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1. Introduction 
The concept of derivative for set-valued mapping was 

first entered by M. Hukuhara[1]. Then the problems of dif-
ferentiability of fuzzy mappings were considered by T. F. 
Bridgland[2], J.N. Tyurin[3], H.T. Banks and M.Q. Ja-
cobs[4], A.V. Plotnikov[5, 6], A.N. Vityuk[7], B. Bede and 
S.G. Gal[8], A.V. Plotnikov and N.V. Skripnik[9]. The 
properties of the these derivatives were considered 
in[10-18]. 

F.S. de Blasi and F. Iervolino begun studying of 
set-valued differential equations (SDEs) in semilinear met-
ric spaces[12,19-21]. Now it developed in the theory of 
SDEs as an independent discipline. The properties of solu-
tions, the impulsive SDEs, control systems and asymptotic 
methods for SDEs were considered[5,6,9-11,16-24]. On the 
other hand, SDEs are useful in other areas of mathematics. 
For example, SDEs are used as an auxiliary tool to prove 
the existence results for differential inclusions. Also, one 
can employ SDEs in the investigation of fuzzy differential 
equations. Moreover, SDEs are a natural generalization of 
usual ordinary differential equations in finite (or infinite) 
dimensional Banach spaces[19]. 

In[9] a new concept of a derivative of a set-valued map-
ping that generalizes the concept of Hukuhara derivative 
was entered and a new type of a set-valued differential 
equation such that the diameter of its solution can whether 
increase or decrease (for example, to be periodic) was con-
sidered. In the ideological sense this definition of the de-
rivative is close to the definitions proposed in[5,6,8]. 
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In this paper the generalized set-valued differential equa-
tions with generalized derivative are considered and the  
existence and uniqueness theorems are proved. 

2. The Generalized Derivative 
Let )( nRconv  be a space of all nonempty convex closed 

sets of nR  with Hausdorff metric 
( ) { }, min 0 : (0), (0)r rh A B r A B S B A S= ≥ ⊂ + ⊂ + , 

where , ( ),nA B conv R∈  (0) { : }n
rS s R s r= ∈ ≤ . 

Definition 1[1]. Let , ( )nX Y conv R∈ . A set ( )nZ conv R∈  
such that X Y Z= +  is called a Hukuhara difference of the 
sets X and Y and is denoted by hX Y . 

From Rådström's Embedding Lemma[25] it follows that if 
this difference exists, then it is unique. 

Let [ ', "]I t t R= ⊂ ; : ( )nX I conv R→  be a set-valued map-
ping; 0 0( , )t t I− ∆ + ∆ ⊂  be a ∆ -neighbourhood of a point 

0t I∈ ; 0∆ > . 
For any 0 0( , )t t t∈ −∆ + ∆ consider the following Hukuhara 
differences if these differences exist. 

0( ) ( )hX t X t , 0t t≥            (1) 

0( ) ( )hX t X t , 0t t≥            (2) 

0( ) ( )hX t X t , 0t t≤            (3) 

0( ) ( )hX t X t , 0t t≤            (4) 

The differences (1) and (2)[(3) and (4)] are called the 
right[left] differences. From the definition of the Hukuhara 
difference it follows that both one-sided differences exist 
only in the case when ( ) { ( )}X t F f t≡ +  for 0 0[ , )t t t∈ + ∆  or 

0 0( , ]t t t∈ −∆ . If all differences (1)-(4) exist then 
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( ) { ( )}X t F f t≡ +  in ∆ -neighbourhood of the point 0t . 
If for all 0 0( , )t t t∈ −∆ + ∆ there exists only one of the 

one-sided differences, then using the properties of the Hu-
kuhara difference, we get that the mapping :diamX I R+→  in 
the ∆ -neighbourhood of the point 0t  can be: 

a) non-decreasing on 0 0( , )t t− ∆ + ∆ ; 
b) non-increasing on 0 0( , )t t− ∆ + ∆ ; 
c) non-decreasing on 0 0( , )t t− ∆  and non-increasing on 

0 0( , )t t + ∆ ; 
d) non-increasing on 0 0( , )t t− ∆  and non-decreasing on 

0 0( , )t t + ∆ . 
Hence, for each of the above mentioned cases only one of 

combinations of differences is possible: 
a) (1) and (3); b) (2) and (4); c) (2) and (3); d) (1) and (4). 
Consider four types of limits corresponding to one of the 

difference types: 

( )
0

0
0

1lim ( )
t t

hX t X t
t t+→

 
 −  

;              (5) 

( )
0

0
0

1lim ( )
t t

hX t X t
t t+→

 
 −  

;              (6) 

( )
0

0
0

1lim ( )
t t

hX t X t
t t−→

 
 −  

;              (7) 

( )
0

0
0

1lim ( )
t t

hX t X t
t t−→

 
 −  

.              (8) 

So it is possible to say that in the point 0t  not more than 
two limits can exist (as we assumed that there exist only two 
of four Hukuhara differences). 

Considering all above we have that there can exist only the 
following combinations of limits: 

a) (5) and (7); b) (6) and (8); 
c) (6) and (7); d) (5) and (8). 

Definition 2[9]. If the corresponding two limits exist and 
are equal we will say that the mapping ( )X ⋅  is differentiable 
in the generalized sense in the point 0t  and denote the 
generalized derivative by 0( )DX t . 

Let us say that the set-valued mapping : ( )nX I conv R→  is 
differentiable in the generalized sense on the interval I  if it 
is differentiable in the generalized sense at every point of this 
interval. 

Remark 1. Properties of the generalized derivative have 
been considered in[9]. 

Definition 3[9]. The set-valued mapping 0:[ , ]X t T →  
( )nconv R is called absolutely continuous on the interval 0[ , ]t T  

if there exist a measurable set-valued mapping ( )G t  and a 
system of intervals 1[ , ]i it t + , 0,..,i m= , 1mt T+ =  such that for all 

1[ , ]i it t t +∈ , 0,..,i m=  

( ) ( ) ( )
i

t

i
t

hX t X t G s ds= ∫  or ( ) ( ) ( )
i

t

i
t

X t X t G s ds= + ∫ . 

Theorem 1[9]. Let a set-valued mapping 0:[ , ]X t T →  
( )nconv R  is absolutely continuous on the interval 0[ , ]t T . 

Then the set-valued mapping ( )X ⋅  is differentiable in 
the generalized sense almost everywhere on the interval 

0[ , ]t T  and ( ) ( )DX t G t=  almost everywhere on 0[ , ]t T . 

3. Generalized Differential Equations 
with the Generalized Derivative 

First consider a differential equation with the generalized 
derivative that is similar to a differential equation with the 
Hukuhara derivative, i.e. 

( , )DX F t X= , 0 0( )X t X= ,        (9) 
where ( )DX t  is the generalized derivative of a set-valued 
mapping 0:[ , ] ( )nX t T conv R→ , 0:[ , ] ( )nF t T conv R× →  ( )nconv R  
is a set-valued mapping, 0 ( )nX conv R∈ . 

Definition 4. A set-valued mapping 0:[ , ]X t T →  ( )nconv R  
is said to be solution of differential equation (9) if it is ab-
solutely continuous and satisfies (9) almost everywhere on 

0[ , ]t T . 
Remark 2. Unlike the case of differential equations with 

Hukuhara derivative, if a differential equation with the gen-
eralized derivative (9) has a solution then there exists an 
infinite number of solutions irrespective of the conditions 
on the right-hand side of the equation. 

Example 1. Consider the following differential equation 
with the generalized derivative 

[ 1,1]DX = − , (0) [ 2,2]X = − .        (10) 
It is easy to check that the following set-valued mappings 

are the solutions of equation (10): 
1( ) [ 2 , 2 ], [0,1]X t t t t= − − + ∈ , 

2 ( ) [ 2 , 2 ], [0,1]X t t t t= − + − ∈ , 

3

[ 2 , 2 ], [0,0.5],
( )

[ 2.5 , 2.5 ], [0.5,1],
t t t

X t
t t t

− − + ∈
=  − + − ∈

 

4

[ 2, , 2 ], [0,0.25],
( ) [ 1.5 ,1.5 ], [0.25,0.5],

[ 2.5 , 2.5 ], [0.5,1].

t t t
X t t t t

t t t

− + − ∈
= − − + ∈
 − + − ∈

 

Also it is possible to construct other solutions, thus only 
1( )X ⋅  will be the solution of the corresponding differential 

equation with the Hukuhara derivative 
[ 1,1]HD X = − , (0) [ 2,2]X = −  

and 1( )X ⋅  and 2 ( )X ⋅  are solutions of the differential equa-
tion with the generalized derivative (in the sense of[8]). 

Therefore we will consider the other differential equation 
with the generalized derivative: 

1 2

0 0

( ) ( ( )) ( , ( )) ( ( )) ( , ( )),

( ) ,

hDX t t F t X t t F t X t

X t X

φ φΦ − = Φ

=

   (11) 

where 0[ , ]t t T∈ ; 0:[ , ] ( )nX t T conv R→ ; 0 ( )nX conv R∈ ; 

1 2 0, :[ , ] ( )nF F t T conv R× ( )nconv R→  are set-valued mappings; 

0:[ , ]t T Rφ → is a continuous function; function 1, 0,
( )

0, 0.
φ

φ
φ
>

Φ =  ≤
 

Definition 5. A set-valued mapping 0:[ , ]X t T →  ( )nconv R  
is called the solution of differential equation (11) if it is 
continuous and on any subinterval 1 2 0[ , ] [ , ]t Tτ τ ⊂ , where 
function ( )tφ  of constant signs, satisfies the integral equa-
tion 

1

1( ) ( ( )) ( , ( ))
t

X t s F s X s ds
τ

φ+ Φ −∫
1

1 2( ) ( ( )) ( , ( ))
t

X s F s X s ds
τ

τ φ= + Φ∫ . 

If on the interval 1 2[ , ]τ τ  the function ( ) 0tφ > , then ( )X t
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satisfies the integral equation 

1

1 2( ) ( ) ( , ( ))
t

X t X F s X s ds
τ

τ= + ∫  

for 1 2[ , ]t τ τ∈  and ( )diamX t  increases. 
If on the interval 1 2[ , ]τ τ  the function ( ) 0tφ < , then we 

have  

1

1 1( ) ( , ( )) ( )
t

X t F s X s ds X
τ

τ+ =∫ , 

i.e. 
1

1 1( ) ( ) ( , ( ))
thX t X F s X s ds
τ

τ= ∫  and ( )diamX t  decreases. 

If on the interval 1 2[ , ]τ τ  the function ( ) 0tφ ≡ , then we 
have 1( ) ( )X t X τ≡ . 

So we can enter the other equivalent definition of a solu-
tion of equation (11). 

Definition 6. A set-valued mapping 0:[ , ]X t T →  ( )nconv R  
is called the solution of differential equation (11) if it is 
absolutely continuous, satisfies (11) almost everywhere on 

0[ , ]t T  and 
increases if ( ) 0,

( ) is constant if ( ) 0,
decreases if ( ) 0.

t
diamX t t

t

φ
φ
φ

>
= =
 <

 

Example 2. Consider the following differential equation 
with generalized derivative 

( sin )[ 2,4] (sin )[1,3], (0) [2,4].hDX t t XΦ − − = Φ =   (12) 

As sin 0t >  for (0, )t π∈  we have  

0

( ) [2, 4] [1,3] [2,4] [ ,3 ] [2 ,4 3 ]
t

X t ds t t t t= + = + = + +∫  

for [0, ]t π∈ . 
So for t π=  we get ( ) [2 ,4 3 ]X π π π= + + . 
Further as sin 0t <  for ( , 2 )t π π∈  we have  

( ) [2 , 4 3 ] [ 2,4]
thX t ds
π

π π= + + − =∫  

[2 , 4 3 ] [ 2,4]
th ds
π

π π= + + − =∫  

[2 , 4 3 ] ( )[ 2, 4]h tπ π π= + + − − =  

[2 2 ,4 7 4 ]t tπ π= − + + − . 

So for 1 4 2
3

t π π+
= <  we get 1 4 8 5

3 3
X π π+ +   =   
   

. 

 
Figure 1.  The graph of a solution of system (12) 

It means that the solution exists only for 1 40,
3

t π+ ∈   
 (see 

fig. 1). 
Example 3. Consider the same differential equation with 

generalized derivative but with )10sin()( tt −=ϕ :  

(sin10 )[ 2,4] ( sin10 )[1,3], (0) [2,4]hDX t t XΦ − = Φ − = (13) 

As sin10 0t− <  for 0,
10

t π ∈ 
 

 then we have 

0

( ) [2,4] [ 2,4] [2 2 ,4 4 ]
thX t t t= − = + −∫  for 0,

10
t π ∈   

. 

Further as sin10 0t− >  for ,
10 5

t π π ∈ 
 

 then we get  

10

2 7( ) 2 ,4 [1,3] 2 ,4 3
10 5 10

t

X t ds t t
π

π π π   = + − + = + − +      ∫ . 

Further as sin10 0t− <  for 3,
5 10

t π π ∈ 
 

 then we get  

5

7( ) 2 ,4 [ 2,4] 2 2 ,4 4 .
5 10 5 10

thX t ds t t
π

π π π π   = + − − = − + + −      ∫  

So for 1 3 3
3 20 10

t π π
= + <  we have 1 3 8

3 20 3 10
X π π   + = −  
   

. 

 
Figure 2.  The graph of a solution of system (13) 

It means that the solution exists only for 1 30,
3 20

t π ∈ +  
 (see 

fig. 2). 
Remark 3. It is obvious that the mappings 1( , )F t X , 

2 ( , )F t X  define only on “how much” the mapping ( )X ⋅  
changes in case of its "decrease"( 1( , )F t X ) or "in-
crease"( 2 ( , )F t X ) and function ( )φ ⋅  defines what will occur 
to ( )X ⋅ ["decrease" or "increase"]. If ( ) 0tφ ≡ irrespective of 

1( , ( ))F t X t  and 2 ( , ( ))F t X t  the mapping ( )X ⋅ will be constant. 
Example 4. Consider the differential equation from Ex-

ample 2 with ( ) 0tφ ≡  for [0, 2 ]t π∈ . Then ( ) [2,4]X t ≡  for 
[0, 2 ]t π∈ . 
Remark 4. If we take ( ) 1tφ ≡ −  then we will have  

0

( ) [2, 4] [ 2,4] [2 2 ,4 4 ]
thX t ds t t= − = + −∫ . 

Then for 1
3

t =  we get 1 8
3 3

X    =   
   

. So the solution exists 

0

2

4

6

8

10

12

14

0.00 3.14 4.52

X

t

0.0

1.0

2.0

3.0

4.0

0.00 0.31 0.63 0.80

X

t
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for 10,
3

t  ∈   
 (see fig. 3). 

 

Figure 3.  The graph of a solution of system (12) for 1)( −≡tϕ  

So for all ( )tφ  we can guarantee the existence of solution 

of the differential equation on the interval 10,
3

 
  

. 

( ) ( ( ))[ 2, 4] ( ( ))[1,3], (0) [2,4]hDX t t t Xφ φΦ − − = Φ =  

Let ( )nCC R  ( 2)n ≥ be a space of all nonempty strictly 
convex closed sets of nR  and all element of nR [27]. 

The following theorem of existence of the solution of 
equation (11) for case ( )nCC R  holds: 

Theorem 2. Let the set-valued mappings 1( , )F t X , 
2 ( , ) : ( ) ( )n nF t X R CC R CC R× →  in the domain 

0 0 0{( , ) ( ): [ , ], ( , ) }nQ t X R CC R t t t a h X X b= ∈ × ∈ + ≤  
satisfy the following conditions:  

i) for any fixed X  the set-valued mappings 1( , )F X⋅ , 
2 ( , )F X⋅  are measurable; 
ii) for almost every fixed t the set-valued mappings 1( , )F t ⋅ , 

2 ( , )F t ⋅  are continuous; 
iii) 1 1( , ) ( )F t X m t≤ , 2 2( , ) ( )F t X m t≤ , where 1( )m ⋅ , 2 ( )m ⋅  are 

summable on 0 0[ , ]t t t a∈ + ; 
iv) ( )tφ  is continuous and has the finite number of inter-

vals where ( ( )) 1sign tφ = ± , 
v) 0int X ≠ ∅ . 
Then there exists a solution of equation (11) defined on the 

interval 0 0[ , ]t t t d∈ + , where 0d >  satisfies the conditions 
a) d a≤ ;  

b) 0( )i t d bϕ + ≤ , where 
0

( ) ( )
t

i it m s dsϕ = ∫ , 1, 2i = ; 

c) 
0 0

1
[ , ]

( )
2t t d

m s ds
µ

θ

+

≤∫  

where ( ) ( )0 01
min , ,C X C X
ψ

θ ψ ψ
=

= − − ,  

( ) ( )1 1, max ... n nx X
C X x xψ ψ ψ

∈
= + + ,  

0 0 0 0[ , ] [ , ] : ( ) 0t t d t t d tµ φ+ ⊂ + <  for 0 0[ , ]t t t dµ∈ + . 
Proof. Let us consider some cases. 
1) ( ) 0tφ >  for 0 0[ , ]t t t a∈ + . Then equation (11) is the or-

dinary differential equation with Hukuhara derivative  

2 0 0( ) ( , ), ( )HD X t F t X X t X= = .          (14) 
Therefore, using[17] we get that the equation (11) has a 

solution ( )X t  defined on 0 0[ , ]t t d+ , where d  satisfies the 

condition min{ , }d a γ= , 
0

0

2 ( )
t

t

m s ds b
γ+

=∫ . 

2) ( ) 0tφ ≡  for 0 0[ , ]t t t a∈ + . Then equation (11) is the or-
dinary differential equation with Hukuhara derivative 

0 0( ) {0}, ( )DX t X t X= =  and therefore, 0)( XtX ≡  is the solu-
tion of (11) on 0 0[ , ]t t a+ . 

3) ( ) 0tφ <  for 0 0[ , ]t t t a∈ + . Then equation (11) is the 
equation with the generalized derivative 

1 0 0( ) ( , ( )) {0}, ( )hDX t F t X t X t X= = .       (15) 

According to Definition 5 consider the following integral 
equation  

0

0 1( ) ( , ( ))
t

t

hX t X F s X s ds= ∫            (16) 

for 0 0[ , ]t t t a∈ +  and prove the existence of solution on the 
some interval 0 0[ , ]t t d+ . 

3a) As 1 1( , ) ( )F t X m t≤  for ( , )t X Q∈ , then  
11 ( )( , ) (0)m tF t X S⊂ , 

where ( ) { : }.n
rS a x R x a r= ∈ − ≤  

So 
1

10 0
0

1 ( )
( )

( , ) (0) (0)t

t

t t

m s
m s dst t

F s X ds S ds S⊂ =
∫

∫ ∫ . 

Define by 
1

0

( )
( ) (0)t

t

m s ds
S t S=

∫
.  

It is obviously, that if 0 1 2 0t t t t a< < < + , then  
0 1 2 0{0} ( ) ( ) ( ) ( )S t S t S t S t a= ⊂ ⊂ ⊂ + . 

As 0 ( )nX CC R∈  and 0int X ≠ ∅ , then there exists 1 0d >  
such that the set ( )S t  can be embedded in the set 0X  for all 

0 0 1[ , ]t t t d∈ +  (i.e. there exists ( )tζ  such that 0( ) ( )S t t Xζ+ ⊂ ) 
and is not embedded for 0 1t t d> + . And, it is obviously, that 

1d  can be found out from the equation 
0 1

0

1( )
2

t d

t

m s ds θ+

=∫ . 

Therefore, for all  
1( , ) {( , ) ( ):nt X Q t X R CC R∈ = ∈ ×  

0 0 1 0[ , ], ( , ) }t t t d h X X b∈ + ≤  

the set 
0

1( , )
t

t

F s X ds∫  is embedded in the set 0X . 

3b) As 1( , ) ( )nF t X CC R∈  for all 1( , )t X Q∈ , then 

0

1( , ) ( )
t

n

t

F t X ds CC R∈∫  for all ( , )t X Q∈ [27]. Therefore, as 

0 ( )nX CC R∈ and that the set ( )S t  can be embedded in the set 

0X  for all 0 0 1[ , ]t t t d∈ + , then the Hukuhara difference 

0

0 1( , )
t

t

hX F s X ds∫  exists for all 1( , )t X Q∈ [27]. 

3c) Let us find 2 0d >  such that 
0 2

0

1( )
t d

t

m s ds b
+

=∫  and con-

sider 1 2min{ , , }d a d d= . 
3d) Choose any natural k . Sequentially on the intervals  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.00 0.33

X

t
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0 0 ( 1)t i t t i+ ∆ ≤ ≤ + + ∆ , d
k

∆ = , 0,..., 1i k= −  

let us build the successive approximations of the solution 
0( )kX t X=  for 0 0t t t− ∆ ≤ ≤ , 

0

0 1( ) ( , ( ))
t

k k

t

hX t X F s X s ds= − ∆∫  for 0 0[ , ]t t t d∈ +  (17) 

By 3b) ( )kX t  is exist and ( ) ( )k nX t CC R∈  for all k N∈  
and 0 0[ , ]t t t d∈ + . Also by conditions i) and ii) of the theorem 

( )kX t  is continuous on 0 0[ , ]t t d+  for all k N∈ . 
Besides  

0

0 0 1 0( ( ), ) ( , ( )) ,
t

k k

t

hh X t X h X F s X s ds X
 

= − ∆ ≤  
 

∫  

( )
0 0

0

1 1

1 1 0

{0}, ( , ( )) ( , ( ),{0}

( ) ( ) .

t t
k k

t t

t

t

h F s X s ds h F s X s ds

m s ds t d bϕ

 
≤ − ∆ ≤ − ∆ ≤  

 

≤ ≤ + ≤

∫ ∫

∫

 

Hence, it follows that the sequence of the set-valued 
mappings { }

1
( )k

k
X t

∞

=
 in uniformly bounded: 

( ) 0( ),{0} ( ,{0})kh X t h X b≤ + . 

Let us show that the set-valued mappings ( )kX t  are 
equicontinuous. For any α β<  0 0, [ , ]t t dα β ∈ +  and any 
natural k  the inequality holds  

( ( ), ( ))k kh X Xα β =  

0 0

0 1 0 1( , ( )) , ( , ( ))k k

t t

h hh X F s X s ds X F s X s ds
βα 

= − ∆ − ∆ =  
 

∫ ∫  

1 1( , ( )) ,{0} ( ( , ( )),{0})k kh F s X s ds h F s X s ds
β β

α α

 
= − ∆ ≤ − ∆ ≤  

 
∫ ∫  

1 1 1( ) ( ) ( )m s ds
β

α

ϕ β ϕ α≤ = −∫  

The function 1( )tϕ  is absolutely continuous on 0 0[ , ]t t d+  
as the integral of the summable function with a variable top 
limit. Hence, for any 0ε >  there exists ( ) 0δ ε >  such that for 
all ,α β  such that 0 β α δ≤ − <  the inequality 

( ( ), ( ))k kh X Xα β ε<  is fair, the sequence { }
1

( )k

k
X t

∞

=
 is equi-

continuous. 
According to Askoli theorem[28] we can choose a uni-

formly converging subsequence of the sequence { }
1

( )k

k
X t

∞

=
. 

Its limit is a continuous set-valued mapping that we will 
denote by ( )X t . As and the first summand is less than ε  for 

d
k

δ∆ = <  in view of the equicontinuity of the set-valued 

mappings { }
1

( )k

k
X t

∞

=
, then along the chosen subsequence 

{ }
1

( )k

k
X s

∞

=
− ∆  converges to ( )X t . Owing to the theorem 

conditions in (15) it is possible to pass to the limit under the 
sign of the integral. We receive that the set-valued mapping 

( )X t  satisfies equation (16) and 0 0( )X t X= , i.e. ( )X t  is the 
solution of (15) on the interval 0 0[ , ]t t d+ . 

( ( ), ( ))kh X s X s− ∆ ≤  
( ( ), ( )) ( ( ), ( ))k k kh X s X s h X s X s≤ − ∆ + , 

4) In case when the function ( )tφ  changes sign on the 
interval 0 0[ , ]t t a+ , the existence of the solution is proved 
combining cases 1)-3). The theorem is proved. 

Theorem 3. Let the set-valued mappings 1( , )F t X , 
2 ( , ) : ( ) ( )n nF t X R CC R CC R× →  in the domain 

0 0 0{( , ) ( ): [ , ], ( , ) }nQ t X R CC R t t t a h X X b= ∈ × ∈ + ≤  
satisfy the conditions of Theorem 2 and satisfy the condi-
tions  

1 1 1( ( , '), ( , ")) ( ', ")h F t X F t X L h X X≤ , 

2 2 2( ( , '), ( , ")) ( ', ")h F t X F t X L h X X≤  
for all ( , '), ( , ")t X t X Q∈ . 

Then there exists the unique solution of equation (11) de-
fined on the interval 0 0[ , ]t t t d∈ + . 

The proof is similar to[17,24]. 
Finally we consider example for case 2( )CC R . 
Example 6. Consider the following differential equation 

with generalized derivative  

1
1( 1) (1 ) , (0) (0),
2

hDX t X t X X SΦ − = Φ − =     (18) 

where 2: ( )X R CC R→ . 

It is obvious that 2

1,5

(0), 1,
( )

(0), 1

t

t

e

e

S t
X t

S t−

≤= 
>

 is the solution of 

differential equation (18) (see fig. 4). 

 
Figure 4.  The graph of a solution of system (18) 

Remark 5. Also it is possible to prove the similar results if 
( )nCC R be a space of all nonempty M- strongly convex closed 

sets of nR  and all element of nR [29]. 
Remark 6. Let's notice that we considered some conti-

nuous function ( )tφ but it is also possible to take 
( , ) ( ) ( )t X diamX t c tφ = − , for example, where ( )c t - is the di-

ameter of some etalon set-valued mapping. 

4. Conclusions 
In this paper the concept of generalized differentiability 

(proposed in[9]) for set-valued mappings is used. The new 
type of the set-valued differential equation – generalized set 
differential equations – is considered. The existence and 
uniqueness theorems for set-valued differential equations 



6  Andrej Plotnikov et al.:  Existence and Uniqueness Theorems for Generalized Set Differential Equations 
 

 

with generalized derivative are proved. 
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