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Abstract  Software project effort Prediction is the most challenging and important activities in software project 

development. In software Industry when the size of the project and number of developers increases the project become 

complex, at this point accuracy prediction is strongly required during the early stages of project development. But to predict 

at early stages data and information are not available at the preliminary phases of project as well as the data is not complete, 

consistent and certain. In this research work we uses Artificial Neural network, Fuzzy logic, use case point model, modified 

environmental factor and revised use case point to predict software project effort at early stages. Artificial Neural Network 

has the ability to learn from previous data and fuzzy logic deals with uncertainty and also it provides a technique to deal with 

imprecision and information granularity. Also the modified environmental factor and revised use case point are used to 

determine the effort at early stage of the project development. In our experiment we compares each models, fitting accuracy 

using MMRE and PRED (0.25). The fitting accuracy of the models in terms of MMRE for Neuro-Fuzzy-UCBEM is 0.03, 

Neuro_UCBEM 0.13, Fuzzy-UCBEM 0.12 and UCBEM 0.22 and the fitting accuracy of the models in terms of Pred (0.25) 

for Neuro-Fuzzy-UCBEM is 1, Neuro_UCBEM 0.93, Fuzzy-UCBEM 0.93 and UCBEM 0.8. So our experiment result shows 

that Neuro-fuzzy logic model using revised use case point and modified environmental is best out performing model for 

software project development effort prediction at early stage than another models. Since the Neuro-fuzzy-UCBEM shows 

low value of MMRE (Mean of Magnitude of Relative Error) and high value prep (0.25) than Neuro-UCBEM, UCBEM and 

Fuzzy-UCBEM models. 

Keywords  Machine Learning, Neural Network, Fuzzy Logic, Artificial Neural Network, Modified environmental factor, 

MMRE 

 

1. Introduction 

Functional software project effort Prediction is one of the 

most challenging activities in software project development. 

Starting from the software development era until today, 

software development interest has become increasingly time 

to time but the predication approaches become more 

complex and expensive, particularly if it includes hundreds 

of people working over a long period of time. A project of 

this dimension can easily turn into disorder if proper 

management and controls are not in place. Software projects 

usually don’t fail during the implementation and most 

project fails are during the planning and estimation steps 

(Borade, 2013) due to going over time and cost. 

They are a number of parameter for software project  
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predictions. These are like Expert Judgment, COCOMO 

Model, Source Line of Code (SLC) and machine learning. 

There is a number parameters that affect the software project 

prediction, like a lack of data on completed software projects, 

lack of prediction of the staff’s skill level, Lack of 

understanding the requirements, improper software size 

estimation and Uncertainty of system and software 

requirements (Nassif A. B., 2013). 

2. Software Project Effort Prediction 
Techniques 

2.1. Use Case Point Model 

The Use Case Point (UCP) model is based on mapping a 

use case diagram to a size metric called use-case points 

(Nassif A. B., " Software Size and Effort Estimation from 

Use Case Diagrams Using Regression and Soft Computing 

Models,", 2012). A use case diagram shows how users 

interact with the system and it is composed of Use Cases 

which represent the functional requirements and where an 

actor is a role played by a user. It is one of the Unified 
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Modeling Language (UML) diagrams have become popular 

in the last decade (Nassif A. B., 2013), so it becomes more 

interested in conducting software project effort estimation by 

taking the use case diagrams.  

The use case point model was first described by Karner 

(Jha, 2014). This model is used for software cost estimation 

based on the use case diagrams. The main components of the 

use case diagrams are actors and use cases. Use case point 

(UCP) is calculated from use case model. The general 

process in Use Case based prediction model involves the 

following major steps: 

1.  Unadjusted Actor Weight (UAW): In the UCP, actors 

are classified as simple, average or complex. The table 1 

shows the actor classification according to the Karner 

(Karner, 1993) and newly added actor classification 

(Pragya Jha, 2014). 

Table 1.  Actor Classification  

Actor Type Description Weight 

Simple 
System Application Programming Interface 

(API) 
1 

Average Interactive or Protocol-Driven Interface 2 

Complex Graphical Interface (GUI) 3 

Critical 
If it interacts with modules where in real time 

action is taken or complexity is very high 
4 

The formula to calculate Unadjusted Actor Weight (UAW) 

according to (Karner, 1993) and (Pragya Jha, 2014). 

UAW = Σ SA 1 + Σ AA × 2 + Σ CA × 3 + Σ CrA ×4  (1) 

Where SA, AA, CA and CrA correspond to Simple Actors, 

Average Actors, Complex Actors and Critical Actor 

respectively. 

2.  Unadjusted Use Case Weight (UUCW): Use cases are 

classified based on the number of transactions in the 

success and alternative scenarios (flows) and Included 

and extended use cases. The table 2 shows the Use Case 

classification according to the Karner (Karner, 1993) and 

newly added actor classification (Pragya Jha, 2014). 

Table 2.  Use Case Classification 

Use case No. of Transactions Weight 

Simple <=4 5 

Average 5 to 8 10 

Complex 9 to 15 15 

Critical >15 20 

The formula to calculate Unadjusted Use Case Weight 

(UUCW) according to (Karner, 1993) and (Pragya Jha, 

2014). 

UUCW = ΣSU × 5 + ΣAU × 10 + ΣCU × 15+ΣCr × 20 (2) 

Where SU, AU, CU and Cr correspond to Simple Use 

Case, Average Use Case, Complex Use Case and critical use 

case. 

3.  Unadjusted Use Case Points (UUCP): This is the 

summation of UAW with UUCW. This is described as: 

UUCP = UAW+UUCW             (3) 

According to (Karner, 1993) and (Pragya Jha, 2014). 

4.  Technical Factor (TF): These factors contribute to the 

complexity of the project. The technical factors measure 

the complexity of a project regarding non-functional 

requirements. 

Technical Complexity Factor (TCF) = 0.6 + (0.01*TFactor)   

(4) 

TFactor =  𝐹𝑛 .𝑊𝑛 
14
𝑛=1               (5) 

Where Tfactor, Fn, Wn are technical factor, factor and 

weight value for n of this category respectively. The table 3 

shows the Technical factor according to the Karner (Karner, 

1993) and newly added Technical factor classification 

(Pragya Jha, 2014). 

Table 3.  Technical factor 

Factor Factors Contributing to Complexity Weight 

F1 Distributed systems 2 

F2 
Application performance objectives, in 

Either response or throughput. 
1 

F3 End user efficiency (on-line). 1 

F4 Complex internal processing. 1 

F5 
Reusability, the code must be able to reuse in 

other applications. 
1 

F6 Installation ease. 0.5 

F7 Operational ease, usability. 0.5 

F8 Portability. 2 

F9 Changeability. 1 

F10 Concurrency. 1 

F11 Special security features. 1 

12 Provide direct access for third parties 1 

F13 Special user training facilities 1 

F14 Scalability 2 

5.  Environmental Factor (EF): These factors contribute 

to the team efficiency and productivity. 

EF= C1 + C2  𝐹𝑛 .𝑊𝑛 
8
𝑛=1           (6) 

Where C1 = 1.4, C2 = -0.03 and Fi is a factor which is 

equivalent to the Fi of the technical factor (i.e. between 0 and 

5). The table 4 shows the Environmental factor according to 

the Karner (Karner, 1993) and newly added Environmental 

factor classification (Pragya Jha, 2014). 

6.  Adjusted Use Case Points (UCP): The UCP is 

calculated by multiplying the UUCP by the technical and 

environmental factors as follows: 

UCP = UUCP × TF × EF         (7) 

7.  Effort: This is the final stage of the use case point model. 

Karner proposed 20 person-hours for each UCP. This can 

be represented as (Nassif A. B., 2012) (Jha, 2014): 
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Effort = Size × 20              (8) 

Table 4.  Environmental factor 

Factor Factors Contributing to Efficiency Weight 

F1 Familiar with RUP 1.5 

F2 Part time workers -1 

F3 Analyst capability 0.5 

F4 Application experience 0.5 

F5 Object oriented experience 1 

F6 Motivation 1 

F7 Difficult programming language -1 

F8 Stable requirements 2 

F9 Client Type 1.2 

F10 New Technology 1 

F11 Team Co-ordination 1.5 

F12 Growth Rate of Organization 0.5 

F13 Team Composition 1.5 

F14 Organization Library Availability -0.5 

2.2. Machine Learning Models 

In this research work we use the hybrid machine learning 

approaches for software project effort prediction. In this 

paper we take the best features of the Articial Neural 

Network and Fuzzy Logic. 

a. Artificial Neural Networks (ANN) 

Artificial Neural Network (ANN) is a computational or 

mathematical method that is simulated by the biological 

human brain (Nassif A. B., " Software Size and Effort 

Estimation from Use Case Diagrams Using Regression and 

Soft Computing Models,", 2012). It have several layers each 

layer is composed of several elements called neurons. 

Neurons investigating the weights defined for inputs to 

produce the outputs. Outputs is the actual effort, which are 

the main goals of prediction (Khatibi V. a., 2011). Through 

learning process ANN can be configured for a specific 

application, such as pattern reorganization or data 

clarification. Back propagation neural network is the best 

selection for software prediction problem. Because it adjust 

the weight by comparing the network outputs and actual 

result (Tailor1, 2014) (Nassif A. B., 2013). In addition, 

training is done effectively. Artificial neural network are 

used in effort prediction due to its ability to learn from 

previous data (Attarzadeh I. a., January 2010). It is also able 

to model complex relationships between the dependent 

(effort) and independent variables (cost drivers). In addition, 

it has the ability to generalize from the training data set thus 

enabling it to produce acceptable result for previously 

unseen data. 

Neural networks are nets of processing elements that are 

able to learn the mapping existent between input and output 

data. The neuron computes a weighted sum of its inputs and 

generates an output if the sum exceeds a certain threshold. 

This output then becomes an excitatory (positive) or 

inhibitory (negative) input to other neurons in the network. 

The process continues until one or more outputs are 

generated. 

The Neural Network is initialized with random weights 

and gradually learns the relationships implicit in a training 

data set by adjusting its weights when presented to these data. 

The network generates effort by propagating the initial 

inputs through subsequent layers of processing elements to 

the final output layer. Each neuron in the network computes 

a nonlinear function of its inputs and passes the resultant 

value along its output. The favored activation function is 

Sigmoid Function (Sehr, 2011) (K., 2002) given as: 

 

Function 1.  Sigmoid Function (K., 2002) 

b. Fuzzy Logic (FL) 

All system which works based on the fuzzy logic try to 

simulate human behavior and reasoning (Khatibi V. a., 2011). 

Fuzzy logic is a mathematical tool for dealing with 

uncertainty and also it provides a technique to deal with 

imprecision and information granularity.  

A fuzzy set is a set with a smooth boundary (Lalitha. 

R.V.S, 2012) (Srinivasa Rao.T, December 2011). Fuzzy set 

theory generalizes classical set theory to allow partial 

membership (Ziauddin, 2012). The best way to introduce 

fuzzy sets is to start with a limitation of classical sets. A set 

in classical set theory always has a sharp boundary because 

membership in a set is a black-and-white concept, i.e. an 

object either completely belongs to the set or does not 

belongs to the set at all. The degree of membership in a set is 

expressed by a number between 0 and 1; 0 means entirely not 

in the set, 1 means completely in the set, and a number in 

between means partially in the set. This way a smooth and 

gradual transition from the region outside the set to those in 

the set can be described. A fuzzy set is thus defined by a 

function that maps objects in a domain of concern to their 

membership value in the set. Such a function is called the 

Membership Function and usually denoted by the Greek 

symbol μ. The membership function of a fuzzy set A is 

denoted by μA, and the membership value of x in A is 

denoted by μA(x). The domain of membership function, 

which is the domain of concern from which elements of the 

set are drawn, is called the Universe Of Discourse. We may 

identify meaningful lower and upper bounds of the 

membership functions. Membership functions of this type 

are known as interval values fuzzy sets. The intervals of the 

membership functions are also fuzzy then it is known as 

interval Type-2 fuzzy sets. 

This research examines the potential of two soft Machine 

Learning Models and one algorithmic approach i.e. fuzzy 

logic and artificial neural networks and Use Case Point 

respectively for software project development effort 

estimation models. 
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3. Mixed Software Project Prediction 
Models  

3.1. Fuzzy Logic Approach with Use Case Based Effort 

Estimation Model 

A fuzzy set is represented by a membership function. Each 

element will have a grade of membership that represents the 

degree to which a specific element belongs to the set. 

The central idea of extending Use Case Based 

Estimation Model (UCBEM) to Fuzzy -UCBEM through 

fuzzy set theory is to expand semantics (Simple, Average, 

and Complex) used to categorize use case complexities. 

A triangular membership fuzzy number can be represented 

by A (a, b, c), whose membership functions are presented in 

the following equation (Divya Kashyap, 2014): 

 

Equation 2.  Triangular Membership 

The values a, b, and c respectively identify the lower, 

middle, and upper limits that determine the shape of the 

triangle. 

3.2. Neural Network Approach with Use Case Based 

Effort Estimation Model 

The actual weight calculation also includes the slope of 

the filtering (activation) function and a learning rate value. 

The favored function for the back-propagation algorithm is 

the sigmoid function (Attarzadeh I. &., 2010). Since the 

function is not linear, it is appropriate for software effort 

estimation problem. 

 

Figure 1.  A Neural Network for Software Project Development Effort 

Estimation 

3.3. Neuro-Fuzzy with Use Case Based Effort Estimation 

Model 

For Neuro-Fuzzy use Case Based experiment input data 

(variables) are collected first. The input variables selected 

for the neural network model are based on the use case based 

effort estimation model. These variables are 

1.  Actor’s complexity weighting factors (AW) 

2.  Use case complexity weighting factors (Fuzzified use 

case complexity weighting factors in the case of 

Fuzzy-UCBEM)-UCW. 

3.  Technical complexity weighting factors (TCF) 

4.  Environmental factors (EF) 

4. Model Evaluation Approach 

In this work, In order to evaluate the techniques with 

respect to their fitting accuracy, Relative Error (RE), 

Magnitude of Relative Error (MRE) and Mean Magnitude of 

Relative Error (MMRE) and Prediction at Level P (Prep(P) 

are used, where P is a percentage needed. We use this 

methods because MMRE and PRED are the most widely 

used metrics for evaluating the accuracy of cost estimation 

models (Nguyen, 2010). 

The Relative Error (RE) and Magnitude of Relative Error 

(MRE) (Attarzadeh I. a., January 2010) (Iraji, 2012) (Wei 

Lin Du, 2010) which is defined as follows. 

 
The RE is used to calculate the estimation accuracy 

Magnitude of Relative Error (MRE) is defined as  

MRE = | Estimation Effort - Actual Effort | 

              Actual Effort 

Or Magnitude of Relative Error (MRE) is defined as 

(Reddy, 2009) (Raju, 2010) 

  MRE = | Estimation Effort - Actual Effort | X 100 

                 Actual Effort 

Mean Magnitude of Relative Error (MMRE) 

The mean magnitude of relative error (MMRE) is the 

average of all magnitudes of relative errors. MMRE is 

defined as follows (Ali Idri, 2004):  

MMRE =  
MRE

N

𝑛

𝑖=1
 

                OR 

 

Where N is the number of projects 

MMRE: This is a very common criterion used to evaluate 

software cost estimation models (Nassif A. B., 2012).  

Prediction Level (PRED)  

PRED (P) =k/n 

Where P is the maximum MRE of a selected range, n is the 

total number of projects, and k is number of projects in a set 

of n projects whose MRE <= P (k is the number of 

observations with a MRE less than or equal to p). A common 

value for p is 0.25 (Ali Idri, 2004) (Idri, 2002). PRED 
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calculates the ratio of projects’ MREs that falls into the 

selected range (P) out of the total projects. 

A standard criteria for considering the model as acceptable 

is Prep (0.25) ≥ 0.75 (Malathi, 2012) (B.A. Kitchenham, 

2001). This means that at least 75% of the estimate is within 

the range of 25% of actual values. A model which gives 

higher Prep (0.25) is a better model.  

5. Discussion of the Result 

In order to evaluate the techniques with respect to their 

fitting accuracy, Mean Magnitude of Relative Error (MMRE) 

and Prep (I) methods were used. These methods are accepted 

as common accuracy indicators of software cost estimation 

models (Nassif A. B., 2012). They are also considered     

as more reasonable variables than other statistical criteria, 

since they measure the capability of prediction, not the 

statistical explanation. The relative error (RE) is ((actual 

effort-estimated effort) / actual effort) *100. The magnitude 

of relative error (MRE) is the absolute value of the relative 

error (MRE=|RE|). The mean magnitude of relative error 

(MMRE) is the average of all magnitudes of relative errors. 

MMRE is defined as follows:  

 
Where N is the number of projects 

The most widely used evaluation criterion to assess the 

performance of software effort estimation models is the 

Mean Magnitude of Relative Error (MMRE), when MMRE 

is used in the evaluation, good results are implied by lower 

values of MMRE or If the MMRE is small, then we have a 

good set of Predictions (Nassif A. B., 2010). A model is 

accepted as a good effort estimation model, if it estimates 

with MMRE  0.25 (Foss, 2003). 

The accuracy of UCBEM, Fuzzy_UCBEM, 

Neuro-Fuzzy-UCBEM and Fuzzy-UCBEM in terms of the 

above criteria’s is computed, and the result is shown in the 

following table 5. 

Table 5.  Summary of results in terms of MMRE and PRED (0.25) 

 UCBEM 
Fuzzy- 

UCBEM 

Neuro- 

UCBEM 

Neuro-Fuzzy- 

UCBEM 

MMRE 0.22 0.12 0.13 0.03 

Prep(0.25) 0.8 0.93 0.93 1 

The experimentation results in terms of both MMRE and 

Prep (0.25) shows that the Neuro-Fuzzy-UCBEM technique 

appears as best outperform model than Fuzzy-UCBEM, 

Neuro-UCBEM and UCBEM models. The result indicates 

that the neural network model out performs best when it is 

used with fuzzy use case complexity weighting factor inputs, 

and it is to some extent better than UCBEM when it is used 

the fuzzyfing inputs. 

 

Figure 2.  Performance of models in terms of MMRE 

 
Figure 3.  Performance of models in terms of Prep (0.25) 

 

Figure 4.  Models with training and learning function using MMRE value 

 

Figure 5.  Models with training and learning function using PRED (0.25) 

value 
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As we have seen in the above graph TRAINRP and 

LEARNGD functions shows small percentage of MMRE 

value than the other three training and learning functions. So 

the small number of MMRE value is best estimation model 

indicator (Foss, 2003). 

6. Conclusions and Future Works 

In this research work we have tried to address potential 

issue of machine learning approaches like neural network, 

fuzzy logic and modified environmental factor with the use 

case point for software project effort prediction. So we 

believe that the potential of machine learning approaches and 

Revised Use Case Point (Re-UCP) could be further explored 

by adding more historical data and one can come up with 

better results by extending this work. So in the future we 

have planned to work Using Revised Use Case Point 

(Re-UCP) method for more reliable data set. Compering the 

extended use point and Revised Use Case Point (Re-UCP) 

method using Neuro-fuzzy methods. Adding environmental 

factor and technical factor. It is also possible to check the 

performance of the neural network model with other training 

and transfer functions. 
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