
Computer Science and Engineering 2018, 8(1): 1-6
DOI: 10.5923/j.computer.20180801.01

Cross-platform Mobile Document Scanner

Amit Kiswani

Lead/Architect Mobile Applications, Paramount Software Solutions, Atlanta, USA

Abstract Document scanning is becoming more and more important these days. Most of the businesses need one or the
other document like your identity, or some sort of proof (residence, income, SSN or birth certificate). Mobile phones,
tablets, and iPads are easily accessible than the scanner connected to the personal computer, so it is crucial to integrate the
scanning feature in the mobile applications. This paper briefly compares two possible approaches for augmented paper
document scanning, Native versus Cross-platform and proposes a cost-effective solution, cross-platform mobile scanner,
using technologies like Apache Cordova, OpenCV, HTML5, JavaScript, and CSS. The cross-platform solution provided for
document scanning is possible to extend for a mobile website as well. This paper also presents different computer vision
algorithms, fundamentals of image formation, camera-imaging geometry, feature detection and matching of digital images,
and it also explains methods for acquiring, processing, analyzing and understating digital images.

Keywords Cross-platform, Native, Hybrid, Augmented, OpenCV, Computer Vision, Adaptive thresholding, Canny
Edge Detention, Apache Cordova

1. Introduction
Mobile App market is tremendously growing. Most of

the organizations and businesses have dived in adopting
Mobile applications as the best mean of communication
with their users. According to PEW research, 77% of U.S.
Adults own a smartphone. This is the substantial motivating
factor for organizations to incorporate all the best possible
features in the mobile application to suffice their business
needs. One of the crucial features that need to be
assimilated in the mobile applications is the document
scanning and submission. Many business industries like
mortgage, insurance, cell phone, banks, home construction
companies, healthcare, pharmaceutical and government
agencies significantly require their users to submit various
documents for different business reasons.

With smartphones comes camera, which gives a user an
ability to take pictures. Adding the Ability to scan essential
documents with mobile and upload there and then is a great
and convenient feature for users. The dark side of it is that
the different architecture and programing language of the
software and the hardware capability of numerous
smartphone devices pose a challenge for document scanning.

There are two different development methods to build the
mobile application- Native and Cross-Platform. Native is
considered to be the traditional method, but technology
evolves rapidly leading to the rise of the new method,

* Corresponding author:
amitkiswani@gmail.com (Amit Kiswani)
Published online at http://journal.sapub.org/computer
Copyright © 2018 Scientific & Academic Publishing. All Rights Reserved

Cross-Platform. It is a crucial decision to determine the best
method of development especially for the development of a
scanning feature. Many companies are adopting
Cross-Platform development framework for mobile apps, but
there is no straightforward solution available for scanning
feature in the Cross-platform framework. This paper will
explain the need to choose the cross-platform method for
scanning development and the elaborative steps to
accomplish the scanning results via this method.

2. Literature Review
Apple’s mobile devices- iPhone and iPad operate on the

iOS operating system, Android mobile devices and tablets
operate on the Android operating system, and Microsoft's
mobile devices operate on Windows operating system. Since
2009, Android and iOS platforms have seen massive success
in the number of app installations. The convenience of the
mobile phone gave apps an edge over desktop software, and
it is increasingly preferred over the mobile web [9]. Hence, it
is imperative to know the development platforms for these
operating systems.

Native Platform Approach: The Native platform is the
‘specific' development approach meaning it requires to write
the program logic in the native language of the device itself
like in objective C/Swift for iPhone, Java for Android
and .net for Windows phone. Advantages of native
applications include easy access to operating system and
device features like camera, calendar, microphone, etc. It
also provides a great user experience in regard to speed since
all the operations of the mobile app occurs at the device level.
The most prominent drawback with the native approach is

2 Amit Kiswani: Cross-platform Mobile Document Scanner

that it is expensive since it requires different skillset of
resources and maintenance of the different set of code for
different OS.

From document scanning point of view, there are
numerous application programming interfaces available that
can be integrated into your application. These API’s are
written in OS-specific language, which would be challenging
to integrate and maintain for all platforms.

Cross-platform Approach: Cross-platform is a ‘build once,
deploy all’ solution meaning code is developed once, and it
can run on different operating systems like iOS, Android,
and Windows. Cross-platform and hybrid platform are the
terms used interchangeably. Cross-platform apps are
developed in HTML5, CSS, and JavaScript that work in a
WebView wrapped in native apps. They are developed with
the help of different tools. Tools like Apache Cordova allows
the app to access device features like camera, microphone,
etc. Most significant advantages of Cross-platform include
quick development, easy distribution on the different app
stores and is cost effective. The disadvantage of the
cross-platform approach is the dependency on the tool and its
limitations. Currently, cross-platform end to end scanning
solution is very much required since no straightforward
solution is available.

3. Challenges for Implementing
Scanning Feature

A usual method to implement scanning would be to write
the program logic in the native language of the device. The
major pro with the native methodology is that the image is

not transmitted over the network and scanning can be done
on the device itself and finally, the output can be transmitted
to the backend server if required. The most significant
drawback of native approach is that it is not cost effective
and involves more efforts for development and maintenance
of the application. The users of the different mobile devices
may be using different versions of the operating system, and
this makes it difficult for the developer to maintain or
provide support. The alternative option is to implement
scanning feature on a cross-platform application.

4. Proposed Solution
Cross-platform development is a cost-effective solution,

and it is easy to maintain and support one codebase for
different mobile operating systems. In this research paper,
the solution is formulated using different open source
technologies that will support the scanning feature on
cross-platform mobile applications. With the cross-platform
framework, Apache Cordova, the application can access the
device's camera to take a picture or access the photo library
for image upload.

Using Apache Cordova on the front-end, the augmented
paper image will be captured via device's camera. The
document will then be sent to the application server for
scanning effects to be applied via computer vision
algorithms. Upon the successful scanning results, the
document will be saved to the content management system.
Document scanning processing occurs on the backend server,
unlike Native application. (e.g., Figure 1).

Figure 1. Architecture for cross-platform scanning

 Computer Science and Engineering 2018, 8(1): 1-6 3

5. Cross-platform Mobile Application:
Document Upload Steps

5.1. Image Capture via Apache Cordova

Front-end mobile application development will be done
on Apache Cordova framework since it is an open source
tool and compatible with multiple platforms. It supports a
model of plug-in architecture. It allows you to use standard
web technologies- HTML5, CSS3, and JavaScript for
cross-platform development. Applications execute within
wrappers targeted to each platform and rely on
standards-compliant API bindings to access each device's
capabilities such as sensors, data, network status, camera, etc.
[6]. Once the application is built, Cordova camera plugin can
be added to the app. Camera plugin gives the application an
ability to take a picture, and it provides an option to generate
the image in base 64 or binary format [5]. It is recommended
to use the binary format since base 64 can increase the size of
the image by 30%. Camera plugin provides various methods
to accomplish this. [5]
camera.getPicture(successCallback,errorCallback, options)

The camera.getPicture calls the camera application of the
respective smartphone device, which allows the user to take
a picture of the document; Camera source type must be set to
‘Camera' [5]. If a picture is taken successfully then it will
pass an image to success Callback function as base
64-encoded String, or as a binary format for the image file
(e.g., Figure 2).

Figure 2. Augmented SSN document image was taken from iPhone 6S
camera (Size 2.2 MB) (Width 3024 and Height 4032 pixels)

5.2. Important Option for Camera Settings
Camera.EncodingType: JPEG or PNG

Camera setting is the most crucial thing to provide a
primary image for scanning. Most of the mobile devices

support two formats of images, JPEG and PNG. When
considering the format for document scanning, PNG is more
appropriate then JPEG.
PNG vs. JPEG

JPEG is Joint Photographic experts group [2]. It is a
bitmap compression format, most commonly used for lossy
compression. The compression ratio is adjustable which
means you can determine your balance storage size and
quality. It uses 8 bits for each red, blue and green that implies
every pixel requires 24 bits.

PNG is Portable Network Graphic. An advantage of using
PNG is that its compression is lossless meaning there is no
loss in quality each time it is opened or saved again. It is
excellent for text and screenshots. It also handles detailed
high contrast and supports 24-bit RGB and 32-bit RGBA
colors. [4]. For these reasons, PNG is good for the textual
image and recommended for document scanning.

6. Cross-platform Mobile Application:
Computer Vision Scanning Steps

Once the document is captured, it will be transmitted to
the backend server. A web service can be implemented that
can consume the images, and OpenCV algorithm can be
applied to scan these images. Document scanning through
OpenCV can be achieved in few steps (e.g., Figure 3). First,
detect edges of the paper being scanned, crop the image, and
apply some transformative computer vision algorithms to
transform an image in scanned like form. The primary
challenge with document scanning with smartphones is the
lighting condition like where a user would be taking the
camera image. Second is the distance at which the user
would take the picture. These challenges can be mitigated
with OpenCV algorithms explained later in the paper.

Figure 3. Steps for scanning the image

4 Amit Kiswani: Cross-platform Mobile Document Scanner

6.1. OpenCV

It is an open source Computer Vision Library. It also
offers interfaces in C++, C, Python, and Java and supports
different operating systems like Windows, Linux, Mac OS,
iOS, and Android. OpenCV is intended for computational
capability and with a strong focus on real-time applications.
Written in optimized C/C++, the library can take benefit of
multi-core processing [1]. For this paper, we will use Java
interfaces, as Java is a widely used language with nine
million Java developers in the world. Since the release of
OpenCV 2.4.4 in Jan 2013, Java binding has been officially
developed. The first thing to notice is that OpenCV is a C++
library that should be compiled with operating system
specific compiler. OpenCV provides an interface called Java
Native Interface (JNI), and to get the native code running in
Java Virtual Machine (JVM), one needs to install JNI, this
way the native code is required for each platform that your
application is going to be run [1]. For example, if you are
using windows for development then you have to compile
JNI in a windows environment and similarly, if production
server is hosted in Linux then JNI need to be generated in
Linux environment.

6.2. Basic Matrix

In Computer Vision, we can see the image as a matrix of
numerical value, which represents its pixels. For a gray-level
image, we usually assign values from 0 (Black) to 255
(White) and the numbers in between shows mixture of both.
Each element of the matrices (MAT) refers to each pixel on
the gray-level image; the number of columns refers to the
image width, and the number of rows refers to the image
height. To represent an image in color, we usually adopt each
pixel as a combination of three primary colors red, green and
blue, so the triplet of colors represents each pixel in the
matrix. OpenCV has a variety of ways to describe images
signed, unsigned or floating-point data types as well as the
different number of channels [1, 3]. For this paper, we will
stick with an unsigned integer that ranges from 0 to 255.
Several constructions are available for the matrix, for
instance:

Mat image = new Mat (3024, 4032, CvType.CV_8S);
image = Imgcodecs.imread (pathToFile)
The above method will construct the matrix suitable to fit

an image with 4032 pixels of width and 3024 pixels of height.
And CV_8S represents the 8-bit unsigned integer. The
imread method is supplied to get the access to the image
through the files Method to load the file into the matrix,
make sure you import org.opencv.imgcodecs.Imgcodecs.

6.3. Resize Image

Resizing the images is also one of the essential steps in
scanning because it will help to speed up the edge detection
process. Resize should be done in the same ratio as the
original height and width of the image. Java package,
java.awt.Image.*, can be used to reduce the image to

required size. For example, we reduced the image to ten
times smaller (figure 4).

BufferedImage img = ImageIO.read(pathToFile);
Image scaledImg = img.getScaledInstance(newWidth,
newHeight, BufferedImage.SCALE_SMOOTH);

6.4. Convert Image to Grayscale and Perform Gaussian
Blur

Noise in the image makes edge detection very difficult, so
the first step is to remove the noise in the image with a
Gaussian filter. Convert the image from RGB to grayscale
and then apply the Gaussian filter (e.g., Figure 4).

Imgproc.cvtColor(Mat source, Mat gray,
Imgproc.COLOR_RGB2GRAY);
Imgproc.GaussianBlur(Mat gray, Mat blur, new
Size(5.0,5.0), 0.0)

Figure 4. Image Outcome after Resize and Gaussian blur (Size 47 kb)
(Width 302 and Height 403 pixels)

6.5. Canny Edge Detection

Figure 5. Image outcome after applying Canny

 Computer Science and Engineering 2018, 8(1): 1-6 5

Edge detection is the next step after the Gaussian filter. A
canny algorithm is an excellent approach that was proposed
by computer scientist John F. Canny, who optimised edge
detection for low error rate, single identification, and correct
localization. The Canny algorithm applies a Gaussian to
filter the noise, calculates intensity gradients through Sobel,
suppresses spurious responses, and uses double thresholds
followed by a hysteresis that suppresses the weak and
un-connected edges. (e.g., Figure 5).

6.6. Finding Contours

Contours are primarily a curve joining all the consecutive
points along with the boundary having same color or depth.
It is a useful mechanism for shape analysis and object
detection and recognition. Finding counter algorithm helps
to find the paper edges, that is the X and Y coordinate value
of four corners point.

6.7. Perspective Wrapping

Next step here would be to crop the image form the points
detected in the previous step of finding contours. The
primary method used is warp perspective. Given below is the
signature of the method.

public static void wrapPerspective(Mat source, Mat
destination, Mat M, Size dsize);
The source is naturally the original image taken from the

smartphone (e.g., Figure 2), not the resized one. The
destination is the outcome image (e.g., Figure 6). Mat M is
the wrapping matrix. To calculate it, you can use the
getPrespectiveTransform method of class Imgproc. This
method will calculate the perspective matrix from two sets of
the four correlated 2D points, the source, and the destination
points.

Figure 6. Image after cropping (Size 653 KB)

6.8. Adaptive Thresholding

Once the image is cropped, some Image transformative
algorithms need to be executed which will make it
lightweight and turn it into black and white. The user can
keep it as color if desired but text document in black and
white will save a lot of memory storage. One of the most
straightforward methods of segmenting an image is using the
threshold technique. It will mainly set pixels below a given
threshold value as belonging to the interested object as black
and the pixels above the threshold value to be converted to
white. Another interesting approach to this type of

segmentation is related to the use of a dynamic threshold
value. Instead of using a given value, the threshold is
calculated as a mean of a square block around each pixel
minus a given constant. This method is implemented in
OpenCV through the adaptive Threshold method, which has
the following signature:

public static void adaptiveThreshold(Mat source, Mat
destination, double maxValue, int adaptiveMethod, int
thresholdType, int blockSize, double C)

Figure 7. Image after thresholding (Size 274 KB) (Width 1504 and Height
928 pixels)

Note how image size is reduced to half after thresholding.
Initial scanned color image size was 635 KB, but the black
and white transformed image size is 274 KB. (e.g., Figure 7).

7. Conclusions
Smartphones are handier than the desktops or laptops.

Increasing popularity of the cross-platform mobile
development approach demands the cross-platform mobile
scanner. In this paper, we covered the critical aspects of
document scanning, briefly reviewed the limitation of native
development approach and presented the cost-effective
cross-platform development solution of document scanning.
With growing Internet speed (802.11ac standard for Wi-Fi
and 4G LTE high network speed), the transmission of image
over the network becomes fast which prominently supports
the cross-platform approach of document scanning on the
backend server. This paper also covered the key aspects of
computer vision's algorithms and how they can be useful to
read, process and transform digital images. Primary steps for
scanning implementation includes a Gaussian filter as well
as the essential edge detectors. Conclusive step discussed is
image segmenting technique called thresholding with
adaptive thresholding results.

REFERENCES
[1] Baggio, D. L. (2015). OpenCV 3.0 Computer Vision with

Java (Vol. 3). Birmingham: Packt Publishing Ltd.

[2] Designtechnica Corporation. (2017). PEG vs. PNG: Which
image-saving format is the better one to use? Retrieved from
Digital Trends: https://www.digitaltrends.com/photography/j
peg-vs-png-photo-format/.

6 Amit Kiswani: Cross-platform Mobile Document Scanner

[3] OpenCV team. (2017). Home. Retrieved from OpenCV:
https://opencv.org/.

[4] Pew Research Center. (2017, June 28). 10 facts about
smartphones as the iPhone turns 10. Retrieved from pew
research: http://www.pewresearch.org/fact-tank/2017/06/28/
10-facts-about-smartphones/.

[5] Soko Media. (2017, April 13). Cross-Platform vs. Native App
App Development: Pros and Cons. Retrieved from
www.businessofapps.com:
http://www.businessofapps.com/cross-platform-vs-native-ap
p-app-development-pros-and-cons/.

[6] TechSmith Corporation. (2017). JPG vs. PNG: Which Should
I Use? Retrieved from Tech Smith:
https://www.techsmith.com/blog/jpg-vs-png/.

[7] The Apache Software Foundation. (2015). Cordova Plugin
Camera. Retrieved from Apache Cordova:
https://cordova.apache.org/docs/en/latest/reference/cordova-
plugin-camera/.

[8] The Apache Software Foundation. (2015). Overview.
Retrieved from Apache Cordova:https://cordova.apache.org/
docs/en/latest/guide/overview/index.html.

[9] Twistfuture Software Pvt. Ltd. (2017, March 17). Evolution
of Mobile Application Development. Retrieved from
www.twistfuture.com:
https://www.twistfuture.com/blog/the-evolution-of-mobile-a
pplication-development/.

	1. Introduction
	2. Literature Review
	3. Challenges for Implementing Scanning Feature
	4. Proposed Solution
	5. Cross-platform Mobile Application: Document Upload Steps
	6. Cross-platform Mobile Application: Computer Vision Scanning Steps
	7. Conclusions

