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Abstract  In this paper we prove the interior controllability of the following Timoshenko Type Equation  

�
𝑢𝑢𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝛼𝛼∆2𝑢𝑢 − ∆𝑢𝑢𝑡𝑡 = 1𝑤𝑤 𝑓𝑓1(𝑡𝑡, 𝑥𝑥) in (0, τ) × 𝛺𝛺,

−𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑣𝑣𝑡𝑡𝑡𝑡 + 𝛿𝛿∆2𝑣𝑣 − ∆𝑣𝑣𝑡𝑡 = 1𝑤𝑤 𝑓𝑓2(𝑡𝑡, 𝑥𝑥) in (0, τ) × 𝛺𝛺
𝑢𝑢 + ∆𝑢𝑢 = 𝑣𝑣 = ∆𝑣𝑣 = 0 on (0, τ) × 𝛿𝛿𝛿𝛿,                          

�, 

where Ω is a sufficiently regular bounded domined in 𝑅𝑅𝑁𝑁(𝑁𝑁 ≥ 1), 𝛼𝛼 > 0, 𝛿𝛿 > 0, 𝛾𝛾 > 0  and 𝑐𝑐 > 0 such that 𝛾𝛾 > 𝑐𝑐2,ω is an 
open nonempty subset of Ω, 1𝜔𝜔  denotes the characteristicfunction of the set ω and the distributed control 𝑓𝑓𝑖𝑖 ∈
𝐿𝐿2�[0, 𝜏𝜏]; 𝐿𝐿2(Ω)�, 𝑖𝑖 = 1, . Specifically, we prove the following statement: For all 𝜏𝜏 > 0  the system is 
approximatelycontrollable on[0, τ]. Moreover, we exhibit a sequence of controls steering thesystem from an initial state to a 
𝜀𝜀 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜  final state in a prefixed time 𝜏𝜏 > 0. 

Keywords  Interior Controllability, Timoshenko Type Equation, Strongly Continuous Semigroups 

1. Introduction 
The Timoshenko beam theory was developed by 

Ukrainian-born scientist Stephen Timoshenko in the 
beginning of the 20th century. The model takes into account 
shear deformation and rotational inertia effects, making it 
suitable for describing the behavior of short beams, 
sandwich composite beams or beams subject to 
high-frequency excitation when the wavelength approaches 
the thickness of the beam. The resulting equation is of 4th 
order, but unlike ordinary beam theory - i.e. Bernoulli-Euler 
theory, there is also a second order spatial derivative present. 
Physically, taking into account the added mechanisms of 
deformation effectively lowers the stiffness of the beam, 
while the result is a larger deflection under a static load and 
lower predicted eigenfrequencies for a given set of boundary 
conditions. The latter effect is more noticeable for higher 
frequencies as the wavelength becomes shorter, and thus the 
distance between opposing shear forces decreases.  

This paper has been motivated by the works 
in[2],[8],[9],[10],[12] and[13], where a new technique is 
used to prove the approximate controllability of some 
diffusion process. 

Following[2],[9] and[13], in this paper we study the 
interior approximate controllability of the following 
Timoshenko Type Equation 

�
𝑢𝑢𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝛼𝛼∆2𝑢𝑢 − ∆𝑢𝑢𝑡𝑡 = 1𝑤𝑤 𝑓𝑓1(𝑡𝑡, 𝑥𝑥) in (0, τ) × 𝛺𝛺

−𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑣𝑣𝑡𝑡𝑡𝑡 + 𝛿𝛿∆2𝑣𝑣 − ∆𝑣𝑣𝑡𝑡 = 1𝑤𝑤 𝑓𝑓2(𝑡𝑡, 𝑥𝑥) in (0, τ) × 𝛺𝛺
𝑢𝑢 = ∆𝑢𝑢 = 𝑣𝑣 = ∆𝑣𝑣 = 0 on (0, τ) × 𝛿𝛿𝛿𝛿

� (1) 
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Where Ω is a sufficiently regular bounded domain in 
ℝ𝑁𝑁(𝑁𝑁 ≥ 1), 𝛼𝛼 > 0, 𝛿𝛿 > 0, 𝛾𝛾 > 0  and 𝑐𝑐 > 0  such that 
γ > c2, ω is an open nonempty subset of Ω, 1𝜔𝜔  denotes the 
characteristic function of the set ω and the distributed control 
𝑓𝑓𝑖𝑖 ∈ 𝐿𝐿2�[0, 𝜏𝜏]; 𝐿𝐿2(Ω)�, 𝑖𝑖 = 1,2. 

Specifically, we prove the following statement: For all 
𝜏𝜏 > 0 the system is approximately controllable on [0, 𝜏𝜏]. 
Moreover, we exhibit a sequence of controls steering the 
system from an initial state to a final state in a prefixed time 
𝜏𝜏 > 0. 

But, before proving this result, we study the approximate 
controllability of the following Timoshenkotype equation 
with the controls acting in the whole set Ω using some result 
from[8]. 

 �
𝑢𝑢𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝛼𝛼∆2𝑢𝑢 − ∆𝑢𝑢𝑡𝑡 = 𝑓𝑓1(𝑡𝑡, 𝑥𝑥) in (0, τ) × 𝛺𝛺

−𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑣𝑣𝑡𝑡𝑡𝑡 + 𝛿𝛿∆2𝑣𝑣 − ∆𝑣𝑣𝑡𝑡 = 𝑓𝑓2(𝑡𝑡, 𝑥𝑥) in (0, τ) × 𝛺𝛺
𝑢𝑢 = ∆𝑢𝑢 = 𝑣𝑣 = ∆𝑣𝑣 = 0 on (0, τ) × 𝛿𝛿𝛿𝛿

� (2) 

Where  𝑓𝑓𝑖𝑖 ∈ 𝐿𝐿2�[0, 𝜏𝜏]; 𝐿𝐿2(Ω)�, 𝑖𝑖 = 1,2. 
Of course, the interior approximate controllability of this 

equation is more interesting problem from the applications 
point of view since the control is acting only in a subset or 
part of Ω. Our technique is simple and rests on the shoulders 
of the following fundamental results: 

Theorem 1.1.[10] The eigenfunctions of −∆ with 
Dirichlet boundary condition on Ω are real analytic 

functions. 
Theorem 1.2.[1]SupposeΩ ⊂ ℝ𝑛𝑛  is an open, nonempty 

and connected set, and f is areal analytic function in Ω 
with 𝑓𝑓 ≡ 0 on a non-empty open subset ω of Ω. Then 
𝑓𝑓 ≡ 0 in Ω. 

2. Abstract Formulation of the Problem 
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Let 𝑍𝑍 =  𝐿𝐿2 (Ω)  and consider the linear unbounded 
operator 
𝐴𝐴 ∶ 𝐷𝐷(𝐴𝐴) ⊂ 𝑍𝑍 → 𝑍𝑍 defined by 𝐴𝐴𝐴𝐴 =  −∆𝜙𝜙, where  

𝐷𝐷(𝐴𝐴) =  𝐻𝐻0
1(Ω) ∩ 𝐻𝐻2 (Ω)           (3) 

The operator A has the following very well known 
properties: the spectrum of A consists of only eigenvalues 

0 < 𝜆𝜆1 < 𝜆𝜆2 < ⋯ < 𝜆𝜆𝑛𝑛 → ∞, 
each one with multiplicity 𝛾𝛾𝑛𝑛 equal to the dimension of the 
corresponding eigenspace. 

a) There exists a complete orthonormal set �𝜙𝜙𝑛𝑛 ,𝑘𝑘 � of 
eigenvectors of A. 

b) For all 𝑧𝑧 ∈ 𝐷𝐷(𝐴𝐴) we have 
𝐴𝐴𝐴𝐴 =  ∑ 𝜆𝜆𝑛𝑛

∞
𝑛𝑛=1 ∑ <𝛾𝛾𝑛𝑛

𝑘𝑘=1 𝑧𝑧, 𝜙𝜙𝑛𝑛 ,𝑘𝑘 > =  ∑ 𝜆𝜆𝑛𝑛
∞
𝑛𝑛=1 𝐸𝐸𝑛𝑛 𝑧𝑧   (4) 

Where〈⋅,⋅〉is the inner product in X and 
𝐸𝐸𝑛𝑛 𝑧𝑧 =  ∑ < 𝑧𝑧, 𝜙𝜙𝑛𝑛 ,𝑘𝑘

𝛾𝛾𝑛𝑛
𝑘𝑘=1 > 𝜙𝜙𝑛𝑛 ,𝑘𝑘       (5) 

So, {𝐸𝐸𝑛𝑛 } is a family of complete orthogonal projections in 
z and 

𝑧𝑧 =  ∑ 𝐸𝐸𝑛𝑛 𝑧𝑧∞
𝑛𝑛=1 , 𝑧𝑧 ∈ 𝑍𝑍            (6) 

c) −𝐴𝐴 generates an analytic semigroup{𝑇𝑇(𝑡𝑡)}𝑡𝑡≥0 given by 
𝑇𝑇(𝑡𝑡)𝑧𝑧 = ∑ 𝑒𝑒−𝜆𝜆𝑛𝑛 𝑡𝑡∞

𝑛𝑛=1 𝐸𝐸𝑛𝑛 𝑧𝑧          (7) 
d) The fractional powered spaces 𝑋𝑋𝑟𝑟 are given by: 
𝑋𝑋𝑟𝑟 = 𝐷𝐷(𝐴𝐴𝑟𝑟 ) = �𝑥𝑥 ∈ 𝑋𝑋 ∶  ∑ 𝜆𝜆𝑗𝑗

2𝑟𝑟∞
𝑗𝑗 =1 �𝐸𝐸𝑗𝑗

��𝑥𝑥‖2 < ∞�, 𝑟𝑟 ≥ 0, 
with the norm 

‖𝑥𝑥‖𝑟𝑟 =  ‖𝐴𝐴𝑟𝑟 𝑥𝑥‖ = �∑ 𝜆𝜆𝑗𝑗
2𝑟𝑟∞

𝑗𝑗 =1 �𝐸𝐸𝑗𝑗
��𝑥𝑥‖2�

1
2� , 𝑥𝑥 ∈ 𝑋𝑋𝑟𝑟 , 

And 
𝐴𝐴𝑟𝑟 𝑥𝑥 = ∑ 𝜆𝜆𝑗𝑗

𝑟𝑟 𝐸𝐸𝑗𝑗 𝑥𝑥∞
𝑗𝑗 =1             (8) 

Also, for 𝑟𝑟 ≥ 0 we define 𝑍𝑍𝑟𝑟 = 𝑋𝑋𝑟𝑟 × 𝑋𝑋 × 𝑋𝑋𝑟𝑟 × 𝑋𝑋, which 
is a Hilbert Space with norm givenby 

��

𝑢𝑢
𝑤𝑤
𝑣𝑣
𝑧𝑧

��

𝑧𝑧𝑟𝑟

2

= ‖𝑢𝑢‖𝑟𝑟
2 + ‖𝑤𝑤‖2 + ‖𝑣𝑣‖𝑟𝑟

2 + ‖𝑧𝑧‖2 . 

Hence, the equations (1) and (2) can be written as abstract 
systems of ordinary differential equations in the Hilbert 
space 

𝑍𝑍1 = 𝑋𝑋1 × 𝑋𝑋 × 𝑋𝑋1 × 𝑋𝑋 as follows: 
𝑦𝑦′ =  𝒜𝒜𝑦𝑦 + 𝐵𝐵𝑤𝑤 ℱ, 𝑦𝑦 ∈ 𝑍𝑍1, 𝑡𝑡 ≥ 0,          (9) 

𝑦𝑦′ =  𝒜𝒜𝑦𝑦 + 𝐵𝐵ℱ, 𝑦𝑦 ∈ 𝑍𝑍1, 𝑡𝑡 ≥ 0, (10) 
where 

𝑦𝑦 = �

𝑢𝑢
𝑤𝑤
𝑣𝑣
𝑧𝑧

� ;  𝐵𝐵𝑤𝑤 =  �

0
1𝑤𝑤 𝐼𝐼

0
0

0
0
0

1𝑤𝑤 𝐼𝐼

� ;         (11) 

and 

𝒜𝒜 =  

⎣
⎢
⎢
⎢
⎡

0 𝐼𝐼𝑥𝑥 0 0
−𝛾𝛾𝛾𝛾

𝑑𝑑
𝐴𝐴2 −𝛾𝛾

𝑑𝑑
𝐴𝐴 −𝛿𝛿𝛿𝛿

𝑑𝑑
𝐴𝐴2 −𝑐𝑐

𝑑𝑑
𝐴𝐴

0 0 0 𝐼𝐼𝑥𝑥
−𝛼𝛼𝛼𝛼

𝑑𝑑
𝐴𝐴2 −𝑐𝑐

𝑑𝑑
𝐴𝐴 −𝛿𝛿

𝑑𝑑
𝐴𝐴2 −1

𝑑𝑑
𝐴𝐴⎦

⎥
⎥
⎥
⎤

       (12) 

is a linear unbounded operator with domain  

𝐷𝐷(𝒜𝒜) = 𝐷𝐷(𝐴𝐴2) ×  𝐷𝐷(𝐴𝐴) ×   𝐷𝐷(𝐴𝐴2) ×  𝐷𝐷(𝐴𝐴)and 

𝑑𝑑 =  � 1 −𝑐𝑐
−𝑐𝑐 𝛾𝛾 � 

Now, using the following Lemma from[11] we can prove 
that the linear unbounded operator 𝒜𝒜given by the linear 
equation (9) generates a strongly continuous semigroup 
which decays exponentially to zero. 

Lemma2.1.Let Z be a separable Hilbert space and 
{𝐴𝐴𝑛𝑛 }𝑛𝑛≥1, {𝑃𝑃𝑛𝑛 }𝑛𝑛≥1 two families of bounded linear operators in 
Z with {𝑃𝑃𝑛𝑛 }𝑛𝑛≥1 being a complete family of orthogonal 
projections such that 

𝐴𝐴𝑛𝑛 𝑃𝑃𝑛𝑛 = 𝑃𝑃𝑛𝑛 𝐴𝐴𝑛𝑛 , 𝑛𝑛 = 1,2,3, …         (13) 

Define the following family of linear operators 

𝑇𝑇(𝑡𝑡)𝑧𝑧 = ∑ 𝑒𝑒𝐴𝐴𝑛𝑛 𝑡𝑡∞
𝑛𝑛=1 𝑃𝑃𝑛𝑛 𝑧𝑧, 𝑡𝑡 ≥ 0.      (14) 

Then 
a) T(t) is a linear bounded operator if 

‖𝑒𝑒𝐴𝐴𝑛𝑛 𝑡𝑡 ‖ ≤ 𝑔𝑔(𝑡𝑡), 𝑛𝑛 = 1,2,3, …        (15) 
for some continuous real-valued function g(t). 

b) Under the condition (15){𝑇𝑇(𝑡𝑡)}𝑡𝑡≥0 is a 𝐶𝐶0-semigroup in 
the Hilbert space Z whose infinitesimal generator 𝒜𝒜 is 
given by 

𝒜𝒜𝑧𝑧 = ∑ 𝐴𝐴𝑛𝑛
∞
𝑛𝑛=1 𝑃𝑃𝑛𝑛 𝑧𝑧, 𝑧𝑧 ∈ 𝐷𝐷(𝒜𝒜)        (16) 

With 
𝐷𝐷(𝒜𝒜) == {𝑧𝑧 ∈ 𝑍𝑍: ∑ ‖𝐴𝐴𝑛𝑛 𝑃𝑃𝑛𝑛 𝑧𝑧‖2∞

𝑛𝑛=1 < ∞}   (17) 
c) The spectrum 𝜎𝜎(𝒜𝒜)of 𝒜𝒜 is given by 

𝜎𝜎(𝒜𝒜) =  ⋃ 𝜎𝜎(𝐴𝐴𝑛𝑛 )∞
𝑛𝑛 =1

���������������,            (18) 
Theorem 2.2.The operator 𝒜𝒜  given by (12) is the 

infinitesimal generator of a strongly continuo 
semigroup{𝑇𝑇(𝑡𝑡)}𝑡𝑡≥0 represented by 

𝑇𝑇(𝑡𝑡)𝑧𝑧 = ∑ 𝑒𝑒𝐴𝐴𝑗𝑗 𝑡𝑡 𝑃𝑃𝑗𝑗 𝑧𝑧∞
𝑗𝑗 =1 , 𝑧𝑧 ∈ 𝑍𝑍1, 𝑡𝑡 ≥ 0, (19) 

Where�𝑃𝑃𝑗𝑗 �
𝑗𝑗 ≥0

is a complete family orthogonal projections 
in the Hilbert space 𝑍𝑍1given by 

𝑃𝑃𝑗𝑗 =  

⎣
⎢
⎢
⎢
⎡
𝐸𝐸𝑗𝑗 0 0 0
0 𝐸𝐸𝑗𝑗 0 0
0 0 𝐸𝐸𝑗𝑗 0
0 0 0 𝐸𝐸𝑗𝑗 ⎦

⎥
⎥
⎥
⎤

;  𝑗𝑗 = 1,2, …(20) 

and 

𝐴𝐴𝑗𝑗 = 𝑅𝑅𝑗𝑗 𝑃𝑃𝑗𝑗 , 𝑅𝑅𝑗𝑗 =  

⎣
⎢
⎢
⎢
⎡

0 1 0 0
−𝛾𝛾𝛾𝛾

𝑑𝑑
𝜆𝜆𝑗𝑗

2 −𝛾𝛾
𝑑𝑑

𝜆𝜆𝑗𝑗
−𝛿𝛿𝛿𝛿

𝑑𝑑
𝜆𝜆𝑗𝑗

2 −𝑐𝑐
𝑑𝑑

𝜆𝜆𝑗𝑗

0 0 0 1
−𝛼𝛼𝛼𝛼

𝑑𝑑
𝜆𝜆𝑗𝑗

2 −𝑐𝑐
𝑑𝑑

𝜆𝜆𝑗𝑗
−𝛿𝛿
𝑑𝑑

𝜆𝜆𝑗𝑗
2 −1

𝑑𝑑
𝜆𝜆𝑗𝑗 ⎦

⎥
⎥
⎥
⎤
(21) 

Where 𝑗𝑗 = 1,2, … 
Therefore, 𝑒𝑒𝐴𝐴𝑗𝑗 𝑡𝑡 = 𝑒𝑒𝑅𝑅𝑗𝑗 𝑡𝑡 𝑃𝑃𝑗𝑗 , the ingenvalues 

𝜎𝜎1(𝑗𝑗), 𝜎𝜎2(𝑗𝑗), 𝜎𝜎3(𝑗𝑗), 𝜎𝜎4(𝑗𝑗), of 𝑅𝑅𝑗𝑗  are simple and 
𝜎𝜎1(𝑗𝑗) = −𝜆𝜆𝑗𝑗 𝜌𝜌1;  𝜎𝜎2(𝑗𝑗) = −𝜆𝜆𝑗𝑗 𝜌𝜌2;  
𝜎𝜎3(𝑗𝑗) = −𝜆𝜆𝑗𝑗 𝜌𝜌3;  𝜎𝜎4(𝑗𝑗) = −𝜆𝜆𝑗𝑗 𝜌𝜌4, 

Where 𝜌𝜌𝑖𝑖 > 0, 𝑖𝑖 = 1, 2, 3, 4  are the roots of the 
characteristic equation 
(𝛾𝛾 − 𝑐𝑐2)𝑧𝑧4 + (1 + 𝛾𝛾)𝑧𝑧3 + (𝛿𝛿 + 𝛾𝛾𝛾𝛾 + 1)𝑧𝑧2 + (𝛿𝛿 + 𝛼𝛼)𝑧𝑧 +

𝛼𝛼𝛼𝛼 = 0, 
and this semigroup decays exponentially to zero; that is to 

say, 
‖𝑇𝑇(𝑡𝑡)‖ ≤ 𝑀𝑀𝑒𝑒−𝜇𝜇𝜇𝜇 , 𝑡𝑡 ≥ 0, 

where 
𝜇𝜇 = 𝜆𝜆1𝜌𝜌1 

and 
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𝐴𝐴𝑗𝑗
∗ = 𝑅𝑅𝑗𝑗

∗𝑃𝑃𝑗𝑗 , 𝑅𝑅𝑗𝑗
∗ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 −

𝛾𝛾𝛾𝛾
𝑑𝑑 0 −

𝛼𝛼𝛼𝛼
𝑑𝑑

𝜆𝜆𝑗𝑗
2 −

𝛾𝛾
𝑑𝑑 𝜆𝜆𝑗𝑗 0 −

𝑐𝑐
𝑑𝑑 𝜆𝜆𝑗𝑗

0 −
𝛿𝛿𝛿𝛿
𝑑𝑑 0 −

𝛿𝛿
𝑑𝑑

0 −
𝑐𝑐
𝑑𝑑 𝜆𝜆𝑗𝑗 𝜆𝜆𝑗𝑗

2 −
1
𝑑𝑑 𝜆𝜆𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ; 𝑗𝑗 = 1,2, … 

The following gap condition plays an important role in 
this paper 

0 < 𝜌𝜌1 < 𝜌𝜌2 < 𝜌𝜌3 < 𝜌𝜌4 and
𝜆𝜆𝑗𝑗 +1

𝜆𝜆𝑗𝑗
> 𝜌𝜌𝑙𝑙

𝜌𝜌1
, 𝑗𝑗 = 1,2,3,4.(22) 

3. Controllability of the System (10) 
In this section we shall prove the approximate 

controllability of the system (10). But, before we shall give 
the definition of approximate controllability for this system. 
To this end, for all 𝑦𝑦0 ∈ 𝑍𝑍 and ℱ ∈ 𝐿𝐿2 ([0, 𝜏𝜏]; 𝑈𝑈) the initial 
value problem 

�
𝑦𝑦′ =  𝒜𝒜𝑦𝑦 + 𝐵𝐵ℱ, 𝑦𝑦 ∈ 𝑍𝑍1,

𝑦𝑦(0) =  𝑦𝑦0,                              
�         (23) 

were 𝑈𝑈 = 𝐿𝐿2(Ω) × 𝐿𝐿2(Ω), admits only one mild solution 
given by  

𝑦𝑦(𝑡𝑡) = 𝑇𝑇(𝑡𝑡)𝑦𝑦0 + ∫ 𝑇𝑇(𝑡𝑡 − 𝑠𝑠)𝐵𝐵ℱ(𝑠𝑠)𝑑𝑑𝑑𝑑, 𝑡𝑡 ∈ [0, 𝜏𝜏]𝑡𝑡
0 .(24) 

Definition 3.1.(Approximate Controllability) The system 
(10) is said to be approximately controllable on [0, 𝜏𝜏] if for 
every 𝑦𝑦0, 𝑦𝑦1 ∈ 𝑍𝑍1, 𝜀𝜀 > 0there exists ℱ ∈ 𝐿𝐿2(0, 𝜏𝜏; 𝑈𝑈)  such 
that the solution 𝑦𝑦(𝑡𝑡) of (23) corresponding to ℱ verifies: 

𝑦𝑦(0) =  𝑦𝑦0 and ‖𝑦𝑦(𝜏𝜏) − 𝑦𝑦1‖ < 𝜀𝜀. 
Definition 3.2. For the system (10) we define the 

following concepts: 
a) The controllability mapping  𝐵𝐵𝜏𝜏 : 𝐿𝐿2(0, 𝜏𝜏; 𝑈𝑈) → 𝑍𝑍 is 

defined by  
𝐵𝐵𝜏𝜏 ℱ = ∫ 𝑇𝑇(𝑠𝑠)𝐵𝐵ℱ(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡

0 .           (25) 
b) The grammian mapping 𝐿𝐿𝐵𝐵𝜏𝜏 : 𝑍𝑍 → 𝑍𝑍 is given by 

𝐿𝐿𝐵𝐵𝜏𝜏 =  𝐵𝐵𝜏𝜏 𝐵𝐵𝜏𝜏∗ that is to say 

𝐿𝐿𝐵𝐵
𝜏𝜏 𝑧𝑧 = 𝐵𝐵𝜏𝜏 𝐵𝐵𝜏𝜏∗𝐹𝐹 = ∫ 𝑇𝑇(𝑠𝑠)𝐵𝐵𝐵𝐵∗𝑇𝑇∗(𝑠𝑠)𝑧𝑧𝑧𝑧𝑧𝑧𝑡𝑡

0 . 
Theorem 3.3.The system (10) is approximately 

controllable on [0, 𝜏𝜏]if, and only if, one of the following 
statements holds: 

i). 𝐾𝐾𝐾𝐾𝐾𝐾(𝐵𝐵𝜏𝜏∗) = {0}. 
ii). 〈𝐿𝐿𝐵𝐵𝜏𝜏 𝑧𝑧, 𝑧𝑧〉 > 0, 𝑧𝑧 ≠ 0 𝑒𝑒𝑒𝑒𝑒𝑒. 
iii). 𝐵𝐵∗𝑇𝑇∗𝑧𝑧 = 0 ⇒ 𝑧𝑧 = 0. 
iv). 𝑅𝑅𝑅𝑅𝑅𝑅(𝐵𝐵𝜏𝜏 )�����������=Z. 
Proposition 3.4.The following equality holds: 

𝑃𝑃𝑗𝑗 𝐵𝐵𝐵𝐵∗ =  𝐵𝐵𝐵𝐵∗𝑃𝑃𝑗𝑗 , 𝑗𝑗 = 1,2, …             (26) 

Prof.From (11) we know that 𝐵𝐵 = �

0 0
𝐼𝐼 0
0 0
0 𝐼𝐼

�. Then,  

𝐵𝐵∗ = �0 𝐼𝐼𝑥𝑥 0 0
0 0 0 𝐼𝐼𝑥𝑥

� 

and 𝐵𝐵𝐵𝐵∗ = �

0 0
𝐼𝐼 0
0 0
0 𝐼𝐼

� �0 𝐼𝐼𝑥𝑥 0 0
0 0 0 𝐼𝐼𝑥𝑥

� =  �

0 0 0 0
0 𝐼𝐼𝑥𝑥 0 0
0 0 0 0
0 0 0 𝐼𝐼𝑥𝑥

�. 

Since 𝑃𝑃𝑗𝑗 =

⎣
⎢
⎢
⎢
⎡
𝐸𝐸𝑗𝑗 0 0 0
0 𝐸𝐸𝑗𝑗 0 0
0 0 𝐸𝐸𝑗𝑗 0
0 0 0 𝐸𝐸𝑗𝑗 ⎦

⎥
⎥
⎥
⎤
 , 𝑗𝑗 = 1,2, …we get that 

𝑃𝑃𝑗𝑗 𝐵𝐵𝐵𝐵∗ =

⎣
⎢
⎢
⎢
⎡
𝐸𝐸𝑗𝑗 0 0 0
0 𝐸𝐸𝑗𝑗 0 0
0 0 𝐸𝐸𝑗𝑗 0
0 0 0 𝐸𝐸𝑗𝑗 ⎦

⎥
⎥
⎥
⎤

�

0 0 0 0
0 𝐼𝐼𝑥𝑥 0 0
0 0 0 0
0 0 0 𝐼𝐼𝑥𝑥

� = �

0 0 0 0
0 𝐸𝐸𝑗𝑗 𝐼𝐼𝑥𝑥 0 0
0 0 0 0
0 0 0 𝐸𝐸𝑗𝑗 𝐼𝐼𝑥𝑥

� 

On the other hand, 

𝐵𝐵𝐵𝐵∗𝑃𝑃𝑗𝑗 = �

0 0 0 0
0 𝐼𝐼𝑥𝑥 0 0
0 0 0 0
0 0 0 𝐼𝐼𝑥𝑥

�

⎣
⎢
⎢
⎢
⎡
𝐸𝐸𝑗𝑗 0 0 0
0 𝐸𝐸𝑗𝑗 0 0
0 0 𝐸𝐸𝑗𝑗 0
0 0 0 𝐸𝐸𝑗𝑗 ⎦

⎥
⎥
⎥
⎤

=  �

0 0 0 0
0 𝐸𝐸𝑗𝑗 𝐼𝐼𝑥𝑥 0 0
0 0 0 0
0 0 0 𝐸𝐸𝑗𝑗 𝐼𝐼𝑥𝑥

� 

Therefore, 

𝑃𝑃𝑗𝑗 𝐵𝐵𝐵𝐵∗ =  𝐵𝐵𝐵𝐵∗𝑃𝑃𝑗𝑗 , 𝑗𝑗 = 1,2, … 
REMARK 3.1.If ω is a nonempty open sub set of Ω such 

that 𝜔𝜔 ≠ Ω, then 

𝑃𝑃𝑗𝑗 𝐵𝐵𝜔𝜔 𝐵𝐵𝜔𝜔
∗ ≠  𝐵𝐵𝜔𝜔 𝐵𝐵𝜔𝜔

∗ 𝑃𝑃𝑗𝑗 , 𝑗𝑗 = 1,2, … 

Now, we shall use the equality (26) in order to 
characterize the approximate control ability of the system 
(10) in terms of the following family of finite dimensional 
control problems, 

𝑦𝑦′ = 𝐴𝐴𝑗𝑗 𝑦𝑦 + 𝐵𝐵𝑗𝑗 ℱ(𝑡𝑡), 𝑡𝑡 ≥ 0, 𝑗𝑗 = 1,2, … (27) 

where 𝐵𝐵𝑗𝑗 = 𝑃𝑃𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 ℱ ∈ 𝐿𝐿2([0, 𝜏𝜏];  𝑈𝑈). 
Proposition 3.5. The operator 

𝐿𝐿𝐵𝐵𝜏𝜏 𝑧𝑧 =  𝐵𝐵𝜏𝜏 𝐵𝐵𝜏𝜏∗𝑧𝑧 = � 𝑇𝑇(𝑠𝑠)𝐵𝐵𝐵𝐵∗𝑇𝑇∗(𝑠𝑠)𝑧𝑧𝑧𝑧𝑧𝑧
𝑡𝑡

0
 

can be written as follows 

𝐿𝐿𝐵𝐵𝜏𝜏 = � 𝐿𝐿𝐵𝐵𝑗𝑗
𝜏𝜏

∞

𝑗𝑗 =1

𝑃𝑃𝑗𝑗  

where, 

𝐿𝐿𝐵𝐵𝑗𝑗
𝜏𝜏 𝑦𝑦 = 𝐵𝐵𝑗𝑗

𝜏𝜏 𝐵𝐵𝑗𝑗
𝜏𝜏∗𝑦𝑦 =  � 𝑒𝑒𝐴𝐴𝑗𝑗 𝑠𝑠

𝜏𝜏

0
𝐵𝐵𝑗𝑗 𝐵𝐵𝑗𝑗

∗𝑒𝑒 𝐴𝐴𝑗𝑗
∗𝑠𝑠𝑦𝑦𝑦𝑦𝑦𝑦, 𝑦𝑦 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑃𝑃𝑗𝑗 ) 

Proof. From condition (26) and the representation (19) of 
T(t) we obtain 

𝐿𝐿𝐵𝐵𝜏𝜏 𝑧𝑧 = � (� 𝑒𝑒𝐴𝐴𝑗𝑗 𝑠𝑠
∞

𝑗𝑗 =1

𝑃𝑃𝑗𝑗

𝜏𝜏

0
) 𝐵𝐵𝐵𝐵∗(� 𝑒𝑒𝐴𝐴𝑘𝑘

∗ 𝑠𝑠
∞

𝑘𝑘=1

𝑃𝑃𝑘𝑘𝑧𝑧)𝑑𝑑𝑑𝑑 

𝐿𝐿𝐵𝐵𝜏𝜏 𝑧𝑧 = � � 𝑒𝑒𝐴𝐴𝑗𝑗 𝑠𝑠
∞

𝑗𝑗 =1

𝑃𝑃𝑗𝑗

𝜏𝜏

0
𝐵𝐵𝐵𝐵∗𝑒𝑒𝐴𝐴𝑗𝑗

∗𝑠𝑠𝑃𝑃𝑗𝑗 𝑧𝑧𝑧𝑧𝑧𝑧  

𝐿𝐿𝐵𝐵𝜏𝜏 𝑧𝑧 = � � 𝑒𝑒𝐴𝐴𝑗𝑗 𝑠𝑠
∞

𝑗𝑗 =1

𝜏𝜏

0
𝐵𝐵𝑗𝑗 𝑃𝑃𝑗𝑗 𝐵𝐵∗𝑒𝑒𝐴𝐴𝑗𝑗

∗𝑠𝑠𝑃𝑃𝑗𝑗 𝑧𝑧𝑧𝑧𝑧𝑧 

𝐿𝐿𝐵𝐵𝜏𝜏 𝑧𝑧 = � � 𝑒𝑒𝐴𝐴𝑗𝑗 𝑠𝑠
∞

𝑗𝑗 =1

𝜏𝜏

0
𝐵𝐵𝑗𝑗 𝐵𝐵𝑗𝑗

∗𝑒𝑒𝐴𝐴𝑗𝑗
∗𝑠𝑠𝑃𝑃𝑗𝑗 𝑧𝑧𝑧𝑧𝑧𝑧 

𝐿𝐿𝐵𝐵𝜏𝜏 𝑧𝑧 = ∑ ∫ 𝑒𝑒𝐴𝐴𝑗𝑗 𝑠𝑠𝐵𝐵𝑗𝑗 𝐵𝐵𝑗𝑗
∗𝑒𝑒𝐴𝐴𝑗𝑗

∗𝑠𝑠𝑃𝑃𝑗𝑗 𝑧𝑧𝜏𝜏
0  𝑑𝑑𝑑𝑑∞

𝑗𝑗 =1 . 
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Hence, 

𝐿𝐿𝐵𝐵𝜏𝜏 𝑧𝑧 = ∑ 𝐿𝐿𝐵𝐵𝑗𝑗
𝜏𝜏 𝑃𝑃𝑗𝑗 𝑧𝑧∞

𝑗𝑗 =1 , 
where, 
𝐿𝐿𝐵𝐵𝑗𝑗

𝜏𝜏 =  ∫ 𝑒𝑒𝐴𝐴𝑗𝑗 𝑠𝑠𝐵𝐵𝑗𝑗 𝐵𝐵𝑗𝑗
∗𝑒𝑒𝐴𝐴𝑗𝑗

∗𝑠𝑠𝑃𝑃𝑗𝑗
𝜏𝜏

0 𝑑𝑑𝑑𝑑.                                           

Theorem 3.6.a) The system (10) is approximately 
controllable on [0, 𝜏𝜏]if, and only if, each of the following 
system 

𝑦𝑦′ =  𝐴𝐴𝑗𝑗 𝑦𝑦 + 𝐵𝐵𝑗𝑗 ℱ, 𝑦𝑦(𝑡𝑡) ∈ 𝑅𝑅𝑅𝑅𝑅𝑅�𝑃𝑃𝑗𝑗 �, 𝑡𝑡 ≥ 0, 𝑗𝑗 = 1,2, …(28) 

is approximately controllable. 
b)The system (10) is approximately controllable on 

[0, 𝜏𝜏]if, and only if 
〈𝐿𝐿𝐵𝐵𝑗𝑗

𝜏𝜏 𝑦𝑦, 𝑦𝑦〉 > 0, ∀ 𝑦𝑦 ≠ 0 in 𝑅𝑅𝑅𝑅𝑅𝑅�𝑃𝑃𝑗𝑗 �, 𝑗𝑗 = 1,2, … 
Proof.a) For the purpose of contradiction, let us assume 

that system (10) is approximately controllable on [0, 𝜏𝜏] and 
there exists j such that the system 

𝑧𝑧 ′ =  𝐴𝐴𝑗𝑗 𝑧𝑧 + 𝐵𝐵𝑗𝑗 𝑢𝑢(𝑡𝑡);   𝑧𝑧 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑃𝑃𝑗𝑗 �, 
is not approximately controllable on [0, 𝜏𝜏]. Then, there 
exists 𝑧𝑧𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑃𝑃𝑗𝑗 � such that: 

𝐵𝐵𝑗𝑗
∗𝑒𝑒𝐴𝐴𝑗𝑗

∗𝑡𝑡 𝑧𝑧𝑗𝑗 = 0, 𝑡𝑡 ∈ [0, 𝜏𝜏]and 𝑧𝑧𝑗𝑗 ≠ 0.     (29) 
On the other hand, from part (iii) of Theorem 3.3 we have 

that: 
𝐵𝐵∗𝑇𝑇∗(𝑡𝑡)𝑧𝑧 = 0, ∀𝑡𝑡 ∈ [0, 𝜏𝜏] ⇒ 𝑧𝑧 = 0. 
Now, letting 𝑧𝑧 = 𝑃𝑃𝑗𝑗 𝑧𝑧𝑗𝑗 = 𝑧𝑧𝑗𝑗 , we obtain: 
𝐵𝐵∗𝑇𝑇∗(𝑡𝑡)𝑧𝑧 = 𝐵𝐵∗ ∑ 𝑒𝑒𝐴𝐴𝑛𝑛

∗ 𝑡𝑡∞
𝑛𝑛=1 𝑃𝑃𝑛𝑛 𝑧𝑧 = 𝐵𝐵∗𝑒𝑒𝐴𝐴𝑗𝑗

∗𝑡𝑡 𝑃𝑃𝑗𝑗 𝑧𝑧𝑗𝑗 =
(𝐵𝐵𝑗𝑗)∗𝑒𝑒𝐴𝐴𝑗𝑗∗𝑡𝑡𝑃𝑃𝑗𝑗𝑧𝑧𝑗𝑗=0 . 

This implies that 𝑧𝑧𝑗𝑗 = 0 , which contradicts the 
assumption. Therefore, (28) is approximately controllable 
for all j. 

If for all j system (28) is approximately controllable, then 
by Theorem 3.3 part (ii), 

〈𝐿𝐿ℬ𝑗𝑗
𝜏𝜏 𝑦𝑦, 𝑦𝑦〉 > 0, ∀ 𝑦𝑦 ≠ 0 𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑃𝑃𝑗𝑗 �,

𝑗𝑗 = 1, 2, 3, … 

Clearly that, for all𝑧𝑧 ∈ 𝑍𝑍(𝑧𝑧 ≠ 0), there exists 𝐽𝐽 ∈ ℕ such 
that 𝑃𝑃𝐽𝐽 𝑧𝑧 ≠ 0. Then, using Proposition 3.5, we get for all 𝑧𝑧 in 
Z that 

〈𝐿𝐿𝐵𝐵𝜏𝜏 𝑧𝑧, 𝑧𝑧〉 = 〈� 𝐿𝐿ℬ𝑗𝑗
𝜏𝜏 𝑃𝑃𝑗𝑗 𝑧𝑧

∞

𝑗𝑗 =1

, � 𝑃𝑃𝑗𝑗 𝑧𝑧
∞

𝑗𝑗 =1

〉 

= ∑ 〈𝐿𝐿ℬ𝑗𝑗
𝜏𝜏 𝑃𝑃𝑗𝑗 𝑧𝑧, 𝑃𝑃𝑗𝑗 𝑧𝑧〉 > 0∞

𝑗𝑗 =1 . 
Hence, (10) is approximately controllable and (a) is 

proved. 
b) follows immediately from (a) and Theorem 3.3. 
Next, we shall use the following result: Consider the 

following finite dimensional controlsystem 
𝑦𝑦′ = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡), 𝑡𝑡 > 0, 𝑧𝑧 ∈ ℝ𝑛𝑛 , 𝑢𝑢 ∈ ℝ𝑙𝑙 , (30) 

Where A and B are matrixes of dimensions 𝑛𝑛 ×  𝑛𝑛 and 
𝑛𝑛 ×  𝑙𝑙respectively. 

Theorem 3.7. (see[Lee and Marcus(1967)]). (Kalman) The 
system (30) is controllably on [0, 𝜏𝜏]if, and only if, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅[𝐵𝐵 ⋮ 𝐴𝐴𝐴𝐴 ⋮ ⋯ ⋮ 𝐴𝐴𝑛𝑛−1𝐵𝐵] = 𝑛𝑛. 
That is to say, 

𝑆𝑆𝑝𝑝 {𝐴𝐴𝑗𝑗 𝐵𝐵ℝ𝑚𝑚 : 𝑗𝑗 = 0,1,2, … , 𝑛𝑛 − 1} = ℝ𝑛𝑛 , 
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶) = 𝑑𝑑𝑑𝑑𝑑𝑑[𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶)]  and 𝑆𝑆𝑆𝑆{𝐶𝐶}  is the 

vector space generated by 𝐶𝐶. 
Theorem 3.8. The system (10) is approximatelycontroll

-able on [0, 𝜏𝜏]. 
Proof. It is enough to prove the controllability of the finite 

dimensional system (28) with 

𝐴𝐴𝑗𝑗 = 𝑅𝑅𝑗𝑗 𝑃𝑃𝑗𝑗 , 𝑅𝑅𝑗𝑗 =  

⎣
⎢
⎢
⎢
⎢
⎡

0 𝐼𝐼𝑥𝑥 0 0
−𝛾𝛾𝛾𝛾

𝑑𝑑
𝜆𝜆𝑗𝑗

2 −𝛾𝛾
𝑑𝑑

𝜆𝜆𝑗𝑗
−𝛿𝛿𝛿𝛿

𝑑𝑑
𝜆𝜆𝑗𝑗

2 −𝑐𝑐
𝑑𝑑

𝜆𝜆𝑗𝑗

0 0 0 1
−𝛼𝛼𝛼𝛼

𝑑𝑑
𝜆𝜆𝑗𝑗

2 −𝑐𝑐
𝑑𝑑

𝜆𝜆𝑗𝑗
−𝛿𝛿
𝑑𝑑

𝜆𝜆𝑗𝑗
2 −1

𝑑𝑑
𝜆𝜆𝑗𝑗 ⎦

⎥
⎥
⎥
⎥
⎤

; 

𝑗𝑗 = 1,2, … 
and 

𝐵𝐵𝑖𝑖 ℱ = 𝑃𝑃𝑖𝑖𝐵𝐵ℱ =

⎣
⎢
⎢
⎢
⎡
𝐸𝐸𝑗𝑗 0 0 0
0 𝐸𝐸𝑗𝑗 0 0
0 0 𝐸𝐸𝑗𝑗 0
0 0 0 𝐸𝐸𝑗𝑗 ⎦

⎥
⎥
⎥
⎤

�

0 0
𝐼𝐼 0
0 0
0 𝐼𝐼

� 

ℱ =

⎣
⎢
⎢
⎢
⎡
𝐸𝐸𝑗𝑗 0 0 0
0 𝐸𝐸𝑗𝑗 0 0
0 0 𝐸𝐸𝑗𝑗 0
0 0 0 𝐸𝐸𝑗𝑗 ⎦

⎥
⎥
⎥
⎤

�

0 0
ℱ 0
0 0
0 ℱ

� . 

So, 

𝐵𝐵𝑖𝑖 ℱ = �

0 0
𝐸𝐸𝑗𝑗 ℱ 0

0 0
0 𝐸𝐸𝑗𝑗 ℱ

� = �

0 0
1 0
0 0
0 1

� 𝐸𝐸𝑗𝑗 ℱ = 𝐷𝐷𝐷𝐷𝑗𝑗 ℱ,  

where 

𝐷𝐷 = �

0 0
1 0
0 0
0 1

�. 

Therefore, the controllability of the system (28) is 
equivalent to the controllability of each finite dimensional 
systems, 

𝑦𝑦′ = 𝑅𝑅𝑗𝑗 𝑦𝑦 + 𝐷𝐷ℱ            (31) 

where,ℱ ∈ 𝐿𝐿2(0, 𝜏𝜏;  ℝ2)and the system (31) is controllable 
if, and only if, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝐷𝐷: 𝑅𝑅𝑗𝑗 𝐷𝐷: 𝑅𝑅𝑗𝑗
2𝐷𝐷: 𝑅𝑅𝑗𝑗

3𝐷𝐷� = 4, 

which can be verified trivially. Therefore, system (31) is 
controllable, and consequently, system (10) is also 
approximately controllable applying Theorem 3.6. 

4. Proof of the Main Theorem 
In this section we shall prove the main result of this paper 

on the approximate controllability of the linear system (9). 
To this end, we observe that the definition of controllability 
for system (9) is similar to the one given to system (10). And, 
for all 𝑦𝑦0 ∈ 𝑍𝑍1  and ℱ ∈ 𝐿𝐿2(0, 𝜏𝜏;  𝑈𝑈)  the initial value 
problem 

�𝑦𝑦′ =  𝒜𝒜𝑦𝑦 + 𝐵𝐵𝜔𝜔 ℱ, 𝑦𝑦 ∈ 𝑍𝑍1
𝑦𝑦(0) = 𝑦𝑦0,                           

�      (32) 

admits only one mild solution given by 
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𝑦𝑦(𝑡𝑡) = 𝑇𝑇(𝑡𝑡)𝑦𝑦0 + ∫ 𝑇𝑇(𝑡𝑡 − 𝑠𝑠)𝐵𝐵𝜔𝜔 ℱ(𝑠𝑠)𝑑𝑑𝑑𝑑, 𝑡𝑡 ∈ [0, 𝜏𝜏].𝑡𝑡
0 (33) 

Consider the following bounded linear operator: 
𝐺𝐺: 𝐿𝐿2(0, 𝜏𝜏; 𝑈𝑈) → 𝑍𝑍1, 𝐺𝐺𝐺𝐺 = ∫ 𝑇𝑇(𝜏𝜏 − 𝑠𝑠)𝜏𝜏

0 𝐵𝐵𝜔𝜔 𝑢𝑢(𝑠𝑠)𝑑𝑑𝑑𝑑,(34) 

Whose adjoint operator 𝐺𝐺∗: 𝑍𝑍1 → 𝐿𝐿2(0, 𝜏𝜏; 𝑈𝑈) is given by 

(𝐺𝐺∗𝑧𝑧)(𝑠𝑠) = 𝐵𝐵𝜔𝜔
∗ 𝑇𝑇∗(𝜏𝜏 − 𝑠𝑠)𝑧𝑧, ∀𝑠𝑠 ∈ [0, 𝜏𝜏], ∀𝑧𝑧 ∈ 𝑍𝑍1.(35) 

The following lemma is trivial: 
Lemma 4.1.The equation (9) is approximately controllable 

on [0, 𝜏𝜏] if, and only if, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐺𝐺)������������ = 𝑍𝑍. 
The following result is well known from linear operator 

theory: 
Lemma 4.2.Let W and Z be Hilbert spaces and  
𝐺𝐺∗ ∈ 𝐿𝐿(𝑍𝑍, 𝑊𝑊)the adjoint operator of the linear operator 

𝐺𝐺 ∈ 𝐿𝐿(𝑍𝑍, 𝑊𝑊). Then, 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐺𝐺)������������ = 𝑍𝑍 ⇔ 𝐾𝐾𝐾𝐾𝐾𝐾(𝐺𝐺∗) = {0}. 

As a consequence of the foregoing Lemma one can prove 
the following result: 

Lemma 4.3.Let 𝑊𝑊 and 𝑍𝑍 be Hilbert spaces and  
𝐺𝐺∗ ∈ 𝐿𝐿(𝑍𝑍, 𝑊𝑊) the adjoint operator of the linear 

operator𝐺𝐺 ∈ 𝐿𝐿(𝑍𝑍, 𝑊𝑊). Then 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐺𝐺)������������ = 𝑍𝑍 if, and only if, 
one of the following statements holds: 

a) 𝐾𝐾𝐾𝐾𝐾𝐾(𝐺𝐺∗) = {0}. 
b) 〈𝐺𝐺𝐺𝐺∗𝑧𝑧, 𝑧𝑧〉 > 0, 𝑧𝑧 ≠ 0 𝑖𝑖𝑖𝑖𝑖𝑖. 
c) lim𝛼𝛼→0+ 𝛼𝛼(𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗)−1𝑧𝑧 = 0. 
d) 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼>0‖𝛼𝛼(𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗)−1‖ ≤ 1. 

The following theorem follows directly from (35), lemma 
4.1 and lemma 4.3. 

Theorem 4.4.(9) is approximately controllable on [0, 𝜏𝜏]if, 
and only if, 

𝐵𝐵𝜔𝜔
∗ 𝑇𝑇∗(𝑡𝑡)𝑧𝑧 = 0, ∀𝑡𝑡 ∈ [0, 𝜏𝜏], ⇒ 𝑧𝑧 = 0 (36) 

For the proof of the main theorem of this paper we shall 
use the following version ofLemma 3.14 from [3] and 
Lemma 4.4 from [2]. 

Lemma 4.5.Let {𝛼𝛼𝑠𝑠(𝑗𝑗)}𝑗𝑗 ≥1, �𝛽𝛽𝑠𝑠𝑠𝑠 �
𝑗𝑗 ≥1

, 𝑠𝑠 = 1, 2, … , 𝑙𝑙 be 
sequences of real numbers such that 

�
αs+1(j) ≤ αs (j), 1 ≤ s < l

and
αs (j + 1) < αs+k(j), 1 ≤ s ≤ l, 0 ≤ k ≤ l − s, j = 1,2,3,

� (37) 

Then, for any 𝜏𝜏 > 0 we have that 

��𝑒𝑒𝛼𝛼1(𝑗𝑗 )𝑡𝑡 𝛽𝛽1𝑗𝑗 + 𝑒𝑒𝛼𝛼2(𝑗𝑗 )𝑡𝑡 𝛽𝛽2𝑗𝑗 + 𝑒𝑒𝛼𝛼3(𝑗𝑗 )𝑡𝑡𝛽𝛽3𝑗𝑗 + ⋯ +𝑒𝑒𝛼𝛼𝑙𝑙(𝑗𝑗 )𝑡𝑡𝛽𝛽𝑙𝑙𝑙𝑙 �
∞

𝑗𝑗 =1
= 0, ∀𝑡𝑡 ∈ [0, 𝜏𝜏] 

(38) 

if, and only if, 
𝛽𝛽1𝑗𝑗 = 𝛽𝛽2𝑗𝑗 = 𝛽𝛽3𝑗𝑗 = ⋯ = 𝛽𝛽𝑙𝑙𝑙𝑙 = 0, ∀𝑗𝑗 ≥ 1.      (39) 

Proof. (Lemma 4.5) By analytic extension we obtain 
∑ �𝑒𝑒𝛼𝛼1(𝑗𝑗 )𝑡𝑡 𝛽𝛽1𝑗𝑗 + 𝑒𝑒𝛼𝛼2(𝑗𝑗 )𝑡𝑡 𝛽𝛽2𝑗𝑗 + 𝑒𝑒𝛼𝛼3(𝑗𝑗 )𝑡𝑡 𝛽𝛽3𝑗𝑗 + ⋯ + 𝑒𝑒𝛼𝛼𝑙𝑙(𝑗𝑗 )𝑡𝑡 𝛽𝛽𝑙𝑙𝑙𝑙 � = 0,∞

𝑗𝑗 =1
  ∀𝑡𝑡∈[0,∞).  (40) 

Now, dividing this expression by𝑒𝑒𝛼𝛼2(1)𝑡𝑡  we get 
𝛽𝛽21 + ∑ 𝑒𝑒�𝛼𝛼1(𝑗𝑗 )−𝛼𝛼1(1)�𝑡𝑡𝛽𝛽1𝑗𝑗 + ∑ 𝑒𝑒�𝛼𝛼2(𝑗𝑗 )−𝛼𝛼2(1)�𝑡𝑡𝛽𝛽2𝑗𝑗 +∞

𝑗𝑗 =1
∞
𝑗𝑗 =2

𝑗𝑗=1∞𝑒𝑒𝛼𝛼3𝑗𝑗−𝛼𝛼21𝑡𝑡𝛽𝛽3𝑗𝑗+…+ 𝑗𝑗=1∞𝑒𝑒𝛼𝛼𝑙𝑙𝑗𝑗−𝛼𝛼21𝑡𝑡𝛽𝛽𝑙𝑙𝑗𝑗=0,   
∀𝑡𝑡 ∈ [0, ∞). 

From (37) we have that 𝛼𝛼1(𝑗𝑗) − 𝛼𝛼2(1) < 0 and 𝛼𝛼2(𝑗𝑗) −
𝛼𝛼2(1) < 0 for 𝑗𝑗 ≥ 1 and 𝛼𝛼𝑠𝑠(𝑗𝑗) − 𝛼𝛼2(1) < 0 , for 𝑠𝑠 ≥ 3,

𝑗𝑗 ≥ 1, then passing to the limit when 𝑡𝑡 → ∞ we obtain that 
𝛽𝛽21 = 0. 

Then, we have that 
∑ 𝑒𝑒𝛼𝛼1(𝑗𝑗 )𝑡𝑡 𝛽𝛽1𝑗𝑗 + ∑ 𝑒𝑒𝛼𝛼2(𝑗𝑗 )𝑡𝑡𝛽𝛽2𝑗𝑗 + ∑ 𝑒𝑒𝛼𝛼3(𝑗𝑗 )𝑡𝑡 𝛽𝛽3𝑗𝑗 + ⋯ +∞

𝑗𝑗 =1
∞
𝑗𝑗 =2

∞
𝑗𝑗 =2

 ∑ 𝑒𝑒𝛼𝛼𝑙𝑙 (𝑗𝑗 )𝑡𝑡𝛽𝛽𝑙𝑙𝑗𝑗
∞
𝑗𝑗 =1 = 0, ∀𝑡𝑡 ∈ [0, ∞). 

Now, dividing this expression by 𝑒𝑒𝛼𝛼3(1)𝑡𝑡  we get 
𝛽𝛽31 + ∑ 𝑒𝑒�𝛼𝛼1(𝑗𝑗 )−𝛼𝛼3(1)�𝑡𝑡𝛽𝛽1𝑗𝑗 + ∑ 𝑒𝑒�𝛼𝛼2(𝑗𝑗 )−𝛼𝛼3(1)�𝑡𝑡𝛽𝛽2𝑗𝑗 +∞

𝑗𝑗 =1
∞
𝑗𝑗 =2

𝑗𝑗=1∞𝑒𝑒𝛼𝛼3𝑗𝑗−𝛼𝛼31𝑡𝑡𝛽𝛽3𝑗𝑗+…+ 𝑗𝑗=1∞𝑒𝑒𝛼𝛼𝑙𝑙𝑗𝑗−𝛼𝛼31𝑡𝑡𝛽𝛽𝑙𝑙𝑗𝑗=0,   
∀𝑡𝑡 ∈ [0, ∞). 

From (37) we have that 𝛼𝛼1(𝑗𝑗) − 𝛼𝛼3(1) < 0 and 𝛼𝛼2(𝑗𝑗) −
𝛼𝛼3(1) < 0for 𝑗𝑗 ≥ 1 and 𝛼𝛼3(𝑗𝑗) − 𝛼𝛼3(1) < 0, for 𝑗𝑗 ≥ 2, 
then passing to the limit when 𝑡𝑡 → ∞ we obtain that 
𝛽𝛽31 = 0. 

Then, we have that 
∑ 𝑒𝑒𝛼𝛼1(𝑗𝑗 )𝑡𝑡 𝛽𝛽1𝑗𝑗 + ∑ 𝑒𝑒𝛼𝛼2(𝑗𝑗 )𝑡𝑡𝛽𝛽2𝑗𝑗 + ∑ 𝑒𝑒𝛼𝛼3(𝑗𝑗 )𝑡𝑡 𝛽𝛽3𝑗𝑗 + ⋯ +∞

𝑗𝑗 =1
∞
𝑗𝑗 =2

∞
𝑗𝑗 =2

 𝑗𝑗=1∞𝑒𝑒𝛼𝛼𝑙𝑙𝑗𝑗𝑡𝑡𝛽𝛽𝑙𝑙𝑗𝑗=0,   ∀𝑡𝑡∈[0,∞). 
In general, if we continue with this process and divide this 

expression by 𝑒𝑒𝛼𝛼𝑠𝑠(1)𝑡𝑡 , we get that 
𝛽𝛽𝑠𝑠1 + ∑ 𝑒𝑒�𝛼𝛼1(𝑗𝑗 )−𝛼𝛼𝑠𝑠(1)�𝑡𝑡𝛽𝛽1𝑗𝑗 +∞

𝑗𝑗 =𝑠𝑠+1 ∑ 𝑒𝑒�𝛼𝛼2(𝑗𝑗 )−𝛼𝛼𝑠𝑠(1)�𝑡𝑡𝛽𝛽2𝑗𝑗 +∞
𝑗𝑗 =1 ⋯ 

+∑ 𝑒𝑒�𝛼𝛼𝑠𝑠(𝑗𝑗 )−𝛼𝛼𝑠𝑠(1)�𝑡𝑡𝛽𝛽(𝑠𝑠)𝑗𝑗
∞
𝑗𝑗 =1 +∑ 𝑒𝑒�𝛼𝛼𝑠𝑠+1(𝑗𝑗 )−𝛼𝛼𝑠𝑠(1)�𝑡𝑡 𝛽𝛽(𝑠𝑠+1)𝑗𝑗

∞
𝑗𝑗 =1  

+ ⋯ +  ∑ 𝑒𝑒�𝛼𝛼𝑙𝑙(𝑗𝑗 )−𝛼𝛼𝑠𝑠(1)�𝑡𝑡𝛽𝛽𝑙𝑙𝑙𝑙
∞
𝑗𝑗 =1 =0, ∀𝑡𝑡 ∈ [0, ∞). 

From (37) we have that 

�
𝛼𝛼𝑘𝑘(𝑗𝑗) − 𝛼𝛼𝑠𝑠(1) < 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 < 𝑠𝑠,   𝑗𝑗 > 1,         
𝛼𝛼𝑘𝑘(𝑗𝑗) − 𝛼𝛼𝑠𝑠(1) < 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 > 1,                        
𝛼𝛼𝑘𝑘(𝑗𝑗) − 𝛼𝛼𝑠𝑠(1) < 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ≥ 1, 𝑘𝑘 > 𝑠𝑠.   

� 

Then, passing to the limit when 𝑡𝑡 → ∞ we obtain that 
𝛽𝛽𝑠𝑠1 = 0. So, continuing with this procedure we get that 

𝛽𝛽11 = 𝛽𝛽21 = 𝛽𝛽31 = ⋯ 𝛽𝛽𝑙𝑙1 = 0 
and 

� 𝑒𝑒𝛼𝛼1(𝑗𝑗 )𝑡𝑡𝛽𝛽1𝑗𝑗 + � 𝑒𝑒𝛼𝛼2(𝑗𝑗 )𝑡𝑡𝛽𝛽2𝑗𝑗 + ⋯ + � 𝑒𝑒𝛼𝛼𝑙𝑙(𝑗𝑗 )𝑡𝑡𝛽𝛽𝑙𝑙𝑙𝑙

∞

𝑗𝑗 =2

∞

𝑗𝑗 =2

= 0,
∞

𝑗𝑗 =2

 

 ∀𝑡𝑡 ∈ [0, ∞). 

Repeating this procedure from here, we would obtain that 
𝛽𝛽12 = 𝛽𝛽22 = 𝛽𝛽32 = ⋯ = 𝛽𝛽𝑙𝑙2 = 0 ,and continuing this way 
we get  

𝛽𝛽1𝑗𝑗 = 𝛽𝛽2𝑗𝑗 = 𝛽𝛽3𝑗𝑗 = ⋯ = 𝛽𝛽𝑙𝑙𝑙𝑙 = 0, ∀𝑗𝑗 ≥ 1. 
Now, we are ready to formulate and prove the main 

theorem of this work. 
Theorem 4.6.(Main Result) For all nonempty open subset 

ωof Ω and 𝜏𝜏 > 0the system(9) is approximately controllable 
on [0, 𝜏𝜏] . Moreover, a sequence of controls steering 
thesystem (9) from initial state 𝑦𝑦0to an 𝜀𝜀 −neighborhood of 
the final state 𝑦𝑦1at time𝜏𝜏 > 0is given by 

𝑢𝑢𝛼𝛼 (𝑡𝑡) = 𝐵𝐵𝜔𝜔
∗ 𝑇𝑇(𝜏𝜏 − 𝑡𝑡)(𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗)−1(𝑧𝑧1 − 𝑇𝑇(𝜏𝜏)𝑧𝑧0), 

and the error of this approximation 𝐸𝐸𝛼𝛼 is given by 
𝐸𝐸𝛼𝛼 = 𝛼𝛼(𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗)−1(𝑧𝑧1 − 𝑇𝑇(𝜏𝜏)𝑧𝑧0), 

Proof. We shall apply Theorem 4.4 to prove the 
controllability of system (9). To this end, we observe that 

𝑇𝑇∗(𝑡𝑡)𝑦𝑦 = � 𝑒𝑒𝐴𝐴𝑗𝑗
∗𝑡𝑡

∞

𝑗𝑗 =1

𝑃𝑃𝑗𝑗 𝑦𝑦, 𝑦𝑦 ∈ 𝑍𝑍1, 𝑡𝑡 ≥ 0, 

𝐵𝐵𝜔𝜔
∗ = �0 1𝜔𝜔 𝐼𝐼 0 0

0 0 0 1𝜔𝜔 𝐼𝐼� 
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and, since the eigenvalues of the matrix 𝐴𝐴𝐽𝐽  are simple, there 
exists a family of complete complementary projections 
{𝑞𝑞1(𝑗𝑗), 𝑞𝑞2(𝑗𝑗), 𝑞𝑞3(𝑗𝑗), 𝑞𝑞4(𝑗𝑗)} on ℝ4 such that 

𝑒𝑒𝐴𝐴𝑗𝑗
∗𝑡𝑡 =  𝑒𝑒𝜎𝜎1(𝑗𝑗 )𝑡𝑡 𝑞𝑞1

∗(𝑗𝑗)𝑃𝑃𝑗𝑗
∗+𝑒𝑒𝜎𝜎𝜎𝜎 2(𝑗𝑗 )𝑡𝑡𝑞𝑞2

∗(𝑗𝑗)𝑃𝑃𝑗𝑗
∗ + 𝑒𝑒𝜎𝜎3(𝑗𝑗 )𝑡𝑡 𝑞𝑞3

∗(𝑗𝑗)𝑃𝑃𝑗𝑗
∗ +

𝑒𝑒𝜎𝜎4(𝑗𝑗 )𝑡𝑡 𝑞𝑞4
∗(𝑗𝑗)𝑃𝑃𝑗𝑗

∗. 

Therefore, 

𝐵𝐵𝜔𝜔
∗ 𝑇𝑇∗(𝑡𝑡)𝑧𝑧 = ∑ 𝐵𝐵𝜔𝜔

∗ 𝑒𝑒𝐴𝐴𝑗𝑗
∗𝑡𝑡∞

𝑗𝑗 =1 𝑃𝑃𝑗𝑗
∗𝑧𝑧 = ∑ ∑ 𝑒𝑒𝜎𝜎𝑠𝑠(𝑗𝑗)𝑡𝑡4

𝑠𝑠=1
∞
𝑗𝑗 =1 𝐵𝐵𝜔𝜔

∗ 𝑃𝑃𝑠𝑠,𝑗𝑗
∗ 𝑧𝑧, 

where 𝑃𝑃𝑠𝑠,𝑗𝑗 = 𝑞𝑞𝑠𝑠(𝑗𝑗)𝑃𝑃𝑗𝑗 = 𝑃𝑃𝑗𝑗 𝑞𝑞𝑠𝑠(𝑗𝑗). 
Now, suppose that 𝐵𝐵𝜔𝜔

∗ 𝑇𝑇∗(𝑡𝑡)𝑧𝑧 = 0, ∀𝑡𝑡 ∈ [0, 𝜏𝜏]. Then, 

𝐵𝐵𝜔𝜔
∗ 𝑇𝑇∗(𝑡𝑡)𝑧𝑧 = � 𝐵𝐵𝜔𝜔

∗ 𝑒𝑒𝐴𝐴𝑗𝑗
∗𝑡𝑡

∞

𝑗𝑗 =1

𝑃𝑃𝑗𝑗
∗𝑧𝑧 = � �  𝑒𝑒𝛼𝛼𝑠𝑠(𝑗𝑗 )𝑡𝑡

4

𝑠𝑠=1

∞

𝑗𝑗 =1

𝐵𝐵𝜔𝜔
∗ 𝑃𝑃𝑠𝑠,𝑗𝑗

∗ 𝑧𝑧 = 0 

⇔ � �  𝑒𝑒𝛼𝛼𝑠𝑠(𝑗𝑗 )𝑡𝑡
4

𝑠𝑠=1

∞

𝑗𝑗 =1

𝐵𝐵𝜔𝜔
∗ 𝑃𝑃𝑠𝑠,𝑗𝑗

∗ 𝑧𝑧 = 0 , ∀𝑥𝑥 ∈ Ω 

The assumption (22) implies that the sequence 
�𝛼𝛼(𝑗𝑗) = 𝜎𝜎𝑠𝑠(𝑗𝑗) = −𝜆𝜆𝑗𝑗 𝜌𝜌𝑠𝑠 : 𝑠𝑠 = 1,2,3,4;  𝑗𝑗 = 1,2, … � satisfies the 
conditions on Lemma 4.5. In fact, we have trivially that 
𝛼𝛼𝑠𝑠+1(𝑗𝑗) < 𝛼𝛼𝑠𝑠(𝑗𝑗) for 𝑠𝑠 = 1,2,3,4;  𝑗𝑗 = 1,2, …and from (22) 
we obtain: 

𝜆𝜆𝑗𝑗 +1

𝜆𝜆𝑗𝑗
> 𝜌𝜌4

𝜌𝜌𝑠𝑠
, and

𝜆𝜆𝑗𝑗 +1

𝜆𝜆𝑗𝑗
> 𝜌𝜌𝑠𝑠+𝑘𝑘

𝜌𝜌𝑠𝑠
, 1 ≤ 𝑠𝑠 ≤ 4; 0 ≤ 𝑘𝑘 ≤ 4 − 𝑠𝑠. 

Therefore, 

−𝜆𝜆𝑗𝑗 +1𝜌𝜌𝑠𝑠 < −𝜆𝜆𝑗𝑗 𝜌𝜌𝑠𝑠+𝑘𝑘 , 1 ≤ 𝑠𝑠 ≤ 4; 0 ≤ 𝑘𝑘 ≤ 4 − 𝑠𝑠. 
i.e., 

𝛼𝛼𝑠𝑠(𝑗𝑗 + 1) < 𝛼𝛼𝑠𝑠+𝑘𝑘 (𝑗𝑗), 1 ≤ 𝑠𝑠 ≤ 4;  0 ≤ 𝑘𝑘 ≤ 4 − 𝑠𝑠. 

Then, from Lemma 4.5 we obtain for all 𝑥𝑥 ∈ Ω that 
�𝐵𝐵𝜔𝜔

∗ 𝑃𝑃𝑠𝑠,𝑗𝑗
∗ 𝑧𝑧�(𝑥𝑥) = 0, ∀𝑥𝑥 ∈ Ω, 𝑠𝑠 = 1,2,3,4;  𝑗𝑗 = 1,2, … 

Since 

𝑞𝑞𝑠𝑠
∗(𝑗𝑗) =

⎣
⎢
⎢
⎢
⎡𝑎𝑎11

𝑖𝑖𝑖𝑖 𝑎𝑎12
𝑖𝑖𝑖𝑖 𝑎𝑎13

𝑖𝑖𝑖𝑖 𝑎𝑎14
𝑖𝑖𝑖𝑖

𝑎𝑎21
𝑖𝑖𝑖𝑖 𝑎𝑎22

𝑖𝑖𝑖𝑖 𝑎𝑎23
𝑖𝑖𝑖𝑖 𝑎𝑎24

𝑖𝑖𝑖𝑖

𝑎𝑎31
𝑖𝑖𝑖𝑖 𝑎𝑎32

𝑖𝑖𝑖𝑖 𝑎𝑎33
𝑖𝑖𝑖𝑖 𝑎𝑎34

𝑖𝑖𝑖𝑖

𝑎𝑎41
𝑖𝑖𝑖𝑖 𝑎𝑎42

𝑖𝑖𝑖𝑖 𝑎𝑎43
𝑖𝑖𝑖𝑖 𝑎𝑎44

𝑖𝑖𝑖𝑖 ⎦
⎥
⎥
⎥
⎤

 

we obtain that, 

�𝐵𝐵𝜔𝜔
∗ 𝑃𝑃𝑠𝑠,𝑗𝑗

∗ 𝑦𝑦�(𝑥𝑥) = �𝐵𝐵𝜔𝜔
∗ 𝑞𝑞𝑠𝑠

∗(𝑗𝑗)𝑃𝑃𝑗𝑗 𝑦𝑦�(𝑥𝑥) = 0. 
Then, 

�0 1ω I 0 0
0 0 0 1ω I�

⎣
⎢
⎢
⎢
⎡a11

ij a12
ij a13

ij a14
ij

a21
ij a22

ij a23
ij a24

ij

a31
ij a32

ij a33
ij a34

ij

a41
ij a42

ij a43
ij a44

ij ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
Ej 0 0 0
0 Ej 0 0
0 0 Ej 0
0 0 0 Ej⎦

⎥
⎥
⎥
⎤

�

y1(x)
y2(x)
y3(x)
y4(x)

� = �0
0� 

�Bω
∗ Ps,j

∗ y�(x) = �0 1ω I 0 0
0 0 0 1ω I�

⎣
⎢
⎢
⎢
⎡a11

ij a12
ij a13

ij a14
ij

a21
ij a22

ij a23
ij a24

ij

a31
ij a32

ij a33
ij a34

ij

a41
ij a42

ij a43
ij a44

ij ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
Ejy1(x)
Ejy2(x)
Ejy3(x)
Ejy4(x)⎦

⎥
⎥
⎥
⎤

= �0
0� 

= �0 1ω I 0 0
0 0 0 1ω I�

⎣
⎢
⎢
⎢
⎢
⎡a11

ij Ejy1(x) + a12
ij Ejy2(x) + a13

ij Ejy3(x) + a14
ij Ejy4(x)

a21
ij Ejy1(x) + a22

ij Ejy2(x) + a23
ij Ejy3(x) + a24

ij Ejy4(x)
a31

ij Ejy1(x) + a32
ij Ejy2(x) + a33

ij Ejy3(x) + a34
ij Ejy4(x)

a41
ij Ejy1(x) + a42

ij Ejy2(x) + a43
ij Ejy3(x) + a44

ij Ejy4(x)⎦
⎥
⎥
⎥
⎥
⎤

= �0
0� 

=  �
1ω �a21

ij Ejy1(x) + a22
ij Ejy2(x) + a23

ij Ejy3(x) + a24
ij Ejy4(x)�

1ω �a41
ij Ejy1(x) + a42

ij Ejy2(x) + a43
ij Ejy3(x) + a44

ij Ejy4(x)�
� = �0

0� ,

∀x ∈ Ω 

i.e., 
�𝐵𝐵𝜔𝜔

∗ 𝑃𝑃𝑠𝑠,𝑗𝑗
∗ 𝑦𝑦�(𝑥𝑥) =

 �
𝑎𝑎21

𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗 𝑦𝑦1(𝑥𝑥) + 𝑎𝑎22
𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗 𝑦𝑦2(𝑥𝑥) + 𝑎𝑎23

𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗 𝑦𝑦3(𝑥𝑥) + 𝑎𝑎24
𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗 𝑦𝑦4(𝑥𝑥)

𝑎𝑎41
𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗 𝑦𝑦1(𝑥𝑥) + 𝑎𝑎42

𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗 𝑦𝑦2(𝑥𝑥) + 𝑎𝑎43
𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗 𝑦𝑦3(𝑥𝑥) + 𝑎𝑎44

𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗 𝑦𝑦4(𝑥𝑥)
� = �0

0� , ∀𝑥𝑥 ∈ 𝜔𝜔. 

On the other hand, from Theorem 1.1 we know that 
𝜙𝜙𝑛𝑛 ,𝑘𝑘are analytic functions, which implies the analyticity of 
𝐸𝐸𝑗𝑗 𝑧𝑧𝑖𝑖 = ∑ < 𝑧𝑧𝑖𝑖

𝛾𝛾𝑗𝑗
𝑘𝑘=1 , 𝜙𝜙𝑗𝑗 ,𝑘𝑘 > 𝜙𝜙𝑗𝑗 ,𝑘𝑘 . Then, from Theorem 1.2 we 

get for 𝑗𝑗 = 1,2, … that 
�𝐵𝐵𝜔𝜔

∗ 𝑃𝑃𝑠𝑠,𝑗𝑗
∗ 𝑦𝑦�(𝑥𝑥) =

 �
𝑎𝑎21

𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗𝑦𝑦1
(𝑥𝑥) + 𝑎𝑎22

𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗𝑦𝑦2
(𝑥𝑥) + 𝑎𝑎23

𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗𝑦𝑦3(𝑥𝑥) + 𝑎𝑎24
𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗𝑦𝑦4(𝑥𝑥)

𝑎𝑎41
𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗𝑦𝑦1

(𝑥𝑥) + 𝑎𝑎42
𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗𝑦𝑦2

(𝑥𝑥) + 𝑎𝑎43
𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗𝑦𝑦3(𝑥𝑥) + 𝑎𝑎44

𝑖𝑖𝑖𝑖 𝐸𝐸𝑗𝑗𝑦𝑦4(𝑥𝑥)
� =

�0
0� , ∀𝑥𝑥 ∈ Ω. 

From Theorem 3.8, the system (10) is approximately 
controllable. So, from part iii) of Theorem 3.3 we conclude 
that𝑦𝑦 = 0. 

Therefore, 
(𝐵𝐵𝜔𝜔

∗ 𝑇𝑇∗(𝑡𝑡)𝑦𝑦) = 0, ∀𝑡𝑡 ∈ [0, 𝜏𝜏] ⇒ 𝑦𝑦 = 0 
Then, from Theorem 4.4 we obtain that system (9) is 

approximately controllable. 
Now, given the initial and the final states 𝑦𝑦0and 𝑦𝑦1, we 

consider the sequence of controls 
𝑢𝑢𝛼𝛼 (⋅) = 𝐵𝐵𝜔𝜔

∗ 𝑇𝑇(𝜏𝜏 −⋅)(𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗)−1(𝑦𝑦1 − 𝑇𝑇(𝜏𝜏)𝑦𝑦0) 
= 𝐺𝐺∗(𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗)−1(𝑦𝑦1 − 𝑇𝑇(𝜏𝜏)𝑦𝑦0), 𝛼𝛼 > 0. 

Then, 
𝐺𝐺𝐺𝐺𝛼𝛼 = 𝐺𝐺𝐺𝐺∗(𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗)−1(𝑦𝑦1 − 𝑇𝑇(𝜏𝜏)𝑦𝑦0)

= (𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗

+ 𝛼𝛼𝛼𝛼)(𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗)−1(𝑦𝑦1 − 𝑇𝑇(𝜏𝜏)𝑦𝑦0) 
𝑦𝑦1 − 𝑇𝑇(𝜏𝜏)𝑦𝑦0 − 𝛼𝛼(𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗)−1(𝑦𝑦1 − 𝑇𝑇(𝜏𝜏)𝑦𝑦0) . 

From part c) of Lemma 4.3 we know that 
lim𝛼𝛼→0+ 𝛼𝛼(𝛼𝛼𝛼𝛼 + 𝐺𝐺𝐺𝐺∗)−1(𝑦𝑦1 − 𝑇𝑇(𝜏𝜏)𝑦𝑦0) = 0. 

Therefore, 
lim𝛼𝛼→0+ 𝐺𝐺𝐺𝐺𝛼𝛼 = 𝑦𝑦1 − 𝑇𝑇(𝜏𝜏)𝑦𝑦0. 

i.e., 
lim𝛼𝛼→0+�𝑇𝑇(𝜏𝜏)𝑦𝑦0 + ∫ 𝑇𝑇(𝜏𝜏 − 𝑠𝑠)𝜏𝜏

0 𝐵𝐵𝜔𝜔 𝑢𝑢𝛼𝛼 (𝑠𝑠)𝑑𝑑𝑑𝑑� = 𝑦𝑦1. 
This completes the proof of the Theorem. 
Corollary 4.7.The approximate controllability of the 

system (9) is equivalent to the approximate controllability of 
the system (10). 

5. Final Remark 
The result presented in this paper can be formulated in a 

more general setting. Indeed, we can consider the following 
Timoshenko Type Equation in a general Hilbert space 𝑍𝑍and 
𝑢𝑢, 𝑣𝑣 ∈ 𝑍𝑍 

�
𝑢̈𝑢 − 𝑐𝑐𝑣̈𝑣  + 𝛼𝛼(−𝐴𝐴)2𝑢𝑢 + 𝐴𝐴𝑢̇𝑢 = 𝐶𝐶1𝑓𝑓1(𝑡𝑡), 𝑡𝑡 ∈ (0, 𝜏𝜏]
−𝑐𝑐𝑢̈𝑢 + 𝛾𝛾𝑣̈𝑣𝛿𝛿(−𝐴𝐴)2𝑣𝑣 + 𝐴𝐴𝑣̇𝑣 = 𝐶𝐶2𝑓𝑓2(𝑡𝑡), 𝑡𝑡 ∈ (0, 𝜏𝜏]

�(41) 

where, 𝐴𝐴: 𝐷𝐷(𝐴𝐴) ⊂ 𝑍𝑍 → 𝑍𝑍is an unbounded linear operator in 
Z with the spectral decomposition given by 

𝐴𝐴𝐴𝐴 = ∑ 𝜆𝜆𝑗𝑗
∞
𝑗𝑗 =1 ∑ 〈𝑧𝑧, 𝜙𝜙𝑗𝑗 ,𝑘𝑘 〉𝛾𝛾

𝑘𝑘=1 𝜙𝜙𝑗𝑗 ,𝑘𝑘 , 
with eigenvalues 

0 < 𝜆𝜆1 < 𝜆𝜆2 < ⋯ < 𝜆𝜆𝑛𝑛 → ∞, 
each one with multiplicity {𝛾𝛾𝑛𝑛 }equal to the dimension of the 
corresponding eigenspace. 
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a) There exists a complete orthonormal set {∅𝑛𝑛 } of 
eigenvectors of A. 

b) For all 𝑧𝑧 ∈ 𝐷𝐷(𝐴𝐴) we have 
𝐴𝐴𝐴𝐴 = ∑ 𝜆𝜆𝑛𝑛

∞
𝑛𝑛=1 ∑ < 𝑧𝑧, 𝜙𝜙𝑛𝑛 ,𝑘𝑘 >𝛾𝛾𝑛𝑛

𝑘𝑘=1 𝜙𝜙𝑛𝑛 ,𝑘𝑘 = ∑ 𝜆𝜆𝑛𝑛 𝐸𝐸𝑛𝑛 𝑧𝑧∞
𝑛𝑛=1 (42) 

The controls 𝑓𝑓1, 𝑓𝑓2 ∈ 𝐿𝐿2(0, 𝜏𝜏, 𝑍𝑍) and 𝐶𝐶1, 𝐶𝐶2: 𝑍𝑍 → 𝑍𝑍 are 
linear and bounded.When 𝑍𝑍 = 𝐿𝐿2(Ω), the operators 𝐼𝐼 and 
1𝜔𝜔 𝐼𝐼 are particular cases of 𝐶𝐶1and 𝐶𝐶2. 
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