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Abstract  The contribution is focused on helicopter elevation control. The experiments are performed on helicopter 

model, which is significantly nonlinear plant and it simulates in some simplified way dynamics of real helicopter. There is 

derived new way to control it which uses piecewise-linear neural model. As it is shown at the end of the paper, this new 

control algorithm brings decent performance improvement compared to certain classical control technique. 
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1. Introduction 

Artificial Neural Network (ANN) is a popular methodol-

ogy nowadays with lots of practical and industrial applica-

tions. As introduction it is necessary to mention applica-

tions as mathematical modelling of bioprocesses in[1],[2], 

prediction models and control of boilers, furnaces and tur-

bines in[3] or industrial ANN control of calcinations pro-

cedures and iron ore processes[4]. 

Therefore, the aim of the contribution is to explain how 

to use ANN with piecewise-linear activation functions in 

hidden layer in control of significantly nonlinear plant 

(helicopter model). To be more specific, there is described 

technique of controlled plant linearization using ANN 

nonlinear model. Obtained linearized model is in a shape of 

linear difference equation. 

2. Helicopter Model 

Helicopter model is twin rotor aerodynamic system (Fig-

ure 1, Figure 2 and Figure 3) which is designed to simulate 

real copter dynamics. As controlled plant, it is significantly 

nonlinear system with two inputs (power of main rotor u and 

power of tail rotor) and two outputs (vertical elevation yS and 

yaw motion). All quantities are pronounced as unified volt-

age signals 0-5V. The aim of this contribution is vertical 

elevation control, so yaw motion is locked. It is shown fur-

ther, that classical control techniques (e.g. PID control) do 

not afford suitable control performances.  
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Figure 1.  Helicopter model 

 

Figure 2.  Helicopter model formal scheme 

In Figure 4, it is shown the response of the plant to defined 

sum of step functions as example of highly nonlinear dy-

namics of the plant. 
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Figure 3.  Control unit of helicopter model 

 

Figure 4.  Response to sum of step functions 

3. Artificial Neural Network for Ap-

proximation 

According to Kolmogorov's Superposition Theorem, any 

real continuous multidimensional function can be evaluated 

by sum of real continuous one-dimensional functions, see[5]. 

If the theorem is applied to ANN, it can be said that any real 

continuous multidimensional function can be approximated 

by certain three-layered ANN with arbitrary precision. To-

pology of that ANN is depictured in Figure 5. Input layer 

brings external inputs x1, x2, …, xP into ANN. Hidden layer 

contains S neurons, which process sums of weighted inputs 

using continuous, bounded and monotonic activation func-

tion. Output layer contains one neuron, which processes sum 

of weighted outputs from hidden neurons. Its activation 

function has to be continuous and monotonic. 

So ANN in Figure 5 takes P inputs, those inputs are 

processed by S neurons in hidden layer and then by one 

output neuron. Dataflow between input i and hidden neuron j 

is gained by weight w
1

j,i. Dataflow between hidden neuron k 

and output neuron is gained by weight w
2

1,k. Output of the 

network can be expressed by following equations. 
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In equations above, φ
1
(.) means activation functions of 

hidden neurons and φ
2
(.) means output neuron activation 

function. 

As it is mentioned above, there are some conditions ap-

plicable for activation functions. To satisfy them, there is 

used mostly hyperbolic tangent activation function (eq. 5) 

for neurons in hidden layer and identical activation function 

(eq. 6) for output neuron. 

 1 1tanhj a jy y              (5) 

2
1ay y                  (6) 

Mentioned theorem does not define how to set number of 

hidden neurons or how to tune weights. However, there have 

been published many papers which are focused especially on 

gradient training methods (Back-Propagation Gradient De-

scend Alg.) or derived methods (Levenberg-Marquardt Alg.) 

– see[6]. 

 
Figure 5.  Three-layered ANN 

4. System Identification by Artificial 

Neural Network 

System identification means especially a procedure which 

leads to dynamic model of the system. ANN has traditionally 

enjoyed considerable attention in system identification be-

cause of its outstanding approximation qualities. There are 

several ways to use ANN for system identification. One of 

them assumes that the system to be identified (with input u 
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and output yS) is determined by the following nonlinear 

discrete-time difference equation. 

        (7) 

In equation above, ψ(.) is nonlinear function, k is discrete 

time and n is difference equation order. 

The aim of the identification is to design ANN which ap-

proximates nonlinear function ψ(.). Then, neural model can 

be expressed by (eq. 8). 

        (8) 

 
Figure 6.  Three-layered ANN 

In (eq. 8), ̂  
represents well trained ANN and yM is its 

output. Formal scheme of neural model is shown in Figure 6. 

It is obvious that ANN in Figure 6 has to be trained to pro-

vide yM as close to yS as possible. Existence of such a neural 

network is guaranteed by Kolmogorov's Superposition 

Theorem and whole process of neural model design is de-

scribed in detail in[6]. 

5. Piecewise-Linear Neural Model 

As mentioned in section 3, there is recommended to use 

hyperbolic tangent activation function for neurons in hidden 

layer and identical activation function for output neuron in 

ANN used in neural model. However, if linear saturated 

activation function (eq. 9) is used instead, ANN features stay 

similar because of resembling courses of both activation 

functions (see Figure 7). 
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The output of linear saturated activation function is either 

constant or equal to the input so neural model which uses 

ANN with linear saturated activation functions in hidden 

neurons acts as piecewise-linear model. One linear submodel 

turns to another when any hidden neuron becomes saturated 

or becomes not saturated. 

Let us presume an existence of some dynamic neural 

model which uses ANN with linear saturated activation 

functions in hidden neurons and identic activation function 

in output neuron – see Figure 6. ANN output can be com-

puted using eqs. (1), (2), (3), (4). However, another way for 

ANN output computing is useful. Let us define saturation 

vector z of S elements. This vector indicates saturation states 

of hidden neurons – see (eq. 10). 
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Then, ANN output can be expressed by (eq. 11). 
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Thus, difference equation (11) defines ANN output and it 

is linear in some neighbourhood of actual state (in that 

neighbourhood, where saturation vector z stays constant). 

Difference equation (11) can be clearly extended into any 

order. 

 
Figure 7.  Activation functions comparison 

In other words, if it is designed neural model of any 

nonlinear system in form of Figure 8, then it is simple to 

determine parameters of linear difference equation which 

approximates system dynamics in some neighbourhood of 

actual state. This difference equation can be used then to the 

actual control action setting due to any of classical or modern 

control techniques. 
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Figure 8.  Piecewise-linear neural model 

If chosen control technique requires model in form of 

difference equation with no constant term (c = 0), (eq. 11) 

can be transformed in following way. Let us define 

            (12) 

where u0 is constant. Then, (eq. 11) turns into 
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Equation (13) becomes constant term free, if (eq. 14) is 

satisfied. 

0

1

m

j
j

c
u

b


 

                 (14) 

6. Pole Assignment Technique 

Pole Assignment control technique (PA)[7] is polynomial 

approach to process control which is well usable together 

with piecewise-linear neural model. The technique forces the 

whole control loop to some defined behaviour. In other 

words, it determines controller parameters so that the control 

loops dynamics is close to defined standard. Suppose the 

control loop in Z domain as shown in Figure 9. 

 
Figure 9.  Pole Assignment Control Technique 

Controlled system should be described by polynomials 

A(z
-1

), B(z
-1

), where polynomial parameters are equal to 

difference equation parameters used for linear model of the 

controlled system. Both feedforward and feedback part of 

controller are defined by polynomials P(z
-1

), Q(z
-1

), R(z
-1

). Z 

transfer function of closed loop is defined by (eq. 15). 
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While the polynomials A(z
-1

), B(z
-1

) are given by the sys-

tem to be controlled, the other polynomials should be tuned 

to obtain suitable control response (polynomial R(z
-1

) affects 

the closed loop gain and polynomials P(z
-1

), Q(z
-1

) are re-

sponsible for control performance dynamics). 

If the system to be controlled is highly nonlinear, the 

polynomials A(z
-1

), B(z
-1

) should be adapted continuously 

and one simple and suitable way to do it is presented in 

paragraph 5 – see formal diagram in Figure 10. 

 

Figure 10.  Pole Assignment with continuous linear model adaptation 

using piecewise-linear neural model 

7. Helicopter Model Elevation Control 

Discrete neural model of the plant (sampling period 0.2s) 

is designed according to information described in section 4. 

This procedure involves training and testing set acquisition, 

neural network training and pruning and neural model vali-

dating. As this sequence of processes is illustrated closely in 

many other publications[6], it is not referred here in detail. 

Pole Assignment technique is used then for control. 

Standard for this demonstration is defined as discrete first 

order system with unit gain – see Z transfer function (16). 

The aim is to determine continuously (every time instant of 

control performance) controller polynomials to unify trans-

fer functions (15) and (16), which is simple algebraic task. 
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Control response defined by this standard (desired control 

response) for some demonstrative setpoint course is shown 

in Figure 11, while control performance obtained from real 

device is figured in Figure 12 (yS means real elevation, wS its 

desired value, t is continuous time). The results are con-

fronted to control performance gained using PID controller 

tuned by Nichols-Ziegler method[8] (see Figure 13). Control 

qualities are expressed by quadratic performance criterion 
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(17) – less is better – and numeric values can be found in 

Table 1. 

 
2

( ) ( )SQ w k y k           (17) 

Table 1.  Quadratic performance criterion 

 Desired PA + NN model PID controller 

Q 37.2 203.5 361.1 

 
Figure 11.  Desired control performance defined by (16) 

 
Figure 12.  Control response using PA + Neural model 

8. Conclusions 

The paper is focused on the usage of neural network with 

linear saturated activation functions in helicopter model 

elevation control. Neural model with such a neural network 

within is suitable for controller design using any of huge set 

of classical or modern control techniques. Pole Assignment 

technique is chosen in this particular case. Control response 

of real device (Figure 12) should tend to control response 

defined as standard (Figure 11). However, this is hardly 

achieved, because highly nonlinear dynamics of the plant 

cannot be forced to such a smooth course. Nevertheless, 

comparison to control performance provided by PID con-

troller (Figure 13), which is the most widespread controller 

in industry, proves decent improvement of control quality. 

 
Figure 13.  Control response using PID controller 
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