
Computer Science and Engineering 2020, 10(1): 22-30

DOI: 10.5923/j.computer.20201001.03

Implementing Granular Access Definitions

in Log Records

Sandeep Jayashankar
*
, Subin Thayyile Kandy

USA

Abstract This document specifies a method of creation or generation of software logs that would further assist in building

more granular access control definitions. The technique relies on including an authorization token within each log record,

which is generated using a signed JSON Web Token (JWT). Each authorization token embeds all factual information that lets

the log viewers set these access constraints, either using an external access control list or applying an access control list

outlined in the log management platform.

Keywords JWT, Authorization, Tokens, Software Logging, Access Definition, Secure Log Records, Secure Logging

Mechanism, JSON Web Tokens

1. Introduction

A logging mechanism in any software implementation is

the core utility for debugging the behavior, either during

a failure or during a successful transaction. As the software

runs, the logging mechanisms continuously create a trail of

event checkpoints, by capturing ample information about the

software’s state. For developers and system administrators

who are tasked with debugging a specific software's behavior,

these event trails are gold mines of valuable information.

Since logs serve as the source in the debugging process,

all recorded information about the event should be

available in log records at the time of perusal. However, this

provision may result in software incidentally logging

sensitive information, resulting in exposure of critical data to

unauthorized personnel. There are also occasions when

developers or system administrators are required to examine

detailed log data which may contain sensitive information,

however, restrictions could be enforced from accessing those

logs. Therefore, an urgent requirement is warranted to

implement precise and granular access controls in the log

platforms. Even if some of the restrictions are already

enforced, there is a need for a solution that can embrace the

integrity conditions for the authorization definitions.

* Corresponding author:

sandeep.jayashankar@gmail.com (Sandeep Jayashankar)

Published online at http://journal.sapub.org/computer

Copyright © 2020 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International

License (CC BY). http://creativecommons.org/licenses/by/4.0/

2. Current Trends in Logging
Mechanisms

Many software entities in enterprise environments

require logging mechanisms to create and store appropriate

logs. More importantly, the application and web servers,

database servers, API endpoint servers, security solutions

like firewalls, all require logging mechanisms to capture the

event appropriately. For ease of use, logs from various

sources are typically placed into centralized storage

repositories for user consumption by users with appropriate

access.

Implementing "Least Privilege" and "Need-To-Know"

security principles may be cumbersome in an environment

supporting a large organization. This constraint has led to

many organizations redefining their security best practices to

refrain from including sensitive or personal identifiable

information in the records.

Another practice is to limit user access from viewing a set

of logs altogether. Examples of restriction-based access

controls are listed below:

 Based on Log Level (error, warn, info, debug)

 Based on specific applications

 Based on origination (App, DB, Web, API)

 Based on data owners

In all the above examples, the access control definitions

can never achieve the granularity it suitably requires.

Additionally, defining access controls for every log record

has considerable administrative overhead, and could have

storage and data processing implications. Hence, there is a

need for a secure and lightweight mechanism that can embed

each log record with access information.

http://creativecommons.org/licenses/by/4.0/

 Computer Science and Engineering 2020, 10(1): 22-30 23

3. Token Type and Its Features

JSON Web Tokens (JWT) is an open standard (RFC 7519)

that defines an efficient way of encapsulating a set of data,

and securely transmitting them in a JSON format. By design,

JWTs are meant to support lightweight transactions, and

formulating the whole token in a JSON format helps

them achieve the primary goal of being uncomplicated.

Considering other tokens such as SAML (Security Assertion

Markup Language) tokens, which use XML, JWTs are

compact due to the same reason. Moreover, JSON formats

have extensive usage in the current technology landscape,

and parser support is available in all programming languages.

Hence, the lack of required escape or encoding characters

keep the token compact and lightweight.

The second goal of securely transmitting data is possible

by adding a digital signature to the token's contents. The

digital signature is a mandatory part of any JWTs and signing

token contents warrants the integrity provisions of a secure

implementation. Unlike SWT (Simple Web Tokens), which

only supports symmetric signing algorithms, JWT supports

symmetric and asymmetric digital signatures. Depending

upon the degree of integrity requirements, any suitable

digital signature algorithm can be selected, thus achieving

a proper balance between the lightweight token and the

security aspect. Even though JWTs have provisions for

encrypting the contents of the token and act as an

authentication sequence, the usage of JWTs in the current

article is mainly from the authorization perspective. Thus,

we discuss more towards the usage of hashing algorithms

and signing the contents using private keys.

4. Token Contents

JWTs, by default, contains mainly three parts, a header,

payload, and the signature. The header and payload contents

of a JWT token utilize an encoding format, "Base64URL", to

ensure the fulfillment of token encapsulation criteria. The

contents of a JWT is explained in more detail below:

Headers contain two main parts; the signature algorithm

and the type of token used for generating the JWT.

Concerning the token type used, JWTs always use the value

"JSON" for a defined claim "typ" in RFC-1759. The

RFC-7519 represents the claim "alg" to identify the digest

hash or signature algorithm used during token generation. In

addition to the two above claims, "cid" (correlation ID) can

also be utilized to correlate a specific event and its pertaining

logs from different solutions.

{

 "alg": "HS256",

 "typ": "JWT",

 "cid": "123456789"

}

The token's payload contains all the information required

for the authorization sequence to ensure that the log record

is only those who have permission to view it. The main

contents of the payload, as per the initial design, is the

following:

The below claims are as per the RFC-7519:

1. iss (issuer): The issuer defines the entity that has

created the log record. The value can be an application

name, infrastructure entity, or even another log server.

2. iat (created date and time): The date when the log

record originates.

3. exp (expiry date and time): The date when the log

record expires.

4. aud (audience): The audience can specify the

centralized log server where logs collaborate.

Additionally, to define the Access Control Matrix or

Access Control Lists, the below claims are utilized.

5. acm (access matrix): This claim helps build a

two-dimensional access matrix for each log record,

with the precise access and the associated log level.

6. acl (access control list): This claim helps build a

uni-dimensional access control list for each log

record, with just the access defined.

The illustration below shows the proposed JWT payload

using an Access Control Matrix:

 {

{

 "iss": "BalanceAPI",

 "iat": "1431706505",

 "exp": "1589559305",

 "aud": "https://centralized-logging.example.com/",

 "acm": {

 "AD_LOG_DEV_USER": "error, warn, info",

 "AD_LOG_DEV_ADMIN": "error, warn, info,

exception",

 "AD_LOG_SECURITY": "sec",

 "AD_LOG_SRE": "error, warn, info"

 }

}

The final part of a JWT is the hash digest or the digital

signature of the header and the payload. The following

algorithms are supported:

 Symmetric Algorithms: JWTs use the HMAC algorithm

with SHA cryptographic message digest. Depending

upon the size of the SHA digest required, JWTs support

256, 384, and 512 sized HMAC algorithms.

 Asymmetric Algorithms: JWTs use RSASSa-PKCSv1.5

(RS), ECDSA (ES), and RSASSA-PSS (PS) algorithms

with SHA cryptographic digests (256, 384 and 512),

and a private key to sign the contents.

By using the header and the payload from the examples

above, a JWT with HS256 algorithm is shown below (secret

phrase being “secret”):

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImNpZCI6IjE

yMzQ1Njc4OSJ9.eyJpc3MiOiJCYWxhbmNlQVBJIiwia

WF0IjoiMTQzMTcwNjUwNSIsImV4cCI6IjE1ODk1NT

kzMDUiLCJhdWQiOiJodHRwczovL2NlbnRyYWxpem

VkLWxvZ2dpbmcuZXhhbXBsZS5jb20vIiwiYWNtIjp7I

https://centralized-logging.example.com/

24 Sandeep Jayashankar and Subin Thayyile Kandy: Implementing Granular Access Definitions in Log Records

kFEX0xPR19ERVZfVVNFUiI6ImVycm9yLCB3YXJuL

CBpbmZvIiwiQURfTE9HX0RFVl9BRE1JTiI6ImVycm

9yLCB3YXJuLCBpbmZvLCBleGNlcHRpb24iLCJBRF

9MT0dfU0VDVVJJVFkiOiJzZWMiLCJBRF9MT0dfU1

JFIjoiZXJyb3IsIHdhcm4sIGluZm8ifX0.rjG0AueEgx7N

N4YWKhSsO47NittkykLBeWAqLZ_uzxw

Figure 1. Screenshot from https://jwt.io showing the token generated with example values

5. Proposed Logging Mechanism

The proposed logging mechanism is a full-stack logging

platform, which includes the Log Generation Process and a

Log Viewer Verification process. Each illustrated process

in the proposed logging mechanism contains multiple

sub-components that can act as a separate software entity.

The modularized design takes into consideration the

software development challenges, and decoupling software

modules help development efforts to be more manageable.

Log Creation Process

The Log Generation process acts as a middle layer

between the software-generated logs and the centralized

logging platform. In this pivotal position, the log creation

process consolidates the retrieved log record and assigns the

correct access definitions. Following are the sub-components

as per the propose designed:

 Log Processor: In the proposed solution, the log

processor is the single point of entry service that accepts all

software generated logs for processing. The processing

includes two aspects; correlating logs based on a specific

event and collecting the information the ADE (AuthZ

Decision Engine) requires. The Log Processor sends the

original log record to the next step, where the logs

concatenate with the generated authorization token to form

the final log record.

 Authorization Decision Engine (ADE): The

Authorization Decision Engine ensures that for every log

record from the Log Processor, the right set of access

definitions are formulated and provided to the Token

Generator. Depending upon the environment in the network,

the ADE can collect the access control and user information

from Active Directory, a user-object repository, or from a

mechanism that has an access control matrix/list compiled.

 Token Generator: Based on the Token Contents

described in the previous section, the Token Generator

requires the following from different sources:

 The Log Processor provides the required information

for the formation of the claims, cid, iss, iat, exp, and

aud.

 The ADS provide the claims, acm, or acl to the Token

Generator.

 The claims, typ, and alg has to be set as an

environmental variable or can be a constant value for

implementation.

Once the respective sources transmit the required

 Computer Science and Engineering 2020, 10(1): 22-30 25

information, the Token Generator utilizes a pre-existing

library from many supported development languages to

compile the complete token. This generated token acts as the

authorization token for that specific log record.

Finally, the log record includes a column for the the

authorization token which gets stored in the centralized log

storage.

Figure 2. Process diagram showing the proposed Log Creator mechanism

Figure 3. Sequence diagram showing the proposed Log Generator flow

26 Sandeep Jayashankar and Subin Thayyile Kandy: Implementing Granular Access Definitions in Log Records

The above sequence diagram demonstrates the entire Log

Generation process starting with the user’s creation of an

application event and ending with the centralized log stored.

In the illustration, the Log Processor calls the ADE to

construct an access definition after verifying the ACL/ACM

and the user. With the generated acm/acl claim, the Token

Generator creates the token and stores it into the Centralized

Log Storage along with the log record.

Log Viewer Verification Process

The Log Viewer Verification process acts as an

intermediate barrier between the centralized log storage and

the Log Dashboard software. In a practical scenario, the

proposed mechanism is applied as an API endpoint that only

returns log records authorized to the user. However, internal

to the API endpoint, the process consists of some

sub-components which mainly process and validate the

authorization token.

The Log Viewer Verification process consists of two main

sub-components, as per the proposed design:

 Log Processor: The Log Processor can be an API

endpoint that accepts requests from the Log Dashboard and

contacts the Centralized Log Storage for a specific user's

log records. Additionally, the Log Processor is also

responsible for populating only the authorized log records

back to the Log Dashboard. Furthermore, the Log Processor

can provide additional services such as:

 masking sensitive data from logs,

 correlating log records based on a specific event,

 grouping log records based on preset filters, and

 ensuring that expired log records are removed from the

list.

 Verification Engine: The Verification Engine in the

Log Viewer Verification process checks each log's

authorization token and verifies it against the authenticated

user. As per the proposed design, the Verification Engine

consists of the following segments:

 Signature and Token Verification: This segment

validates whether the signature hash retrieved from

the authorization token is confirmed and that there

are no changes detected in the JWT payload. There

are currently many open-source libraries in every

development language that can efficiently perform

signature and hash verification. The token verification

segment can act as a separate entity assuming the role of

parsing and debugging the authorization token's

retrieved information.

 Access Verification: The Access Verification segment

reviews the acm/acl value embedded in the

authorization token and validates if the authenticated

user has access to the specific log record. Based on the

identity and access management implementation in the

organization's environment, the Access Verification

process may consult Active Directory to check the

authenticated users' group memberships and compare

them with ACL/ACM definitions. Additionally, the

access verification process can also consider the log

origination and validate if the user has 'read' access to

it. Furthermore, depending upon a specific view filter,

access restriction can also be validated.

Figure 4. Process diagram showing the proposed Log Viewer Verification mechanism

 Computer Science and Engineering 2020, 10(1): 22-30 27

Figure 5. Sequence diagram showing the proposed Log Viewer Verification flow

 Once all defined validations are complete, the

Verification Engine responds with its decision to either

show or hide the log record depending upon the access

definition.

Finally, the Log Dashboard retrieves the response from

the Log Processor and displays the list of log records

authorized to the end-user.

The above sequence diagram shows the log records'

verification process before being presented on the Log

Dashboard. In the illustration, the Log Dashboard calls the

Log Processor to retrieve all the log records present for the

authenticated user. The Log Processor sends a request to the

Centralized Log Storage to respond with log records that are

authorized to the end-user. The Centralized Log Storage uses

the Token Verification Engine to check the token, and

signature and verify if the specific log record is permitted to

be viewed by the end-user. The Log Processor then responds

to the request with a list of authorized users from the

Centralized Log Storage.

Log Authorization Process

A user without access to any particular logs can request

access through Identity and Access Management platforms,

Active Directory, or any other directory service that is in line

with organizational policies and processes. The proposed

Authorization Decision Engine includes an LDAP listener

feature, which, if enabled, polls any changes to the directory

services based on the ADE's configurations. Administrators

should also be able to configure the polling frequency

between the ADE and the AD. This extensive feature helps

organizations set their AD polling requirement, depending

upon their requirements of either needing real-time

enforcement or a more relaxed daily polling condition.

Once ADE is notified of LDAP listeners' changes, it

synchronizes objects that map to the recently updated user

profiles. As part of this process, ADE identifies any profile

with modifications in the logs' access requirements. The

process also includes the notification of Token Generator

with an account list, for which the corresponding tokens are

to be updated or reissued to reflect the current authorization

changes. This step ensures that the verification engine

accurately authorizes users to access the logs during the log

viewer process. Any changes in authorization matrices,

either the user is enrolled, modified, or revoked, will be

reflected in the respective tokens.

The below illustrates how the proposed Logging

mechanism acts during the user lifecycle management

process:

 New User enrollment: As a new user joins an

organization, as part of his onboarding, he may request

access to several applications, and their logs for

debugging purposes. Once the approval process and

records creation are complete in the organization's

directory services, the proposed LDAP listener

identifies the user addition instantly (or as

configured by the administrators). Once notified,

the Authorization Decision Engine creates a

corresponding user profile object, and details all the

roles assigned to the user in AD. When the user

accesses the Log Dashboard, the Token Generator

creates a new token, after utilizing the Verification

Engine to validate the user's access with the directory

28 Sandeep Jayashankar and Subin Thayyile Kandy: Implementing Granular Access Definitions in Log Records

services.

 Existing User Modifications: As per the proposed

mechanism, the existing user's access modifications

work about the same as that of the new user enrollment

process. However, when the LDAP listener identifies

any differential in the user access matrices, active

tokens are replaced with the updated tokens containing

all the changes to the user access.

 User Termination: As part of the user exit process, the

user's profile and roles in AD are set to expire on a

specific date and time. Once the changes take effect in

the directory services, the LDAP listener identifies

the differential and updates the Authorization Decision

Engine. The Token Generator utilizes the token

payload's claim, "exp" to set the tokens to expire as per

AD profile details, and update the existing tokens.

As part of the token's records cleaning process, any

expired tokens should automatically be deleted from

the record. As the tokens expire, the Log Verification

process fails the validation and does not let any further

unauthorized actions on behalf of the user.

6. Implementation Requirements

The Implementation requirements mainly attempt to

propose the general provisions of the algorithms and not

to set a mandatory requirement to implement the proposed

mechanisms effectively. It is up to the implementation

software to dictate what algorithms are advisable to use

for each implementation design. However, proper care is

recommended during the algorithm selection by embracing

the understanding that any flexibility in the security

requirements for convenience or performance may result in

the implementation to be ineffective.

The following are the security best practices, or

recommendations, concerning the algorithm selection and

the key sizes. The security level required for the software

implementations can be finetuned by changing the SHA key

size to each algorithm. The below description shows how

each algorithm can provide benefits over the others:

 Software solutions can utilize RSAPSSSHA384 (RSA

Signature with the probabilistic signature scheme with

SHA-384) to implement a JWT signature mechanism

with the highest security setting. The probabilistic

signature scheme is proven not to be susceptible to the

same type of attacks that affect the PKCS and other

RSA implementation flavors. The "alg" claim values

for DSA with EC are PS256, PS384, or PS512,

depending upon the SHA's digest size.
 The ECDSASHA512 algorithm (Elliptic Curve Digital

Signature Algorithm with SHA-512) is a close second

option for software solutions that require a very high

degree of security setting. The DSA algorithm is proven

to be faster at signing digital signatures compared

to RSA. However, RSA is proven to be faster at

verifying digital signatures. Hence, depending upon the

implementation requirements, the software solutions

can choose either ECDSA or RSA-PSS. The "alg"

claim values for DSA with EC are ES256, ES384, or

ES512, depending upon the SHA's digest size.
 The RSASHA512 algorithm (RSA signature with

PKCS#1 v1.5 with SHA-512) is a standard option for

software solutions that require interactions with other

third-party systems. The PSS flavor of RSA is not as

prevalent as PKCS#1 v1.5, but since the algorithm is

deterministic, it is prone to many practical attacks. Also,

RSA PSS is a complex algorithm to implement, and

it takes a considerable amount of time to compute.

Hence, using the RSASHA512 algorithm may reduce

the security posture of the implementation, but it is

beneficial from a performance and support aspect. The

"alg" claim values for RSA with PKCS#1 v1.5 are

RS256, RS384, or RS512, depending upon the SHA's

digest size.
 The HMACSHA512 (HMAC with SHA-512) uses a

symmetric algorithm with a secret key shared between

two parties. Since there are no public-private key pairs,

but just a secret key, there is a considerable gap in the

security posture if the secret key is compromised.

However, the HMAC algorithm is known to be fast and

simplistic and very advantageous in the performance

aspect. The "alg" claim values for the HMAC algorithm

are HS256, HS384, or HS512, depending upon the

SHA's digest size.

The below implementation requirements are for the

proposed process:

 Log Processor: As per the proposal, the Log Processors

are envisioned as an API endpoint that allows

software entities to call when an event trigger. The

implementation can act as a separate entity to the

main software solution, such as a provisioned

software-as-a-service or can be part of the software

solution. However, proper measures must be taken to

ensure that the API endpoints are authenticated

adequately and have appropriate network zoning

restrictions so that it is not exposed to the external

environment.
 AuthZ Decision Engine (ADE): The ADE is an integral

part of the proposed implementation, as it assumes the

responsibility of proper access definitions to each log

record. Hence, it is recommended to implement secure

channels for its interactions with Active Directory,

ACM/ACL providers, and the User databases.
 Token Generator: While generating the tokens, proper

measures must be taken to ensure that the token claim,

"alg" is assigned with the correct cryptographic

algorithm. Since the token generation process mainly

utilizes an open-source library or a separate software

entity/framework, it is recommended that care be taken

to ensure there are no pre-existing vulnerabilities in the

token generation mechanism.
 Verification Engine: The software solution utilized for

 Computer Science and Engineering 2020, 10(1): 22-30 29

this measure should verify that the authorization

tokens conform to the JWT's RPC structure, with

appropriate JSON object schema. Additionally, the

Base64URLDecode of the authorization token should

result in a fully formed header, payload, and signature

digest. Furthermore, it is advisable to have the header

and payload go through a canonicalization sequence.

This progression ensures that the header and payload

are verified after eliminating any encoding formats,

thus enforcing uniformity in the data before verification.

Finally, before authorizing the token, the Verification

Engine should validate the RPC specified claims

such as exp (token expiration) and iss (issuer/issuing

authority).

7. Interoperability Considerations

To achieve an acceptable and interoperable deployment of

the proposed mechanism, the sub-components and their

underlying system entities should be in sync with each other.

Any changes in the configurations without updating the

others may result in breaking the entire proposed

mechanism.

The following are some of the configurations that are

critical from an interoperability perspective:

 "iss" and "aud" claim in the payload: The Issuer

identifies where the log record originated. This

information is essential for the ADE to assign the

appropriate access definition to the suitable end-users,

and for the verification engine to provide access to

authorized end users. Hence, it is vital to set

prerequisite configurations that identify issuers and

audience values accurately.

 Storing sensitive information securely: The

software-sensitive information in this proposed solution

is the private keys used for generating the JWT

signature. The Token Generator requires access to these

private or secret keys and storing them in plaintext may

pose a security risk. Hence, proper measures to store

these private or secret keys in an encrypted format is

recommended.

 Network Zoning in an enterprise environment: The

Network environment must be zoned based on the

defined trust boundaries and the sub-components'

sensitivity. In this proposed solution, the Log Processor

API must be network accessible only to the software

that generates logs. The other sub-components, such as

ADE and Verification Engine, can be designated to be

at the Operations Zone. Since the Token Generator is an

integral part of the implementation, and since it handles

the private keys for generating a signature, it can be

designated to the restricted zone.

 Server Authentication between sub-components: Each

sub-component defined in this logging mechanism

are designed to be decoupled with each other.

Implementing an effective server authentication and a

secure transmission channel (preferably mutual TLS) is

essential as attackers can target sub-components and

formulate a successful man-in-the-middle attack.

 Supporting Centralized Log Storage: The proposed

implementation acts as an intermediate framework

between the software generating logs, the centralized

log storage, and the Log Dashboard. Hence, there is a

need for currently available centralized log storage

solutions and Log Dashboard to support the feature,

either by providing a calling API service or invoking

proposed API implementations.

8. Security Considerations

The proposed mechanism extensively utilizes the JSON

Web Tokens as an authorization token. While JWTs are

secure by design, many attacks, vulnerabilities, and security

gaps have been identified in the implementation and

configurations. Some of the reported public vulnerabilities

can be mitigated by following the recommendations below:

 Algorithm Verification Bypass: The "None" Algorithm

vulnerability resulted due to applications not verifying

if signature algorithms are specified in the token

headers. As a result, attackers crafted malicious JWTs

by assigning the "alg" claim to "none", which resulted

in JWTs getting verified even without signature hashes

assigned to them. Hence, the Token Generator should

explicitly specify which algorithm is utilized, and the

Verification Engine must confirm that the "alg" claim is

assigned with strictly approved values.

 HMAC "Verify" Attack: The signature verification part

of many JWT Libraries was found not to accept the

verification algorithm as a function parameter. As a

result, attackers could use the public key to formulate a

signature and replace the algorithm to be HS256.

Currently, JWT libraries mandate algorithm values to

be sent as a parameter in the “verify” function. In

accordance, the Verification Engine in the proposed

mechanism should also mandate the algorithm claim

("alg") in the token, and also accept the algorithm

parameter for all supported verification functions/

methods.

 Sensitive Data in Tokens: The proposed mechanism

generates JWTs that are not intended to handle

confidentiality, but instead support the integrity of the

token contents. Hence, it is not advisable to contain any

application or user sensitive data as part of the token. If

any instance of instantaneous information leakage

occurs, proper care must be exercised to delete the

token and generate a new token.

 Using a robust symmetric key: HMAC signature digests

are prone to brute-force or dictionary attacks if the keys

are not robust enough. There are currently many JWT

attacking tools such as JohnTheRipper and JWTBrute,

which conduct dictionary attacks to extract the key

from the HMAC signature. Hence, it is prudent to

30 Sandeep Jayashankar and Subin Thayyile Kandy: Implementing Granular Access Definitions in Log Records

utilize robust keys that are generated by securely

initialized/seeded pseudo-random number generators

(PRNGs).

 Use the latest TLS versions: The proposed

sub-components should extensively utilize TLS

protocols to establish any secure transmission.

Terminology

For ease of understanding, this paper defines the

following key terminology as:

 End-User: Unless specified to be the user of a log

generating application, the end-user in this proposal

refers to those who view the Log Records.

 Log Records or Logs: Log Records or Logs are a

snippet of information recorded during events while

running software, or while a specific entity is

performing any actions to achieve a goal.

 Log Dashboard: A dashboard with a table of all the log

records that is viewable to a user.

 User Repo: A repository or a database containing

users' identifiable information.

 Active Directory: More precisely, Active Directory

Domain Service (AD DS) is Microsoft's domain and

user service platform providing user account

information and their applicable access/authorizations

in a Windows environment.

 ACM: Access Control Matrix is a matrix of roles vs.

which log type can the user access. The ACLs are

generally used to check if a specific user has access to

viewing a particular log record.

 ACL: Access Control List is a complete list of all the

roles for whom the log record is accessible.

REFERENCES

[1] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JWS)", RFC 7515, doi: 10.17487/RFC, May 2015,
http://www.rfc-editor.org/info/rfc7515.

[2] Ahmed, S., & Mahmood, Q. (2019). An authentication based
scheme for applications using JSON web token. 2019 22nd
International Multitopic Conference (INMIC).
doi: 10.1109/inmic48123.2019.9022766.

[3] Siriwardena, P. (2014). JWT, JWS, and JWE. Advanced API
Security, 201–220. doi: 10.1007/978-1-4302-6817-8_13.

[4] Haekal, M., & Eliyani. (2016). Token-based authentication
using JSON Web Token on SIKASIR RESTful Web Service.
2016 International Conference on Informatics and Computing
(ICIC). doi: 10.1109/iac.2016.7905711.

[5] Sheffer, Y., Hardt, D., & Jones, M. (2020). JSON Web Token
Best Current Practices. doi: 10.17487/rfc8725.

[6] JWT: The Complete Guide to JSON Web Tokens
https://blog.angular-university.io/angular-jwt/.

[7] JSON Web Token Introduction https://jwt.io/introduction.

[8] IETF JSON Web Token (JWT) Draft
https://tools.ietf.org/html/rfc7519.

[9] JSON Web Token (JWT) Profile for OAuth 2.0 Client
Authentication and Authorization Grants
https://www.hjp.at/doc/rfc/rfc7523.html.

[10] The JWT Handbook by Sebastian Peyrott, Auth0
https://auth0.com/resources/ebooks/jwt-handbook.

[11] JWT Signing using RSASSA-PSS in .NET Core
https://www.scottbrady91.com/C-Sharp/JWT-Signing-using-
RSASSA-PSS-in-dotnet-Core.

[12] DSA vs. RSA Encryption https://www.jscape.com/blog/bid/
82975/Which-Works-Best-for-Encrypted-File-Transfers-RS
A-or-DSA.

[13] Application Logging: What, When, How
https://dzone.com/articles/application-logging-what-when.

[14] Critical vulnerabilities in JSON Web Token libraries
https://auth0.com/blog/critical-vulnerabilities-in-json-web-to
ken-libraries/.

[15] JWT Brute https://github.com/jmaxxz/jwtbrute.

http://www.rfc-editor.org/info/rfc7515
https://blog.angular-university.io/angular-jwt/
https://jwt.io/introduction
https://tools.ietf.org/html/rfc7519
https://www.hjp.at/doc/rfc/rfc7523.html
https://auth0.com/resources/ebooks/jwt-handbook
https://www.scottbrady91.com/C-Sharp/JWT-Signing-using-RSASSA-PSS-in-dotnet-Core
https://www.scottbrady91.com/C-Sharp/JWT-Signing-using-RSASSA-PSS-in-dotnet-Core
https://www.jscape.com/blog/bid/82975/Which-Works-Best-for-Encrypted-File-Transfers-RSA-or-DSA
https://www.jscape.com/blog/bid/82975/Which-Works-Best-for-Encrypted-File-Transfers-RSA-or-DSA
https://www.jscape.com/blog/bid/82975/Which-Works-Best-for-Encrypted-File-Transfers-RSA-or-DSA
https://www.jscape.com/blog/bid/82975/Which-Works-Best-for-Encrypted-File-Transfers-RSA-or-DSA
https://www.jscape.com/blog/bid/82975/Which-Works-Best-for-Encrypted-File-Transfers-RSA-or-DSA
https://dzone.com/articles/application-logging-what-when
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://github.com/jmaxxz/jwtbrute

