
Computer Science and Engineering 2019, 9(1): 6-11

DOI: 10.5923/j.computer.20190901.02

Designing Machine Learning Method for Software

Project Effort Prediction

Ketema Kifle Gebretsadik
1,*

, Walelign Tewabe Sewunetie
2

1Msc. In Software Engineering, Lecturer of Software Engineering at Debre Markos University, Ethiopia
2Ass. Professor in Computer Science, Lecturer of Information Technology at Debre Markos University, Ethiopia

Abstract Software project effort Prediction is the most challenging and important activities in software project

development. In software Industry when the size of the project and number of developers increases the project become

complex, at this point accuracy prediction is strongly required during the early stages of project development. But to predict

at early stages data and information are not available at the preliminary phases of project as well as the data is not complete,

consistent and certain. In this research work we uses Artificial Neural network, Fuzzy logic, use case point model, modified

environmental factor and revised use case point to predict software project effort at early stages. Artificial Neural Network

has the ability to learn from previous data and fuzzy logic deals with uncertainty and also it provides a technique to deal with

imprecision and information granularity. Also the modified environmental factor and revised use case point are used to

determine the effort at early stage of the project development. In our experiment we compares each models, fitting accuracy

using MMRE and PRED (0.25). The fitting accuracy of the models in terms of MMRE for Neuro-Fuzzy-UCBEM is 0.03,

Neuro_UCBEM 0.13, Fuzzy-UCBEM 0.12 and UCBEM 0.22 and the fitting accuracy of the models in terms of Pred (0.25)

for Neuro-Fuzzy-UCBEM is 1, Neuro_UCBEM 0.93, Fuzzy-UCBEM 0.93 and UCBEM 0.8. So our experiment result shows

that Neuro-fuzzy logic model using revised use case point and modified environmental is best out performing model for

software project development effort prediction at early stage than another models. Since the Neuro-fuzzy-UCBEM shows

low value of MMRE (Mean of Magnitude of Relative Error) and high value prep (0.25) than Neuro-UCBEM, UCBEM and

Fuzzy-UCBEM models.

Keywords Machine Learning, Neural Network, Fuzzy Logic, Artificial Neural Network, Modified environmental factor,

MMRE

1. Introduction

Functional software project effort Prediction is one of the

most challenging activities in software project development.

Starting from the software development era until today,

software development interest has become increasingly time

to time but the predication approaches become more

complex and expensive, particularly if it includes hundreds

of people working over a long period of time. A project of

this dimension can easily turn into disorder if proper

management and controls are not in place. Software projects

usually don’t fail during the implementation and most

project fails are during the planning and estimation steps

(Borade, 2013) due to going over time and cost.

They are a number of parameter for software project

* Corresponding author:

ketemak6@gmail.com (Ketema Kifle Gebretsadik)

Published online at http://journal.sapub.org/computer

Copyright © 2019 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International

License (CC BY). http://creativecommons.org/licenses/by/4.0/

predictions. These are like Expert Judgment, COCOMO

Model, Source Line of Code (SLC) and machine learning.

There is a number parameters that affect the software project

prediction, like a lack of data on completed software projects,

lack of prediction of the staff’s skill level, Lack of

understanding the requirements, improper software size

estimation and Uncertainty of system and software

requirements (Nassif A. B., 2013).

2. Software Project Effort Prediction
Techniques

2.1. Use Case Point Model

The Use Case Point (UCP) model is based on mapping a

use case diagram to a size metric called use-case points

(Nassif A. B., " Software Size and Effort Estimation from

Use Case Diagrams Using Regression and Soft Computing

Models,", 2012). A use case diagram shows how users

interact with the system and it is composed of Use Cases

which represent the functional requirements and where an

actor is a role played by a user. It is one of the Unified

mailto:ketemak6@gmail.com
http://creativecommons.org/licenses/by/4.0/

 Computer Science and Engineering 2019, 9(1): 6-11 7

Modeling Language (UML) diagrams have become popular

in the last decade (Nassif A. B., 2013), so it becomes more

interested in conducting software project effort estimation by

taking the use case diagrams.

The use case point model was first described by Karner

(Jha, 2014). This model is used for software cost estimation

based on the use case diagrams. The main components of the

use case diagrams are actors and use cases. Use case point

(UCP) is calculated from use case model. The general

process in Use Case based prediction model involves the

following major steps:

1. Unadjusted Actor Weight (UAW): In the UCP, actors

are classified as simple, average or complex. The table 1

shows the actor classification according to the Karner

(Karner, 1993) and newly added actor classification

(Pragya Jha, 2014).

Table 1. Actor Classification

Actor Type Description Weight

Simple
System Application Programming Interface

(API)
1

Average Interactive or Protocol-Driven Interface 2

Complex Graphical Interface (GUI) 3

Critical
If it interacts with modules where in real time

action is taken or complexity is very high
4

The formula to calculate Unadjusted Actor Weight (UAW)

according to (Karner, 1993) and (Pragya Jha, 2014).

UAW = Σ SA 1 + Σ AA × 2 + Σ CA × 3 + Σ CrA ×4 (1)

Where SA, AA, CA and CrA correspond to Simple Actors,

Average Actors, Complex Actors and Critical Actor

respectively.

2. Unadjusted Use Case Weight (UUCW): Use cases are

classified based on the number of transactions in the

success and alternative scenarios (flows) and Included

and extended use cases. The table 2 shows the Use Case

classification according to the Karner (Karner, 1993) and

newly added actor classification (Pragya Jha, 2014).

Table 2. Use Case Classification

Use case No. of Transactions Weight

Simple <=4 5

Average 5 to 8 10

Complex 9 to 15 15

Critical >15 20

The formula to calculate Unadjusted Use Case Weight

(UUCW) according to (Karner, 1993) and (Pragya Jha,

2014).

UUCW = ΣSU × 5 + ΣAU × 10 + ΣCU × 15+ΣCr × 20 (2)

Where SU, AU, CU and Cr correspond to Simple Use

Case, Average Use Case, Complex Use Case and critical use

case.

3. Unadjusted Use Case Points (UUCP): This is the

summation of UAW with UUCW. This is described as:

UUCP = UAW+UUCW (3)

According to (Karner, 1993) and (Pragya Jha, 2014).

4. Technical Factor (TF): These factors contribute to the

complexity of the project. The technical factors measure

the complexity of a project regarding non-functional

requirements.

Technical Complexity Factor (TCF) = 0.6 + (0.01*TFactor)

(4)

TFactor = 𝐹𝑛 .𝑊𝑛
14
𝑛=1 (5)

Where Tfactor, Fn, Wn are technical factor, factor and

weight value for n of this category respectively. The table 3

shows the Technical factor according to the Karner (Karner,

1993) and newly added Technical factor classification

(Pragya Jha, 2014).

Table 3. Technical factor

Factor Factors Contributing to Complexity Weight

F1 Distributed systems 2

F2
Application performance objectives, in

Either response or throughput.
1

F3 End user efficiency (on-line). 1

F4 Complex internal processing. 1

F5
Reusability, the code must be able to reuse in

other applications.
1

F6 Installation ease. 0.5

F7 Operational ease, usability. 0.5

F8 Portability. 2

F9 Changeability. 1

F10 Concurrency. 1

F11 Special security features. 1

12 Provide direct access for third parties 1

F13 Special user training facilities 1

F14 Scalability 2

5. Environmental Factor (EF): These factors contribute

to the team efficiency and productivity.

EF= C1 + C2 𝐹𝑛 .𝑊𝑛
8
𝑛=1 (6)

Where C1 = 1.4, C2 = -0.03 and Fi is a factor which is

equivalent to the Fi of the technical factor (i.e. between 0 and

5). The table 4 shows the Environmental factor according to

the Karner (Karner, 1993) and newly added Environmental

factor classification (Pragya Jha, 2014).

6. Adjusted Use Case Points (UCP): The UCP is

calculated by multiplying the UUCP by the technical and

environmental factors as follows:

UCP = UUCP × TF × EF (7)

7. Effort: This is the final stage of the use case point model.

Karner proposed 20 person-hours for each UCP. This can

be represented as (Nassif A. B., 2012) (Jha, 2014):

8 Ketema Kifle Gebretsadik and Walelign Tewabe Sewunetie: Designing

Machine Learning Method for Software Project Effort Prediction

Effort = Size × 20 (8)

Table 4. Environmental factor

Factor Factors Contributing to Efficiency Weight

F1 Familiar with RUP 1.5

F2 Part time workers -1

F3 Analyst capability 0.5

F4 Application experience 0.5

F5 Object oriented experience 1

F6 Motivation 1

F7 Difficult programming language -1

F8 Stable requirements 2

F9 Client Type 1.2

F10 New Technology 1

F11 Team Co-ordination 1.5

F12 Growth Rate of Organization 0.5

F13 Team Composition 1.5

F14 Organization Library Availability -0.5

2.2. Machine Learning Models

In this research work we use the hybrid machine learning

approaches for software project effort prediction. In this

paper we take the best features of the Articial Neural

Network and Fuzzy Logic.

a. Artificial Neural Networks (ANN)

Artificial Neural Network (ANN) is a computational or

mathematical method that is simulated by the biological

human brain (Nassif A. B., " Software Size and Effort

Estimation from Use Case Diagrams Using Regression and

Soft Computing Models,", 2012). It have several layers each

layer is composed of several elements called neurons.

Neurons investigating the weights defined for inputs to

produce the outputs. Outputs is the actual effort, which are

the main goals of prediction (Khatibi V. a., 2011). Through

learning process ANN can be configured for a specific

application, such as pattern reorganization or data

clarification. Back propagation neural network is the best

selection for software prediction problem. Because it adjust

the weight by comparing the network outputs and actual

result (Tailor1, 2014) (Nassif A. B., 2013). In addition,

training is done effectively. Artificial neural network are

used in effort prediction due to its ability to learn from

previous data (Attarzadeh I. a., January 2010). It is also able

to model complex relationships between the dependent

(effort) and independent variables (cost drivers). In addition,

it has the ability to generalize from the training data set thus

enabling it to produce acceptable result for previously

unseen data.

Neural networks are nets of processing elements that are

able to learn the mapping existent between input and output

data. The neuron computes a weighted sum of its inputs and

generates an output if the sum exceeds a certain threshold.

This output then becomes an excitatory (positive) or

inhibitory (negative) input to other neurons in the network.

The process continues until one or more outputs are

generated.

The Neural Network is initialized with random weights

and gradually learns the relationships implicit in a training

data set by adjusting its weights when presented to these data.

The network generates effort by propagating the initial

inputs through subsequent layers of processing elements to

the final output layer. Each neuron in the network computes

a nonlinear function of its inputs and passes the resultant

value along its output. The favored activation function is

Sigmoid Function (Sehr, 2011) (K., 2002) given as:

Function 1. Sigmoid Function (K., 2002)

b. Fuzzy Logic (FL)

All system which works based on the fuzzy logic try to

simulate human behavior and reasoning (Khatibi V. a., 2011).

Fuzzy logic is a mathematical tool for dealing with

uncertainty and also it provides a technique to deal with

imprecision and information granularity.

A fuzzy set is a set with a smooth boundary (Lalitha.

R.V.S, 2012) (Srinivasa Rao.T, December 2011). Fuzzy set

theory generalizes classical set theory to allow partial

membership (Ziauddin, 2012). The best way to introduce

fuzzy sets is to start with a limitation of classical sets. A set

in classical set theory always has a sharp boundary because

membership in a set is a black-and-white concept, i.e. an

object either completely belongs to the set or does not

belongs to the set at all. The degree of membership in a set is

expressed by a number between 0 and 1; 0 means entirely not

in the set, 1 means completely in the set, and a number in

between means partially in the set. This way a smooth and

gradual transition from the region outside the set to those in

the set can be described. A fuzzy set is thus defined by a

function that maps objects in a domain of concern to their

membership value in the set. Such a function is called the

Membership Function and usually denoted by the Greek

symbol μ. The membership function of a fuzzy set A is

denoted by μA, and the membership value of x in A is

denoted by μA(x). The domain of membership function,

which is the domain of concern from which elements of the

set are drawn, is called the Universe Of Discourse. We may

identify meaningful lower and upper bounds of the

membership functions. Membership functions of this type

are known as interval values fuzzy sets. The intervals of the

membership functions are also fuzzy then it is known as

interval Type-2 fuzzy sets.

This research examines the potential of two soft Machine

Learning Models and one algorithmic approach i.e. fuzzy

logic and artificial neural networks and Use Case Point

respectively for software project development effort

estimation models.

 Computer Science and Engineering 2019, 9(1): 6-11 9

3. Mixed Software Project Prediction
Models

3.1. Fuzzy Logic Approach with Use Case Based Effort

Estimation Model

A fuzzy set is represented by a membership function. Each

element will have a grade of membership that represents the

degree to which a specific element belongs to the set.

The central idea of extending Use Case Based

Estimation Model (UCBEM) to Fuzzy -UCBEM through

fuzzy set theory is to expand semantics (Simple, Average,

and Complex) used to categorize use case complexities.

A triangular membership fuzzy number can be represented

by A (a, b, c), whose membership functions are presented in

the following equation (Divya Kashyap, 2014):

Equation 2. Triangular Membership

The values a, b, and c respectively identify the lower,

middle, and upper limits that determine the shape of the

triangle.

3.2. Neural Network Approach with Use Case Based

Effort Estimation Model

The actual weight calculation also includes the slope of

the filtering (activation) function and a learning rate value.

The favored function for the back-propagation algorithm is

the sigmoid function (Attarzadeh I. &., 2010). Since the

function is not linear, it is appropriate for software effort

estimation problem.

Figure 1. A Neural Network for Software Project Development Effort

Estimation

3.3. Neuro-Fuzzy with Use Case Based Effort Estimation

Model

For Neuro-Fuzzy use Case Based experiment input data

(variables) are collected first. The input variables selected

for the neural network model are based on the use case based

effort estimation model. These variables are

1. Actor’s complexity weighting factors (AW)

2. Use case complexity weighting factors (Fuzzified use

case complexity weighting factors in the case of

Fuzzy-UCBEM)-UCW.

3. Technical complexity weighting factors (TCF)

4. Environmental factors (EF)

4. Model Evaluation Approach

In this work, In order to evaluate the techniques with

respect to their fitting accuracy, Relative Error (RE),

Magnitude of Relative Error (MRE) and Mean Magnitude of

Relative Error (MMRE) and Prediction at Level P (Prep(P)

are used, where P is a percentage needed. We use this

methods because MMRE and PRED are the most widely

used metrics for evaluating the accuracy of cost estimation

models (Nguyen, 2010).

The Relative Error (RE) and Magnitude of Relative Error

(MRE) (Attarzadeh I. a., January 2010) (Iraji, 2012) (Wei

Lin Du, 2010) which is defined as follows.

The RE is used to calculate the estimation accuracy

Magnitude of Relative Error (MRE) is defined as

MRE = | Estimation Effort - Actual Effort |

 Actual Effort

Or Magnitude of Relative Error (MRE) is defined as

(Reddy, 2009) (Raju, 2010)

 MRE = | Estimation Effort - Actual Effort | X 100

 Actual Effort

Mean Magnitude of Relative Error (MMRE)

The mean magnitude of relative error (MMRE) is the

average of all magnitudes of relative errors. MMRE is

defined as follows (Ali Idri, 2004):

MMRE =
MRE

N

𝑛

𝑖=1

 OR

Where N is the number of projects

MMRE: This is a very common criterion used to evaluate

software cost estimation models (Nassif A. B., 2012).

Prediction Level (PRED)

PRED (P) =k/n

Where P is the maximum MRE of a selected range, n is the

total number of projects, and k is number of projects in a set

of n projects whose MRE <= P (k is the number of

observations with a MRE less than or equal to p). A common

value for p is 0.25 (Ali Idri, 2004) (Idri, 2002). PRED

10 Ketema Kifle Gebretsadik and Walelign Tewabe Sewunetie: Designing

Machine Learning Method for Software Project Effort Prediction

calculates the ratio of projects’ MREs that falls into the

selected range (P) out of the total projects.

A standard criteria for considering the model as acceptable

is Prep (0.25) ≥ 0.75 (Malathi, 2012) (B.A. Kitchenham,

2001). This means that at least 75% of the estimate is within

the range of 25% of actual values. A model which gives

higher Prep (0.25) is a better model.

5. Discussion of the Result

In order to evaluate the techniques with respect to their

fitting accuracy, Mean Magnitude of Relative Error (MMRE)

and Prep (I) methods were used. These methods are accepted

as common accuracy indicators of software cost estimation

models (Nassif A. B., 2012). They are also considered

as more reasonable variables than other statistical criteria,

since they measure the capability of prediction, not the

statistical explanation. The relative error (RE) is ((actual

effort-estimated effort) / actual effort) *100. The magnitude

of relative error (MRE) is the absolute value of the relative

error (MRE=|RE|). The mean magnitude of relative error

(MMRE) is the average of all magnitudes of relative errors.

MMRE is defined as follows:

Where N is the number of projects

The most widely used evaluation criterion to assess the

performance of software effort estimation models is the

Mean Magnitude of Relative Error (MMRE), when MMRE

is used in the evaluation, good results are implied by lower

values of MMRE or If the MMRE is small, then we have a

good set of Predictions (Nassif A. B., 2010). A model is

accepted as a good effort estimation model, if it estimates

with MMRE 0.25 (Foss, 2003).

The accuracy of UCBEM, Fuzzy_UCBEM,

Neuro-Fuzzy-UCBEM and Fuzzy-UCBEM in terms of the

above criteria’s is computed, and the result is shown in the

following table 5.

Table 5. Summary of results in terms of MMRE and PRED (0.25)

 UCBEM
Fuzzy-

UCBEM

Neuro-

UCBEM

Neuro-Fuzzy-

UCBEM

MMRE 0.22 0.12 0.13 0.03

Prep(0.25) 0.8 0.93 0.93 1

The experimentation results in terms of both MMRE and

Prep (0.25) shows that the Neuro-Fuzzy-UCBEM technique

appears as best outperform model than Fuzzy-UCBEM,

Neuro-UCBEM and UCBEM models. The result indicates

that the neural network model out performs best when it is

used with fuzzy use case complexity weighting factor inputs,

and it is to some extent better than UCBEM when it is used

the fuzzyfing inputs.

Figure 2. Performance of models in terms of MMRE

Figure 3. Performance of models in terms of Prep (0.25)

Figure 4. Models with training and learning function using MMRE value

Figure 5. Models with training and learning function using PRED (0.25)

value

 Computer Science and Engineering 2019, 9(1): 6-11 11

As we have seen in the above graph TRAINRP and

LEARNGD functions shows small percentage of MMRE

value than the other three training and learning functions. So

the small number of MMRE value is best estimation model

indicator (Foss, 2003).

6. Conclusions and Future Works

In this research work we have tried to address potential

issue of machine learning approaches like neural network,

fuzzy logic and modified environmental factor with the use

case point for software project effort prediction. So we

believe that the potential of machine learning approaches and

Revised Use Case Point (Re-UCP) could be further explored

by adding more historical data and one can come up with

better results by extending this work. So in the future we

have planned to work Using Revised Use Case Point

(Re-UCP) method for more reliable data set. Compering the

extended use point and Revised Use Case Point (Re-UCP)

method using Neuro-fuzzy methods. Adding environmental

factor and technical factor. It is also possible to check the

performance of the neural network model with other training

and transfer functions.

REFERENCES

[1] Ali Idri, A. A. (2004). Validating and Understanding
Software Cost Estimation Models based on Neural Networks.

[2] Attarzadeh, I. &. (2010). "Soft Computing Approach for
Software Cost Estimation," .

[3] Attarzadeh, I. a. (January 2010). "Soft Computing Approach
for Software Cost Estimation," .

[4] Attarzadeh, I. a. (January 2010). Soft Computing Approach
for Software Cost Estimation.

[5] B.A. Kitchenham, L. S. (2001). What accuracy statistics
really measure.

[6] Borade, J. G. (2013). Software Project Effort and Cost
Estimation Techniques. Volume 3.

[7] Divya Kashyap, D. S. (2014). Refining the Use Case
Classification for use Case Point Method for Software Effort
Estimation.

[8] Foss, T. S. (2003). A simulation study of the model evaluation
criterion MMRE. Software Engineering. IEEE Transactions
on, 29(11), 985-995.

[9] Idri, A. K. (2002). Can neural networks be easily interpreted
in software cost estimation? IEEE.

[10] Iraji, M. S. (2012). Object Oriented Software Effort Estimate
with Adaptive Neuro Fuzzy use Case Size Point.

[11] Jha, P. P. (2014, December). "Estimating Software
Development Effort using UML Use Case Point (UCP)
Method with a Modified set of Environmental Factors,"
Diploma, University of Linkoping.

[12] K., T. M. (2002). " Can neural networks be easily interpreted
in software cost estimation?,".

[13] Karner, G. (1993, December). Metrics for objectory. Diploma,
University of Linkoping.

[14] Khatibi, V. a. (2011). "Software Cost Estimation Methods: A
Review,".

[15] Khatibi, V. a. (2011). Software Cost Estimation Methods: A
Review.

[16] Lalitha.R.V.S. (2012). MARKOV MODEL: Analyzing its
behavior for Uncertainty conditions. Vol 2.

[17] Malathi, S. &. (2012). Analysis Of Size Metrics And Effort
Performance Criterion In Software Cost Estimation.

[18] Nassif, A. B. (2013). "Towards an early software estimation
using log-linear regression and a multilayer perceptron
model,".

[19] Nassif, A. B. (2010). Enhancing use case points estimation
method using soft computing techniques. Journal of Global
Research in Computer Science, 1(4).

[20] Nassif, A. B. (2012). Software Size and Effort Estimation
from Use Case Diagrams Using Regression and Soft
Computing Models.

[21] Nassif, A. B. (2012). " Software Size and Effort Estimation
from Use Case Diagrams Using Regression and Soft
Computing Models," .

[22] Nassif, A. B. (2013). Towards an early software estimation
using log-linear regression and a multilayer perceptron
model.

[23] Nguyen, V. (2010). Improved Size and Effort Estimation
Models For Software Maintenance.

[24] Pragya Jha, P. P. (2014). Estimating Software Development
Effort using UML Use Case Point (UCP) Method with a
Modified set of Environmental Factors.

[25] Raju, R. a. (2010). An Optimal Neural Network Model for
Software Effort Estimation.

[26] Reddy, C. S. (2009). A concise neural network model for
estimating software effort.

[27] Sehr, Y. S. (2011). "Soft Computing Techniques For
Software Project Effort Estimation," . (3).

[28] Srinivasa Rao.T, P. R. (December 2011). Fuzzy and Swarm
Intelligence for Software Cost Estimation. Volume 11(Issue
22).

[29] Tailor1, J. S. (2014). "Comparative Analysis Of Software
Cost And Effort estimation Methods: A Review,".

[30] Wei Lin Du, D. H. (2010). Improving Software Effort
Estimation Using Neuro-Fuzzy Model with SEER-SEM.

[31] Ziauddin, S. K. (2012). Software Cost Estimation Using Soft
Computing Techniques. Vol. 2(1).

