increasing the time delay decreases the 
domain of attraction and when the time delay approaches the 
MADB then the domain of attraction becomes very small.  

The system response with different time delays is shown 
in Figure 8. From Figure 8, the system is still stable even 
with 0.75 s, which shows that the results of Theorem 1 are 
still conservative. Figure 9 and Figure 10 show the system 
response with 0.76 s time delay and 0.15 and 0.5 init ial 
condition respectively. 

 
Figure 8.  The system response with different t ime delays and 0.15 initial 
condition 
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Figure 9.  The system response with 0.76 s t ime delay and 0.15 initial 
condition 

 
Figure 10.  The system response with 0.76 s t ime delay and 0.5 initial 
condition 

In Figure 9, the init ial condition is 0.15, and we can see 
that the system is stable while in Figure 10 the init ial 
condition is 0.5, and the system is unstable. Increasing the 
initial condition reduces the MADB, and this is the same 
conclusion obtained from Coro llary 1 also in[10] the authors 
show that increasing the time delay reduces the domain of 
attraction. 

5. Conclusions  
The main contribution of the paper is to have derived a 

new method for estimating the maximum t ime delay in NCSs 
with norm bounded nonlinearity. The most attractive feature 
of the new method is that it  is simple in  structure and easy for 
applications, which can be clearly interpreted to design 
engineers in industrial sectors. The results obtained in this 
method are compared with those obtained through the 
methods introduced in other literatures. The method has 
demonstrated its merits in using less computation time due to 
its simple structure and giving less conservative results while 
showing good agreement with other methods. The method is 
used to estimate the MADB for a given nonlinearity bound 
which can be used as a guiding tool for the network 
scheduling. We found that increasing the nonlinearity bound 
reduces the MADB also increasing the time delay reduces 
the domain  of the attraction fo r the NCS with  bounded 

nonlinearity. 
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