
Computer Science and Engineering 2016, 6(1): 1-6
DOI: 10.5923/j.computer.20160601.01

Decentralized Access Control Schemes for Data
Storage on Cloud

Shraddha V. Mokle*, Nuzhat F. Shaikh

Department of Computer Engineering, Modern Education Society's College of Engineering, Pune, India

Abstract In this review paper of decentralized access control schemes are reviewed for secure information storage on
cloud. In centralized network storage, data is not secure, data accessing for different user is difficult, updating data is also not
that easy, to overcome all these issues decentralized schemes are considered. A decentralized access control scheme with
anonymous authentication provides user revocation and prevents replay attacks. The cloud does not know the identity of the
user who stores information, but only verifies the user’s credentials. Fine-grained access control scheme grants different
access control policies to user to do operations on their data. Key distribution is done in a decentralized way. Data stored in
clouds is highly sensitive. These schemes gives secure data storage in decentralized network compared to centralized
network.

Keywords Fine-grained Approach, Access control, Authentication, Key Distribution Center, Attribute-based signatures,
Cloud storage

1. Introduction
Research in cloud computing is reached to its best &

receiving a lot of attention from both academic and industrial
worlds. Cloud computing is basically for users who can
outsource their computation and stores data/information to
cloud using Internet. Cloud services like applications (e.g.
GoogleApps), infrastructures (e.g Eucalyptus, Amazon’s
EC2, Nimbus), platforms for developers to write
applications (e.g., Amazon’s S3, Windows Azure). Much of
the data stored in clouds is highly sensitive and which
requires security, for example, social networks and medical
records. Security and privacy are thus very important and
critical issues in cloud computing. In one hand important
thing is, the user should authenticate itself before initiating
any transaction, and on other hand, it must be ensured that
the cloud or other users do not know the identity of the user.
The cloud can hold the user who uses cloud for storage with
respective to their application to outsources data, and
likewise, the cloud itself accountable for the services it
provides. The validity of the user who stores the data is also
verified. There is need of law enforcement other than
technical solutions to ensure other than privacy and security
[1].

Cloud access control is gaining attention because it is
important that only authorized users have access to valid

* Corresponding author:
mokle.shraddha@gmail.com (Shraddha V. Mokle)
Published online at http://journal.sapub.org/computer
Copyright © 2016 Scientific & Academic Publishing. All Rights Reserved

service. A huge amount of information is being stored on
cloud servers, and much of stored data is sensitive
information. Sensitive information is online social
networking where users (members) store their pictures,
videos and personal information and share them with
selected groups of users or communities. It is not just enough
to store the contents or information securely in the cloud but
also it’s necessary to ensure invisibility of the user. For
example, a user would like to store some sensitive
information but does not want to be recognized, user need
security for their information that will be stored anywhere.
The user might want to post a comment on picture, article but
does not want his/her identification to be disclosed. However,
the user should be able to demonstrate to the other users that
he/she is a valid user who stored the information without
revealing the identification or identity.

Existing work on access control in cloud are amalgamated
or centralized in nature. Even if some fragmented or
decentralized approaches were existing does not support
authentication for user. Earlier work provides privacy
preserving validated or authenticated access control in cloud.
However, the author take amalgamated or centralized
approach where single key distribution center (KDC)
distributes secret keys and attributes to all users.

2. Literature Survey
Access control of information/data in clouds is centralized

in nature. All schemes use ABE or symmetric key approach
and does not support user authentication. Earlier work
provides privacy preserving authenticated access control in

2 Shraddha V. Mokle et al.: Decentralized Access Control Schemes for Data Storage on Cloud

cloud.
A decentralized approach is proposed by different others

in existing papers, their technique does not authenticate users
for data access, who want to remain anonymous while
accessing data. Previous work has proposed distributed
access control mechanism in cloud. However, the scheme
does not provide authentication for users. Other important
thing was that only creator can write that stored file other
users can not able to write that file which was stored on cloud.
In earlier work write access was given to only creator or
owner of respective file not to the readers this was the
drawback [2].

Cloud servers are liable to suffer from Byzantine failure,
where a storage server can fail in arbitrary ways [3]. Author
Proposes Authority to revoke user attributes with minimal
effort [3]. The cloud is also liable to suffer from data
modification and server colluding attacks. In server
colluding attack, the adversary can compromise storage
servers, so that it can change or modify data files as long as
they are internally consistent. Data encryption is needed to
provide secure data storage on cloud. However, the data is
often modified and this dynamic property needs to be taken
into consideration while designing efficient secure storage
techniques. Efficient search on encrypted data is also an
important deal in clouds. The clouds should not know the
processing of data i.e. query but should be able to return the
records that satisfy the query. This is achieved by means of
searchable encryption.

Key Distribution Center (KDC) is centralized approach
where a single KDC distributes secret keys and its attributes
to all users that are present. Single KDC is single point of
failure, with single secret key failure whole system can
collapse. KDC is difficult to maintain because of large
number of users that are present in the cloud for information
sharing or storage. Therefore, this emphasize that clouds
should take decentralized approach for distributing secret
keys. Now days it’s quite natural that clouds have many
KDCs in different remote places in the network [4].

ABE scheme which is proposed in [5] has set of attributes
defined with Unique Id. Two classes has been defined in the
ABEs ABE or KP-ABE, sender has an access policy to
encrypt data. In key policy ABE or KP-ABE [6] the sender
has an access policy to encrypt data. A writer whose
attributes and keys have been revoked cannot write back
stale information. The receiver receives attributes and secret
keys from the attribute authority and is able to decrypt
information if it has matching attributes. In Cipher
text-policy, CP-ABE, the receiver has the access policy
presented in form of a tree, with attributes as leaves and
monotonic access structure with AND, OR and other
threshold gates [6] [7].

All the approaches take a centralized approach and allow
only one KDC, which is a single point of failure [9]. Chase
proposed a multi authority ABE, in which there are several
KDC authorities (coordinated by a trusted authority) which
distribute attributes and secret keys to users. Multi authority
ABE protocol was studied in, which required no trusted

authority which requires every user to have attributes from at
all the KDCs. Recently, proposed work fully, decentralized
ABE where users could have zero or more attributes from
each authority and did not require a trusted server [9]. In all
these cases, decryption at user’s end is computation intensive.
So, this technique might be inefficient when users access
using their mobile devices. To get over this problem, work
proposed to outsource the decryption task to a proxy server,
so that the user can compete with minimum resources (for
example, hand held devices). However, the presence of one
proxy and one KDC makes it less robust than decentralized
approaches. Both these approaches had no way to
authenticate users, anonymously. A modification of
authenticate users, who want to remain anonymous while
accessing the cloud [5]. A recently different scheme works
on decentralized approach and provides authentication
without disclosing the identity of the users. However, as
mentioned in the previous section it is prone to replay
attacks.

3. Analysis of Access Control Schemes
3.1. Overview

In cloud computing data access authentication is very
important concern. Different papers proposed authentication
for data stored on cloud server, data access polices and how
the key distributed amongst creator, writer and reader. This
paper, analyze existing work for cloud data storage in
decentralized network.

In existing work related to access key policies and data
storage, entire operation i.e. read or write was performed on
centralized in nature scheme, it uses AES Scheme which is
known for single key manner it seems less secure and high
performance comparatively it’s a somewhat faster than
asymmetric scheme. For uploading data on cloud servers,
owner takes a centralized method where single KDC (Key
Distribution Center) allocates keys with access controlling
attributes which are distributed in different users when there
is huge number of request from more than one user at same
time, there may be chances to crash because of server
overload and the server may go down and key management
for multiuser through single KDC is one of the challenging
issue.

Key management: In existing System Key management
is a challenging issue where sharing and storing keys in order
to provide the data security.

Authentication: In earlier existing system there is no
proper access controlling scheme performed while out
sourcing the data from data owner to cloud Server or from
cloud Server to end users while data accessing due to
performing by Coarse grained approach.

Key Distribution Center: KDC emphasize that clouds
should take a centralized method while providing or
allocating secret keys among the users. It is somewhat
difficult for clouds to have a single KDC to issues keys for
different locations in the world because single KDC might

 Computer Science and Engineering 2016, 6(1): 1-6 3

not sufficient for users. Centralized architecture meaning
that there can be single KDCs for key management,
inefficient due to limited handling capacity and system
performance is very poor.

Data integrity: When the system falling in providing data
confidentiality for users and security due to weak
cryptosystem then became to loosing data integrity, because
this data integrity affects.

3.2. Existing Schemes

3.2.1. Fine-Grained Access Control Scheme

Fine-grained Access Control Networked storage systems
provide cloud storage services for users over networks [6].
To ensure data confidentiality in secure networked cloud
storage systems data stored into encrypted form. Here
existing system Fine-grained access control facilitate
granting differential access rights to a set of users and allow
exibility in specifying the access rights of individual users.
There are several techniques which are known for
implementing fine grained access control.

Existing system gives high security for that which
performs a secure data transaction in the cloud; the suitable
cryptographic method is used .i.e. RSA algorithm. The
creator must encrypt the file with some specified attributes,
with creator’s private key which was generated by the KDC
operated by the Trustee. Fig 1. Shows fine- grained access
control of data on cloud server [12].

Setup Phase: In this phase of system data owner can get
Private Key from KDC, obtain his public key and get Time
interval tag from Time server for data availability and collect
all this things as per design attribute set and apply RSA
algorithm to encrypt the data be out sourcing to Cloud server.

Encrypt: In this phase data encrypted along with attribute
set, which consist of

E(M,PK,T,PuK)→RSA→CT,
where terms defined in existing system

M: Message,
Pk: Private Key which is obtained by KDC,
T: Time Interval,
Puk: Public Key
Decrypt: In this phase data decrypted along with Attribute

set, which consist of
D(CT)→RSA→M,PK,Puk.

Before to outsourcing the data to cloud server data owner
gives time interval tag which was issued by the time server
and which will be used as a time stamp. Finally
Owner/creator can able to upload encrypted data/information
into cloud server with Time intervals. In case of other user
who wants to access that file from cloud server, user need be
authorized by the cloud server i.e. fine grained approach will
be performed at cloud after authorized by cloud server, cloud
server respond to request and send encrypted content to user,
now user need get Decrypted keys that is Private key and
Public Key by the Trustee of system it will done based on
user Identity. Users may view the record if the user had the
key which is used to decrypt the encrypted file [1].
Sometimes this may be a failure due to the technology
development and the hackers. Mainly key distribution center
is a server that is responsible for cryptographic key
management. In fine grained approach expiration time for
public key is specified when the file is first declared or
uploaded on cloud server, hence public key is time based
key which will be deleted or removed by key manager when
an expiration time reached.

Figure 1. Fine-grained Access Control

4 Shraddha V. Mokle et al.: Decentralized Access Control Schemes for Data Storage on Cloud

Figure 2. Secure Cloud

3.2.2. Authenticated Access Control Scheme

The system consists of three users’ owner or creator,
writer and reader. Creator will create a file and upload it to
cloud server. Here creator will receive a token from trustee
and trustee is the federal government, which manages social
insurance numbers. The owner will send the id to the trustee
then receives token γ from trustee. Here τ is time stamp is
used to intercept write old information to cloud when the
user is revoked. The creator will then send the token γ to Key
Distribution Centre and there are various KDC available in
different regions of world. After sending token to KDC
creator will receive Encryption, Decryption keys and signing
keys. In Fig 2 𝑆𝐾 Is a secret key and 𝐾𝑥 are signing keys.
Message which is going to store on cloud is encrypted using
access policy X and it decides who have the right to access or
modify the data stored in the cloud. The Claim Policy y is
used to confirm authenticity and message is signed under this
claim policy. Along with the signature, Ciphertext i.e. c, C
respectively is sent to cloud. The sent signature is verified by
cloud and accordingly stores the Ciphertext. The Ciphertext
C is sent to the reader when reader wants to read the data in
cloud. If the other than creator has access policy with
matching attributes then the reader can decrypt and read the
message. For writer operation takes place as file
modification, making. The user sends the message with
claim policy and it is authenticated by cloud if the user is
authenticated then that user is permitted to write to existing
file.

3.2.2.1. Data Storage in Clouds

A user Uμ need to first registers itself with one or more
trustees that are available. For simplicity assume there is one
trustee. The KDCs are given keys ASK[i], APK[i] for
signing/verifying and PK[i], SK[i] for encryption/

decryption. The user on presenting this token obtains secret
keys attribute sets from one or more KDCs. Key for an
attribute x belonging to KDC Ai. The user also receives
secret keys 𝑠𝑘𝑥,𝑢 for encrypting stored messages. For
accessing message that will be stored on cloud policy created
by user that is access policy 𝑥 which is a uniformity
Boolean function. The message is then encrypted under the
access policy.

The end user also constructs a claim policy Y to enable the
cloud to authenticate the user. The creator/owner does not
send the message MSG as it is, but uses the time stamp and
creates 𝐻(𝐶) ∥ 𝜏 this is done to prevent replay attacks. If the
time stamp is not sent, then the respective user can write
previous old message back to the cloud server with an
authorized signature, even when its attributes and claim
policy have been revoked. The original work suffers from
replay attacks. A writer can send its message and correct
signature even when it no longer has access rights [11]. In
existing scheme a writer's rights have been revoked cannot
create a new signature with new time stamp and cannot write
back old information. After that it signs the message and
calculates the message signature.

3.2.2.2. Modifying Data to the Cloud

For writing to an already existing file, the user must send
its message with the claim policy as done during file creation.
Verification of the claim policy is done by cloud, and only if
the user is authorized, is allowed to write on the file.

3.2.2.3. User Revocation
Existing work defined how prevents replay attacks.

Existing work gives thought about how to handle user
revocation. Work should ensure that users must not have the
ability to access data, even if they possess matching set of
attributes to prevent data. For this reason, the owners should

 Computer Science and Engineering 2016, 6(1): 1-6 5

change the stored data and send updated data to other users.
Set of attributes Iμ possessed by the revoked user Uμ is
noted and users change their stored information that has
attributes 𝑖 𝜖 𝐼𝜇. In [10], revocation involved changing the
public and secret keys of the minimal set of attributes defined
by creator which are required to decrypt the data. This
approach is not considered because here different data are
encrypted by the same set of attributes (it should not encrypt
data by same attributes for different users), so different user
have different minimal set of attributes. Therefore, this does
not apply to model which is already there for anonymous
authentication of data. Once the attributes 𝐼𝜇 are identified,
all data that possess the attributes are collected. So that
without the public key, the private key and hence the data file
remain encrypted and are deemed to be unreachable. Thus,
the main security property of file is deletion provided that
even if a cloud provider maintains expired file copies in its
storage, it does not remove it and those files remain
encrypted, unrecoverable [1]. Policies based file assured
deletion [1], [10] for better access to the files and delete the
files which are decided no more. Developed system also has
the added new feature of fine grained access control in which
only authorized users are able to decrypt the loading
information. The system prevents replay attacks and
supports construction, modification, and reading data
collected in the cloud.

4. Security of the Protocol
Existing security of cloud storage protocols are:
Theorem1. Existing protocol is secure (no outsider or

cloud can decrypt ciphertexts), collusion resistant, allows
access only to authorized end users [13].

Proof. System showed that no unauthorized user can
access data from the cloud. Existing system first proved the
validity of scheme. A user can decrypt data if and only if it
has a matching set of attributes as per defined. This follows
from the fact that access structure S (and hence matrix R) is
formed if and only if there exists a set of rows X in R, and
linear constants. System next observes that the cloud is not
able to decode stored data. This is because it does not possess
the secret keys 𝑠𝑘_𝑖, 𝑢. Even if it colludes with other users,
it cannot decode data which the users cannot themselves
decrypt, because of the above reason (same as collusion of
users). The KDCs are not owned by clouds and are located in
different servers. For this reason, even if some (but not all)
KDCs are compromised, the cloud server cannot decode
data.

Theorem 2. System’s authentication scheme is precise,
conspiracy secure, resistant to replay attacks, and protects
privacy of the user [13].

Proof: Only valid users registered with the trustee(s) and
receive attributes, keys from the KDCs. A user’s token is
𝐾𝑏𝑎𝑠𝑒, 𝐾0 where signature on 𝜇, 𝐾𝑏𝑎𝑠𝑒, 𝐾0 with TSig
belonging to the trustee. An invalid user with a different
user-id not allowed creating the same signature because it
does not know TSig.

5. Conclusions
In decentralized access every system has the access

control of data. We reviewed that cloud servers are secured
storage where the anonymous authentication is used for users,
so that only the permitted users can access or modify data.
Decryption of data can be viewed only by authorized users. It
supports prevention of replay attack, creation of
data/information, modifying the data by unknown users, and
reading data stored in Cloud. The accessing Cloud data for
authorized users in decentralized network is very useful and
robust there for overall communication storage has been
developed by comparing to the Centralized approaches. In
this review paper decentralized access schemes gives
authentication to creator with KDC, more secure data storage
n cloud companied with the centralized scheme.

REFERENCES
[1] H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-Based

Authentication for Cloud Computing,” Proc. First Int’l Conf.
Cloud Computing (CloudCom), pp. 157-166, 2009.

[2] S. Ruj, A. Nayak, and I. Stojmenovic, “DACC: Distributed
access control in clouds,” in IEEE Trust Com, 2011.

[3] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, Toward
Secure and Dependable Storage Services in Cloud
Compu-ting, ‖ IEEE Trans. Services Computing, Apr.- June
2012.

[4] S. Seenu Iropia and R. Vijayalakshmi (2014), “Decentralized
Access Control of Data Stored in Cloud using Key-Policy
Attribute Based Encryption” in preceedings: International
journal of Inventions in Computer Science and Engineering
ISSN (print):2348-3431.

[5] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,”
Proc. Ann. Int’l Conf. Advances in Cryptology
(EUROCRYPT), pp. 457-473, 2005.

[6] G. Wang, Q. Liu, and J. Wu, ―Hierarchical Attribute-Based
Encryption for Fine-Grained Access Control in Cloud Storage
Services, ‖ Proc. 17th ACM Conf. Computer and Comm.
Secu-rity (CCS), 2010.

[7] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy
Attribute-Based Encryption,” Proc. IEEE Symp. Security and
Privacy, pp. 321-334, 2007.

[8] X. Liang, Z. Cao, H. Lin, and D. Xing, “Provably Secure and
Efficient Bounded Ciphertext Policy Attribute Based
Encryption,” Proc. ACM Symp. Information, Computer and
Comm. Security (ASIACCS), pp 343-352, 2009.

[9] M. Chase, “Multi-Authority Attribute Based Encryption,”
Proc. Fourth Conf. Theory of Cryptography (TCC), pp.
515-534, 2007.

[10] S. Yu, C. Wang, K. Ren, and W. Lou, Attribute Based Data
Sharing with Attribute Revocation, ‖ Proc. ACM Symp.
Infor-mation, Computer and Comm. Security (ASIACCS),
2010.

6 Shraddha V. Mokle et al.: Decentralized Access Control Schemes for Data Storage on Cloud

[11] H. K. Maji, M. Prabhakaran, and M. Rosulek,
“Attribute-based signatures: Achieving attribute-privacy and
collusion resistance,” IACR Cryptology ePrint Archive,
2008.

[12] F. Zhao, T. Nishide, and K. Sakurai, “Realizing fine-grained
and flexible access control to outsourced data with
attribute-based cryptosystems,” in ISPEC, ser. Lecture Notes

in Computer Science, vol. 6672. Springer, pp. 83–97, 2011.

[13] S Sushmita Ruj, Milos Stojmenovic and Amiya Nayak,
Decentralized Access Control with Anonymous
Authentication of Data Stored in Clouds‖, IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS.

	1. Introduction
	2. Literature Survey
	3. Analysis of Access Control Schemes
	4. Security of the Protocol
	5. Conclusions

