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Abstract  The solution of Partial differential equations has been of considerable interest lately because of interest in 

Machine Learning methods [1,2,3]. The use of artificial neural network to solve ordinary and elliptic partial differential 

equations has been elaborately described in these papers. Presently some of the salient features of a new simpler artificial 

neural network has been investigated. While in this neural network one can introduce random grid points and modelling 

errors, the solutions presented in the paper show that the new ANN scheme is both able to minimize the modelling errors and 

increase solution efficiency of elliptic partial differential second order equations. 
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1. Introduction 

The neural network schemes require derivative of   

neural network. The autograd library [4] provides excellent 

automatic differentiation scheme. Angel [5] has developed a 

nice scheme for multi -dimensional neural network and their 

derivatives. With this scheme, any first and second order 

partial differential equation can be solved with ease. In the 

present analysis, we will investigate the effect of modelling 

error on the final outcome. Next, we will examine effect of 

random point distribution on the numerical solution. Lastly, 

we will solve the equation in irregular domain. 

2. Discussions 

(A) The solution of partial differential equations by 

Artificial Neural Network (ANN) has become very routine. 

They are many outstanding works in this field using  

various concepts [1,2,3]. We will be following boundary 

condition-based solution of Poisson’s equation method [3]. 

The automatic differentiation scheme of neural network will 

be used, [5] The basic model of the study for reference is as 

follows: 
 
Exact Contrived solution: 𝛟 = exp(-x)*(x+y3) 

Source term(right hand side of Poisson’s eq.): f = 

exp(-x)*(x-2+y3+6*y) 
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Laplace operator (left hand side eq.): d2
 𝛟(x,y)/dx2 + d2

 

𝛟(x,y)/dy2  

 

Boundary conditions: Dirichlet or Neumann. Used 

Dirichlet boundary conditions for (1,1) square domain are: 

 

bc(at y =0) = exp(-x)*x 

bc(at y =1) = exp(-x)*(x+1.)  

bc(at x=0) = y3 

bc(at x=1) = (1.+y3)* exp(-1.)  

 

The basic solution converges reasonably fast. The Adam 

[8] optimization using error loss reduction, gives a 99% 

converged solution in 500 iterations. Further iterations, 

improve the heatmap of the difference in the exact and 

numerical solution. About 600 secs are required for 1000 

iterations on a 15x15 regularly spaced grid. The choice of 

hyper parameter learning rate was found critical for good 

prediction. Although higher values, like 0.3 show faster 

initial convergence but with little skewed final solution, the 

recommended 0.05 learning rate does the best prediction.  

 

 

Figure 1(a).  Contour plots of exact and numerical solutions 
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Figure 1(b).  Numerical Solution 

 

Figure 1(c).  Heatmap of the solution error 

(B) The neural network works with randomly selected 

weights and biases for a particular problem. This method 

does not require any mathematical derivations, like finite 

difference [6], to solve the problem. The most important 

components are the source term and the boundary conditions. 

Even if the Laplace operator is set to null or calculated as  

null by inappropriate network differencing schemes, the 

optimizer converges in 500 iterations with reasonable 

accuracy. This is a surprising observation and should not  

be a common solution procedure. We tried a geometric 

progression 15x15 grid for this case. The following figures 

substantiate the observation by comparing results with the 

basic scheme.  

 

Figure 2(a).  Contour plots of exact and numerical solutions. 

 

Figure 2(b).  Numerical solution 

 

Figure 2(c).  Heatmap of the solution error 

(C) Since randomness is the basic part of neural network 

model, the random use of points in the solution domain will 

be a good idea. This random point distribution will avoid 

intricate grid generation schemes in the solution of future 

fluid dynamics equations. The present model problem will 

be solved with randomly distributed points in the domain [7]. 

The Laplace operator will be included in the analysis. Only 

the uniformly distributed random scheme will be considered. 

The Gaussian random distribution did not work. After the 

solution procedure completes, the random points have to be 

sorted to have customary view. The solution was carried  

out on 10x10 random uniform grid for 2000 iterations. The 

solution shows excellent results. 

 

Figure 3(a).  Contour plots of exact and numerical solutions 
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Figure 3(b).  Numerical solution 

 

Figure 3(c).  Heatmap of the solution error 

(D) Now we will consider an irregular domain. Lu Lu [2] 

has shown excellent result for such domain with deep 

learning solution method. The domain shown in Figure (4) 

has two partitioned domains, left as area A, right as area B. 

The boundary conditions are applied at all boundaries except 

at the interface shown in blue. This is a communication 

boundary condition where the values from one domain is 

used as the boundary condition of another domain. In fact, 

the left domain has (1,1) rectangular range, and the right 

smaller section has (.4, .4) range. The interface, shown in 

blue, is located at x=1.0. 

 

Figure 4.  L-shaped domain 

 

Each domain has its own neural network. Only the 

boundary value interchange at the interface updates their 

solution properly. The optimization is carried out as two 

simultaneous equations. Even though no specific boundary 

condition is applied at the interface, the exchange of field 

values at the interface is sufficient for the solution process to 

converge. Following figures show the solutions. 

Line plot in Figure 4(d) may look off by a big amount, but 

the relative error is very small as evidenced by Figure 4(f) 

heatmap. 

 

 

Figure 4(a).  Contour plots of exact and numerical solutions in area A 

 

Figure 4(b).  Numerical solution in area A 

 

Figure 4(c).  Heatmap of the solution error in area A 
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Figure 4(d).  Contour plots of exact and numerical solutions in area B 

 

Figure 4(e).  Numerical solutions in area B 

 

Figure 4(f).  Heatmap of the error in area B 

Another way to solve this problem would be to patch   

one continuous domain of two-dimensional coordinates. 

This method does not have any interface. Proper boundary 

conditions are applied at the boundaries. Only one neural 

network is required. The results are shown below and are in 

good agreement with previous method.  

3. Conclusions 

The present simpler new neural network scheme with 

explicit boundary conditions exhibits nice capability to solve 

elliptic partial differential equations Both uniform and 

random grids can be used in the square or rectangular 

solution domain. With the correct boundary conditions   

and source function, solution can even be obtained with 

modelling error such as omission of Laplace operator   

itself. The residual errors shown in heatmaps can further   

be reduced by BFGS-scheme [2]. The complete Python 

program for this paper can be downloaded from 

narain42/Poission-s-Equation-Solver-Using-ML on 

github.com. 

 

Figure 5(a).  Contour plots of exact and numerical solutions 

 

Figure 5(b).  Numerical solutions in the entire domain 

 

Figure 5(c).  Heatmap of the solution error 
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